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Meta-analysis of genome-wide association study data has implicated PDE4B in the pathogenesis of Alzheimer’s disease (AD), the
leading cause of senile dementia. PDE4B encodes one of four subtypes of cyclic adenosine monophosphate (cAMP)-specific
phosphodiesterase-4 (PDE4A–D). To interrogate the involvement of PDE4B in the manifestation of AD-related phenotypes, the
effects of a hypomorphic mutation (Pde4bY358C) that decreases PDE4B’s cAMP hydrolytic activity were evaluated in the AppNL-G-F

knock-in mouse model of AD using the Barnes maze test of spatial memory, 14C-2-deoxyglucose autoradiography, thioflavin-S
staining of β-amyloid (Aβ) plaques, and inflammatory marker assay and transcriptomic analysis (RNA sequencing) of cerebral
cortical tissue. At 12 months of age, AppNL-G-F mice exhibited spatial memory and brain metabolism deficits, which were prevented
by the hypomorphic PDE4B in AppNL-G-F/Pde4bY358C mice, without a decrease in Aβ plaque burden. RNA sequencing revealed that,
among the 531 transcripts differentially expressed in AppNL-G-F versus wild-type mice, only 13 transcripts from four genes – Ide,
Btaf1, Padi2, and C1qb – were differentially expressed in AppNL-G-F/Pde4bY358C versus AppNL-G-F mice, identifying their potential
involvement in the protective effect of hypomorphic PDE4B. Our data demonstrate that spatial memory and cerebral glucose
metabolism deficits exhibited by 12-month-old AppNL-G-F mice are prevented by targeted inhibition of PDE4B. To our knowledge,
this is the first demonstration of a protective effect of PDE4B subtype-specific inhibition in a preclinical model of AD. It thus
identifies PDE4B as a key regulator of disease manifestation in the AppNL-G-F model and a promising therapeutic target for AD.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01852-z

INTRODUCTION
Alzheimer’s disease (AD) is the leading cause of dementia and
disability in old age, with pathological features including extra-
cellular plaque deposits of the β-amyloid (Aβ) peptide and an
estimated heritability of ∼60% [1–3]. Although recent clinical trials
of Aβ-targeting monoclonal antibodies resulted in moderately less
cognitive decline in people with early AD [4, 5], no therapeutics
capable of halting or reversing the progression of the disease have
been described.
The risk of developing senile dementia is 34% higher in

individuals with gastroesophageal reflux disease (GERD) compared
with controls [6]. Meta-analysis of genome-wide association study
(GWAS) data indicates that AD and GERD share seven genome-
wide significant susceptibility loci [7]. Among the implicated
genes, PDE4B, encoding one of four subtypes of cyclic adenosine
monophosphate (cAMP)-specific phosphodiesterase-4 (PDE4A–D),
was proposed as a plausible therapeutic target that should be
investigated further [7].
Across various tissues, PDE4B is expressed in five isoforms

(PDE4B1–5) [8]. In adult mammalian brain tissue, Pde4b transcripts
have been identified by single-cell RNA sequencing in nearly all
subclasses of GABAergic (gamma-aminobutyric acidergic) inhibi-
tory neurons and glutamatergic excitatory neurons, and in some

types of glial cell (Figs. S1 and S2) [9, 10]. PDE4B transcription was
shown to be upregulated in primary rat microglial cell cultures by
exposure to Aβ peptides, resulting in induction of the inflamma-
tory cytokine TNFα, which was markedly decreased by the non-
subtype-selective (pan-) PDE4 inhibitor rolipram (targeting all of
four subtypes, PDE4A–D) [11].
The super-family of phosphodiesterases (PDE1–11) has long been

considered as potential targets for AD therapy [12–19]. Transgenic
amyloid precursor protein (APP)-overexpressing mouse models
of AD have shown amelioration of cognitive deficits following
treatment with the pan-PDE4 inhibitors rolipram [20–22], roflumilast
[23, 24] and FFPM [25], and with the PDE4D subtype-selective
inhibitors GEBR-7b [26] and GEBR-32a [27]. Rolipram had no effect on
Aβ peptide levels or plaque load in the PS/APP and Tg2576 strains
[20, 21], although treatment over 24 days was shown to decrease Aβ
peptide levels in brain tissue from 11-month-old 3xTg-AD mice [22].
Prior to the genetic validation of PDE4B by the GWAS meta-analysis
[7], no work had been published in this context specifically on the
PDE4B subtype.
We previously showed that a hypomorphic mutation (Pde4bY358C),

which affects all PDE4B isoforms and decreases the enzyme’s cAMP
hydrolytic activity by 27%, results in increased phosphorylation of
CREB (cAMP response element binding protein) and cognitive
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enhancement in young adult (12-week-old) C57BL/6J mice [28]. To
interrogate the involvement of PDE4B in the manifestation of AD-
related phenotypes, we evaluated the neurocognitive effects of the
Pde4bY358C hypomorph in the AppNL-G-F knock-in mouse model [29],
which shows Aβ peptide accumulation, neuroinflammation, and
cognitive impairment in an age-dependent manner, without the
non-physiological overexpression of APP [30].
The murine AppNL-G-F allele has a humanized Aβ peptide

sequence, owing to three amino acid substitