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Sex-based differences in the prevalence of autism spectrum disorder (ASD) are well-documented, with a male-to-female ratio of
approximately 4:1. The clinical presentation of the core symptoms of ASD can also vary between sexes. Previously, positron
emission tomography (PET) studies have identified alterations in the in vivo levels of translocator protein (TSPO)—a mitochondrial
protein—in primarily or only male adults with ASD, with our group reporting lower TSPO relative to whole brain mean in males with
ASD. However, whether in vivo TSPO levels are altered in females with ASD, specifically, is unknown. This is the first pilot study to
measure in vivo TSPO in the brain in adult females with ASD using [11C]PBR28 PET-magnetic resonance imaging (MRI). Twelve adult
females with ASD and 10 age- and TSPO genotype-matched controls (CON) completed one or two [11C]PBR28 PET–MRI scans.
Females with ASD exhibited elevated [11C]PBR28 standardized uptake value ratio (SUVR) in the midcingulate cortex and splenium of
the corpus callosum compared to CON. No brain area showed lower [11C]PBR28 SUVR in females with ASD compared to CON. Test-
retest over several months showed stable [11C]PBR28 SUVR across time in both groups. Elevated regional [11C]PBR28 SUVR in
females with ASD stand in stark contrast to our previous findings of lower regional [11C]PBR28 SUVR in males with ASD. Preliminary
evidence of regionally elevated mitochondrial protein TSPO relative to whole brain mean in ASD females may reflect
neuroimmuno-metabolic alterations specific to females with ASD.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01859-6

INTRODUCTION
Autism spectrum disorder (ASD) is characterized by difficulties in
social communication and interaction and restrictive and repetitive
patterns of behavior [1]. A striking observation regarding ASD is the
significantly higher prevalence in males, with males diagnosed
approximately four times more frequently than females [2]. In
addition, the clinical presentation of the core symptoms of ASD can
vary in males and females with ASD. Females with ASD may have
fewer or less pronounced restricted interests and repetitive
behaviors (reviewed in ref. [3]) and may demonstrate stronger social
competence compared to males with ASD (reviewed in ref. [4]).
The need to study both males and females with ASD has been
recognized. Despite this, over 90% of neuroimaging studies in ASD
in the last 20 years only studied males or did not study sex effects if
females were included [5]. As a result, our understanding of
neurobiology in females with ASD is particularly lacking.
Alterations in neuroimmune and mitochondrial mechanisms,

both in the brain and periphery, have been repeatedly implicated
in ASD (reviewed in refs. [6, 7]) [8–10]. Notably, naturally occurring
sex differences have been observed in some of these neuroim-
mune and mitochondrial functions in humans [11, 12]. Post-
mortem work showed that genes related to microglial and

astrocyte function, which are upregulated in ASD, are more highly
expressed in males compared to females [11]. Additionally, males
have lower mitochondrial respiration than females in peripheral
blood mononuclear cells [12], including in a segment of the
electron transport chain (Complex I) that was found to be
expressed at a lower level in post-mortem ASD brain tissue [13].
These sex differences in neuroimmune and mitochondrial
processes demonstrate underlying biological differences in males
and females and highlight the need to study these mechanisms in
ASD in both sexes.
Translocator protein 18 kDa (TSPO), a mitochondrial protein which

has neuroimmune functions [14], has previously been investigated
in ASD [15–17]. Using positron emission tomography–magnetic
resonance imaging (PET–MRI), we observed lower regional TSPO
relative to the whole brain measured by standardized uptake value
ratio (SUVR) in adult males with ASD (N= 15) compared to age-
matched male controls [15]. Translocator protein levels were also
assessed by another research group with [18F]FEPPA PET in a
combined group of adult males and females with ASD, revealing
either unchanged (N= 13, males= 8, females= 5) or lower (a subset
of N= 11) TSPO levels in the brain using arterial blood-based PET
quantification [17]. Another study which used the cerebellum of the
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controls as a reference region and the radiotracer [11C]PK11195,
which has a lower ratio of specific to nonspecific binding than [11C]
PBR28 [18], reported higher TSPO levels in males with ASD [17]. In
parallel, Kato et al. recently reported lower in vivo mitochondrial
Complex I in the brain in adult males with ASD [19]. Post-mortem
studies have also revealed lower levels of mitochondrial proteins in
adult males with ASD [9]. Taken together, this suggests a lower
density of several mitochondrial proteins in males with ASD.
Translocator protein levels have not been investigated specifically
in females with ASD to date.
In this study, we used PET–MRI with a second-generation

TSPO radiotracer, [11C]PBR28, to quantify in vivo TSPO in females
with ASD. Given that individuals with ASD with comorbid
intellectual disability are understudied, particularly in neuroima-
ging [20], we included females with ASD with a broad range of
cognitive abilities. In terms of age, we focused on young adults
as done previously for males [15]. We assessed whether (1) [11C]
PBR28 SUVR are altered in females with ASD compared to female
controls, (2) [11C]PBR28 SUVR are associated with ASD symptom
severity, and (3) [11C]PBR28 SUVR in females with ASD and
female controls are stable over several months. We hypothesize
that females with ASD will have altered [11C]PBR28 SUVR
compared to female controls and that [11C]PBR28 SUVR will
be associated with symptom severity. Based on our previous
findings in males, we expect [11C]PBR28 SUVR to be stable over
several months.

METHODS AND MATERIALS
Study design
All participants were screened at the Lurie Center for Autism at
Massachusetts General Hospital (MGH) and completed simultaneous
PET–MRI scan(s) at the Athinoula A. Martinos Center for Biomedical
Imaging. To meet inclusion criteria, participants had to be female, age
18–40 years, not smoke, and not be taking any anti-inflammatory drugs,
immune-modulating drugs, or benzodiazepines other than lorazepam,
desmethyldiazepam, and oxazepam, which are benzodiazepines that show
negligible binding affinity to TSPO and are thought to not affect
radiotracer binding in TSPO PET studies [21]. Participants had to have an
intelligence quotient (IQ) at or above the range of moderate intellectual
disability (IQ ≥ 35) for individuals with ASD and normal IQ (IQ ≥ 85) for
controls (CON), which was measured using the abbreviated battery of the
Stanford Binet Intelligence Scales, Fifth Edition (SB-5 ABIQ) [22] at the
screening visit. Participants with ASD were excluded if they had a diagnosis
of epilepsy and had a clinically significant seizure (one that required
medical attention) or change in seizure medication in the last 6 months, as
epilepsy can influence TSPO levels [23]. The rs6971 single-nucleotide
polymorphism on exon 4 of the TSPO gene affects the binding affinity of
[11C]PBR28 to TSPO [24]. Participants were, therefore, genotyped for the
TSPO rs6971 polymorphism and only individuals with the C/C genotype
(high affinity binders) and C/T genotype (mixed affinity binders) were
scanned. Individuals with the T/T genotype, which confers negligible
binding to [11C]PBR28 [24], were excluded. All participants were excluded if
they were taking any illicit or recreational drugs (verified by the Discover
Plus 12 Panel Dip Card urine drug test on the day of enrollment and the
day of scan) or had any PET–MRI safety contraindications, including
pregnancy and breastfeeding.

Demographic, medical history, and medication information. All participants
included were of female sex. Participants provided demographic informa-
tion which included gender, race, and ethnicity (Table 1). Information on
medical history was collected by a physician (RPT, MP, CK, CJM) based on
participant self-report. In addition, participants provided information on
medication (current and over the past year) on the day of the scan.

ASD diagnosis and clinical characterization. Individuals with ASD met the
Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5)
criteria for ASD [1] as assessed by a board-certified psychiatrist with
experience in the diagnosis of ASD (RPT, MP, CK, CJM) at the MGH Lurie
Center for Autism. The ASD diagnosis was corroborated by the Autism
Diagnostic Interview-Revised (ADI-R) [25, 26] and the Autism Diagnostic
Observation Schedule-2 (ADOS-2), Module 4 [27]. The ADOS-2 is a

diagnostic tool which also provides metrics of ASD symptom severity in
two domains, social affect and restrictive and repetitive behavior [28] (but
see also ref. [29]). The sum of ADOS-2 social affect and restrictive and
repetitive behavior subscale scores (ADOS-2 total score) was used to assess
ASD symptom severity. The ADI-R and ADOS-2 were obtained for all except
1 participant.

Study approval
The Institutional Review Board (IRB) of Mass General Brigham and the
Radioactive Drug Research Committee (RDRC) approved the protocol for
this study. Informed consent was provided by participants or their legally
authorized representative (LAR; as appropriate for individuals with ASD and
impaired capacity to provide consent). Capacity to consent was determined
by a board-certified psychiatrist (RPT, MP, CK, CJM). Participants with ASD
also provided written assent when LAR consent was obtained.

PET–MRI data acquisition
All participants completed a scanner training protocol that included the
option to view videos demonstrating procedures associated with a
simultaneous PET–MRI scan at the Athinoula A. Martinos Center for
Biomedical Imaging and included a training scan onsite, following our
published protocol [30]. We have previously obtained high-quality data
using this training protocol in individuals with ASD [15]. Participants were
scanned using the Siemens BrainPET, a head-only PET camera inserted
inside a 3 Tesla TIM Trio MR scanner and a head-only 8-channel receive MR
radiofrequency coil. A multi-echo magnetization prepared rapid acquisi-
tion gradient echo (MEMPRAGE) T1-weighted structural scan with
volumetric navigator-based prospective motion correction [31] was
acquired (TR= 2530ms, TE[1–4]= 1.66ms, 3.53ms, 5.4 ms, 7.27ms, FOV=
280mm, flip angle= 7 deg, voxel size= 1mm isotropic). [11C]PBR28 PET
was synthesized onsite by the Martinos Center radiopharmacy using
methodology described previously [15]. A licensed nuclear medicine
technologist administered ~15mCi of [11C]PBR28 to participants as a slow
bolus injection through an intravenous catheter in an arm or hand vein
outside of the scanner (see Table 1).

PET–MRI data analysis
The attenuation correction for PET data was conducted with the T1-
weighted structural MRI using a statistical parametric mapping (SPM)-
based, pseudo-computed tomography methodology [32, 33]. The PET data
were reconstructed from prompt coincidences using the three-
dimensional ordinary Poisson ordered-subset expectation maximization
(3D OP-OSEM) algorithm with 1 subset and 32 iterations, corrected for
normalization, isotope decay, dead time, photon attenuation, and random
and scatter coincidences. The reconstructed standardized uptake value
(SUV) image had a matrix size of 256 × 256 with 153 slices. The voxel size
was 1.25 × 1.25 × 1.25mm3.
The emission data collected from 60–90min post-radioligand injection

was reconstructed into six 5-min SUV images, re-aligned using MCFLIRT
(FSL version 5.0.9, https://fsl.fmrib.ox.ac.uk/fsl) and averaged to generate
each participant’s mean SUV image. The SUV image was linearly registered
to the corresponding structural scan using spmregister (FreeSurfer version
5.3, https://surfer.nmr.mgh.harvard.edu). Skull-stripping was performed
using a mask which included all the brain regions obtained from
FreeSurfer’s automated parcellation and segmentation (version 6.0), based
on the Desikan-Killiany atlas. A non-linear registration matrix was
generated by registering the T1-weighted structural image to Montreal
Neurological Institute (MNI) standard space using FSL’s FLIRT and FNIRT.
This non-linear registration matrix was used to transform the skull-stripped
SUV from subject space to MNI space. Each individual’s SUV image in MNI
space was normalized by the whole brain mean excluding the ventricles
(SUV ratio, SUVR) to account for individual differences in global signal.
Whole brain mean SUV was not significantly different between ASD and
CON groups (p= 0.87, Mann–Whitney U test). The SUVR images were
spatially smoothed using a Gaussian filter with a full width at half
maximum (FWHM) kernel size of 8 mm.

Long-term stability of [11C]PBR28 SUVR. For the participants who under-
went a second [11C]PBR28 PET–MRI scan, which included 4 ASD and 5 CON,
SUVR were assessed for 14 regions of interest (ROIs). These ROIs were
previously used [15] and included the bilateral frontal, parietal, temporal
and occipital lobes, and bilateral insula, cingulate, caudate, putamen,
pallidum, thalamus, hippocampus/parahippocampal gyrus, amygdala,
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cerebellum based on the Automated Anatomical Labeling (AAL) human
brain atlas [34]. A bilateral white matter ROI that was generated from the
tissue probability maps in PMOD (PMOD Technologies LLC, Zurich,
Switzerland), threshold= 98% probability was also included.

Statistics
Whole brain voxelwise analyses using a general linear model were
performed in FSL FEAT for the first scan. For group (ASD vs. CON)

comparisons and associations with ADOS-2 total scores, linear regressions
were conducted with mixed effects and ordinary least squares and a
statistical threshold of Z > 2.3, pcluster < 0.05 for cluster-based multiple
comparison correction. Age and TSPO genotype were entered as variables
of non-interest for all models. GraphPad Prism version 9.0 (GraphPad
Software, La Jolla, CA) was used to conduct all other statistical tests, which
included Mann–Whitney U tests for group comparison of continuous
variables, Fisher’s exact tests for group comparison of categorical variables,
and Pearson’s and Spearman’s correlations.

Table 1. Demographic, intelligence, radiochemistry, behavioral, and current medication information.

Scan 1 Scan 2

ASD (N= 12) CON (N= 10) p value ASD (N= 4) CON (N= 5) p value

Demographics

Age (years) 25.33 (5.88),
Range: 19–37

25.70 (4.62),
Range: 20–37

0.62 27.00 (3.92),
Range: 22–31

27.60 (5.6),
Range: 23–37

0.95

Sex 100% female 100% female 100% female 100% female

Gender (F/M) 11/1 10/0 >0.99 4/0 5/0 >0.99

Race (White/Asian/Black) 11/1/0 7/2/1 0.36 4/0/0 3/1/1 0.36

Ethnicity (Hispanic/Non-Hispanic) 0/12 2/8 0.19 0/4 1/4 >0.99

TSPO genotype (C/C / C/T) 6/6 5/5 >0.99 2/2 3/2 >0.99

Body mass index 26.49 (5.03),
Range:
18.90–35.70

23.2 (3.12),
Range:
23.40–37.50

0.06 28.25 (6.58),
Range:
19.60–27.80

25.82 (2.63),
Range:
22.60–28.40

0.60

Intelligence

SB-5 ABIQ 90.83 (25.36),
Range: 50–124

101.80 (11.33),
Range: 85–118

0.53 73.75 (17.73),
Range: 61–100

98.80 (12.30),
Range: 85–115

<0.05

Radiochemistry measures

Injected dose (mCi) 14.15 (1.00),
Range:
11.20–15.10

14.13 (0.86),
Range:
11.80–14.83

0.91 14.51 (0.34),
Range:
14.13–14.91

13.77 (1.25),
Range:
11.95–14.82

0.51

Molar activity (mCi/nmol) 1.16 (0.21),
Range:
0.77–1.49

1.49 (0.65),
Range:
0.42–2.53

0.16 1.32 (0.21),
Range:
1.13–1.57

1.36 (0.22),
Range:
1.06–1.63

0.90

Injected mass (µg) 4.38 (0.93),
Range:
3.24–6.57

4.25 (2.92),
Range:
1.91–11.99

0.20 3.89 (0.66),
Range:
3.12–4.60

3.62 (0.88),
Range:
2.78–4.88

0.73

Behavioral measures

ADOS-2 total score (social
affect+ restrictive and repetitive
behavior)

16.00 (5.50),
Range: 9–24,
N= 11

N/A N/A 16.25 (6.40),
Range: 11–24

N/A N/A

ADOS-2 social affect subscale
score

12.18 (4.47),
Range: 7–19,
N= 11

N/A N/A 12.25 (4.65),
Range: 8–18

N/A N/A

ADOS-2 restrictive and repetitive
behavior subscale score

3.82 (1.66),
Range: 1–6,
N= 11

N/A N/A 4.00 (1.83),
Range: 2–6

N/A N/A

ADI-R total score 40.5 (10.80),
Range: 23–60,
N= 11

N/A N/A 48.50 (10.79),
Range: 37–60

N/A N/A

Current medication

Atypical antipsychotics 3 0 N/A 0 0 N/A

Antidepressants 7 0 N/A 2 0 N/A

Anxiolytics 4 0 N/A 1 0 N/A

Anticonvulsants 3 0 N/A 1 0 N/A

Stimulants 2 0 N/A 0 0 N/A

p values were determined by Mann–Whitney U tests for all except sex, gender, race, and TSPO genotype for which a Fisher’s exact test was used. Values are
reported as mean (standard deviation). The ADOS-2 social affect score ranges from 0 to 20, and the ADOS-2 restrictive and repetitive behavior score ranges
from 0 to 10, with higher scores indicating more severe symptoms. The ADI-R total score is the sum of the social, communication, and restrictive, repetitive,
and stereotyped behavior subscores.
ASD autism spectrum disorder, CON control, N number, TSPO translocator protein, SB-5 ABIQ Stanford Binet Intelligence Scales, Fifth Edition, abbreviated
battery intelligence quotient, ADOS-2 Autism Diagnostic Observation Schedule, Second Edition, ADI-R Autism Diagnostic Interview-Revised, N/A not applicable.
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In order to assess long-term stability of [11C]PBR28 SUVR, Pearson’s
r were calculated between the SUVR at these two time points in the 14
ROIs. In addition, Bland–Altman plots were created in Excel to assess the
agreement between the two scans. The 95% limits of agreement were
calculated as mean percent difference ±1.96 × standard deviation of the
percent difference.

RESULTS
Study participants
In total, 20 female participants with ASD and 14 typically
developing female CON were enrolled in this study. Of these, 12
female participants with ASD and 10 age-matched CON com-
pleted a [11C]PBR28 PET–MRI scan. In addition, 4 individuals with
ASD and 5 CON underwent a second [11C]PBR28 PET–MRI scan
several months after the first scan in order to assess stability of
[11C]PBR28 SUVR. The interval between the two scans was not
significantly different between the two groups (ASD:
4.8 ± 0.5 months, CON: 4.5 ± 2.1 months, p > 0.99). Eight females
with ASD who did not complete a scan either could not be
included because they had the TSPO genotype T/T (N= 2), did not
meet the DSM-5 criteria for ASD (N= 1), withdrew (N= 3), or were
lost to follow-up (N= 2). Four CON who did not complete a scan
were either ineligible due to not passing the urine drug test
(N= 2) or due to a major physical illness (N= 1) or withdrew
(N= 1). At the group-level, the ASD and CON participants did not
differ in age, gender, race, ethnicity, TSPO genotype, body mass

index, IQ, or radiochemistry measures of the radiotracer at the
time of the first scan (Table 1).

Whole brain voxelwise analysis comparing [11C]PBR28 SUVR
between groups
Elevated [11C]PBR28 SUVR were found in the midcingulate cortex
(MCC) and splenium of the corpus callosum in female adults with
ASD compared to age- and TSPO genotype-matched CON (Z > 2.3,
pcluster < 0.05, Fig. 1). The cluster with the MCC was 7064mm3 and
the cluster with the splenium was 11,016 mm3. For visualization
purposes, individual data points for the [11C]PBR28 SUVR residuals
(controlling for age and TSPO genotype) in the posthoc clusters
are shown in Supplementary Fig. S1. No brain region showed
lower [11C]PBR28 SUVR in ASD compared to CON.
Using the simultaneously collected MRI data, the structural

volume of the posthoc clusters where group differences in [11C]
PBR28 SUVR were found were assessed. No structural volume
differences were found in these areas in ASD compared to CON
(see Supplementary).
Exploratory analysis comparing [11C]PBR28 SUVR in the posthoc

clusters in ASD with IQ ≥ 85 compared to ASD with IQ < 85
showed no difference between these two subgroups in either
cluster (see Supplementary and Fig. S2). One subject with ASD had
a history of epilepsy and one subject with ASD was taking
lorazepam which is a benzodiazepine with negligible binding to
TSPO [21]. Analysis without either of these subjects did not
significantly change the findings (see Supplementary Figs. S3, S4).

Fig. 1 Elevated in vivo [11C]PBR28 SUVR in female adults with ASD compared to age- and TSPO genotype-matched CON. Group mean
[11C]PBR28 SUVR maps of females with ASD (top) and female CON (middle). Statistical map from voxelwise comparison of [11C]PBR28 SUVR
between groups, controlled for age and TSPO genotype, shows elevated regional TSPO levels relative to whole brain mean in the
midcingulate cortex and splenium of the corpus callosum in ASD (N= 12) compared to CON (N= 10) (Z > 2.3, pcluster < 0.05) (bottom). TSPO
translocator protein, ASD autism spectrum disorder, CON control, SUVR standardized uptake value ratio, N number.
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Association between [11C]PBR28 SUVR and ASD symptom
severity
The ADOS-2 total scores were positively associated with [11C]
PBR28 SUVR in the left inferior longitudinal fasciculus (ILF) (Z > 2.3,
pcluster < 0.05, Fig. 2). Individual data points for [11C]PBR28 SUVR
residuals (controlling for age and TSPO genotype) in the posthoc
cluster plotted against ADOS-2 total scores are shown in
Supplementary Fig. S5 for visualization purposes. There was no
region where ADOS-2 total scores were negatively associated with
[11C]PBR28 SUVR. The [11C]PBR28 SUVR in the posthoc clusters
where group differences were found were not associated with the
ADOS-2 total score, controlling for age and TSPO genotype (MCC
cluster: Spearman’s r= 0.33, p= 0.32; splenium cluster: Spear-
man’s r= 0.009, p= 0.99).

[11C]PBR28 SUVR stability
[11C]PBR28 SUVR was stable over around a 4.6-month period in
ASD and CON, with scan 1 and scan 2 being strongly correlated
(ASD: Pearson’s r= 0.996, p < 0.0001; CON: Pearson’s r= 0.997,
p < 0.0001; Fig. 3A). High scan-rescan agreement was found in
both ASD and CON with the bias of almost all regions falling
within the 95% limits of agreement. The mean bias was
−0.66 ± 3.17% for ASD and −0.40 ± 2.68% for CON (Fig. 3B).
[11C]PBR28 SUVR values in each ROI are presented in Supplemen-
tary Table S1. The ASD and CON participants that completed a
second scan did not differ in age, TSPO genotype, body mass
index, or radiochemistry measures of the radiotracer. The
participants with ASD who completed a second scan had lower
IQ than the CON participants who completed a second scan
(Table 1).

DISCUSSION
This study, the first TSPO imaging study to focus specifically on
females with ASD, presents preliminary evidence of elevated [11C]
PBR28 SUVR in the MCC and splenium of the corpus callosum in
female young adults with ASD compared to age- and TSPO
genotype-matched female CON. The regional elevations in TSPO
(compared to whole brain mean) in female adults with ASD stand
in contrast with the regional reductions in TSPO (compared to
whole brain mean) in male adults with ASD compared to male

controls using the same radiotracer and analysis methodology
[15]. In addition, we found that [11C]PBR28 SUVR was stable over
several months.
While our approach allows us to assess [11C]PBR28 uptake,

generally thought of as correlated to the availability of TSPO, the
neurobiological interpretation of any alterations seen is more
complex and cannot be fully defined in this study. For example,
regional TSPO alterations may reflect altered density of TSPO
expressing cells and recent work suggested that under pro-
inflammatory conditions, TSPO elevations may be associated with
increases in inflammatory cell density in humans [35]. Numerous
functions have been associated with changes in TSPO, including
mitochondrial function (reviewed in ref. [36]) and neuronal activity
[37]. The elevated [11C]PBR28 SUVR found in this study in females
with ASD may not reflect the same biological processes as in other
disorders [38] that show high TSPO levels, including neurodegen-
erative disorders (reviewed in ref. [39]). Elevated [11C]PBR28 SUVR
in females with ASD may reflect neuroimmune alterations that
have been previously reported in ASD (reviewed in ref. [40]).
Translocator protein overexpression has also been associated with
anti-inflammatory effects (reviewed in ref. [36]) and preclinical
work has shown higher expression of anti-inflammatory markers
in females compared to males in an early-life immune activation
mouse model that leads to autism-like symptoms [41]. To pinpoint
the biological process associated with elevated [11C]PBR28 SUVR
in ASD females, it will be critical to identify the cell type(s) driving
this difference, as TSPO is expressed in numerous cells including
microglia, astrocytes, neurons, and endothelial cells [14, 37].
Despite the complexity of the interpretation, in vivo imaging of
TSPO provides clues to which brain regions to investigate and
gives us the opportunity to elucidate condition-related mechan-
isms in the future.
In terms of implicated brain regions, previous MRI studies have

reported alterations in the regions where elevated TSPO was
observed in this study, the MCC and splenium of the corpus
callosum, in ASD [42–44]. The MCC is involved in reward-based
decision-making and social behavior (reviewed in ref. [45]).
Alterations in the structure and function of the corpus callosum
have been reported in ASD (reviewed in ref. [46]), including white
matter deficits in the splenium [43, 44]. In our sample, we did not
find differences in structural volume in the areas where group
differences in [11C]PBR28 SUVR were found (i.e., MCC and
splenium).
ADOS-2 total scores were positively associated with [11C]PBR28

SUVR in the left ILF, indicating that higher regional TSPO in the left
ILF is associated with greater ASD symptom severity. This
association is different from what was previously observed in
males with ASD where lower TSPO levels tended to be associated
with greater ASD symptom severity as measured by the ADOS-2
total score [15]. A larger sample size to confirm this preliminary
observation is warranted. The ILF is a white matter tract that
connects the occipital lobe and anterior temporal brain regions
and is involved in visual, face, and emotional processing (reviewed
in ref. [47]), processes that are altered in ASD (reviewed in ref.
[48]). The ILF shows lower white matter integrity in adolescents
with ASD [49, 50]. Weaker white matter integrity of the ILF is also
associated with lower social skills in adolescents and adults with
ASD [49]. Whether higher TSPO levels co-occur with white matter
alterations in ASD remains to be investigated.
It is notable that the direction of difference in females was

higher TSPO rather than lower as we previously observed in males
[15] and others have reported in a mixed group of males and
females with ASD [17]. Sex-specific alterations in regional TSPO
levels may relate to differing neurobiology of ASD in females and
males. Whether changes in regional TSPO levels arise from the
same process or cell source in males and females with ASD will
need to be identified. Numerous preclinical autism models
associated with immune mechanisms have shown sex-specific

Fig. 2 Regional TSPO levels relative to whole brain mean in the
left inferior longitudinal fasciculus were positively correlated with
ASD symptom severity measured by ADOS-2 total scores in
females with ASD (Z > 2.3, pcluster < 0.05). TSPO translocator
protein, ASD autism spectrum disorder.
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effects [41, 51, 52]. It is worth noting that higher in vivo TSPO
levels have been previously reported in patients with active
episodes of major depressive disorder (reviewed in ref. [53]).
Anecdotally in this study, 5 out of 12 females with ASD self-
reported a history of co-occurring depression (compared to none
of the males with ASD in our previous study [15]). The [11C]PBR28
SUVR in the posthoc clusters where group differences were found
were not different between those females with ASD who did and
did not self-report a history of depression (see Supplementary).
However, we acknowledge that this current study did not assess
current burden of depressive symptoms, which represents a
limitation. Future work could assess the relationship between
TSPO and depressive symptoms in females with ASD.
While the sample size of this study is not large (N= 12, with

N= 19 enrolled) and our findings therefore have to be considered
preliminary, it is to our knowledge, the largest sample of females
with ASD among PET studies in ASD that included females as a

separate group or assessed sex effects (see N= 4 [54, 55], N= 6
[56], and N= 11 [57, 58]). This study adds to the scarce knowledge
that we have regarding molecular markers in females with ASD, as
to the best of our knowledge, only 5 out of over 70 PET studies in
ASD to date have assessed females with ASD either as a separate
group or assessed group-by-sex interaction effects. Specifically,
this is the first TSPO PET–MRI study conducted exclusively in
females with ASD. Recruitment of females with ASD for [11C]PBR28
PET–MRI studies is particularly challenging because of the lower
prevalence of ASD in females in addition to general constraints for
[11C]PBR28 PET–MRI studies, including the inability to include
individuals with the TSPO genotype that confers low binding
affinity, PET–MRI safety-contraindications, and challenges asso-
ciated with neuroimaging studies in general and with studies
involving radiation. It is notable that TSPO PET studies of similar
sample size have led to disease-specific observations (e.g.,
schizophrenia: N= 12 [59], ASD: N= 11 [17]). As in most ASD

Fig. 3 Stable [11C]PBR28 SUVR in ASD and CON. A Correlation plots show that [11C]PBR28 SUVR over a mean rescan interval of 4.6 months
are highly correlated in ASD (N= 4) and CON (N= 5). Each dot represents the mean [11C]PBR28 SUVR in a brain region and the lines indicate
the standard deviation. The dotted line represents the identity line. B Bland–Altman plots of between-scan agreement. Mean [11C]PBR28 SUVR
values were normalized to a range of 1–2 in ASD and CON. The solid line represents the mean percent difference between scan 1 and scan 2,
and points represent each ROI from each participant. The upper and lower limits of agreement are depicted with dotted lines and the shaded
regions are the 95% confidence interval of the upper and lower limits of agreement. SUVR standardized uptake value ratio, ASD autism
spectrum disorder, CON control, N number, ROI region of interest.
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research, we must acknowledge potential confounding effects
due to medications, but our study did exclude for those
benzodiazepines that were considered a confounding factor for
[11C]PBR28 imaging. Furthermore, we opted to not perform
arterial line procedures due to the invasive nature of these
procedures, particularly given the inclusion of individuals with
impaired decision-making. We acknowledge the limitations
associated with our use of [11C]PBR28 SUVR with whole brain
normalization. [11C]PBR28 PET does not have a true reference
region for ratio metrics. Prior work has found high correlation
between [11C]PBR28 SUVR and distribution volume ratios in
several disorders using different pseudo-reference regions
[60–62]. To date, a pseudo-reference region for [11C]PBR28 has
not been determined in ASD, which would be required, absent
arterial input function, to understand any global changes [63].
Previous work has demonstrated that when using the whole brain
as a reference region, focal differences in [11C]PBR28 SUVR that
match disease-specific pathological abnormalities observed
through post-mortem analysis can be detected [64, 65]. The
fundamental assumption of using whole brain normalization, with
the prerequisite of no group differences in whole brain SUV (as
was the case in this study), is that the emphasis is on regional
effects and that global changes in signal may not represent
underlying pathophysiology. However, we acknowledge that
using whole brain normalization deviates from traditional SUVR
approaches with ideal reference regions and comes with the
complexity that the brain areas being assessed are included in the
region used for normalization. Another potential limitation is that
we have not performed partial volume effect correction. However,
the BrainPET prototype’s spatial resolution is ~2.5 mm FWHM at
the center of the field of view [66], which is better than that of
whole-body PET devices. Furthermore, we have previously care-
fully characterized its spatially variant point spread function [67]
and this information was included in the image reconstruction
used here.
The findings in this study, in conjunction with the findings from our

previous TSPO PET–MR imaging study in males with ASD [15], provide
preliminary evidence that the in vivo TSPO profile of females and
males with ASD is different, with elevated regional TSPO in females
with ASD and lower regional TSPO in males with ASD compared to
sex-matched CON. Whether this contributes to sex differences in ASD
prevalence and/or presentations of the core symptoms of ASD in
individuals with ASD will need to be further elucidated.

DATA AVAILABILITY
Custom codes used in this study will be made available upon reasonable request.
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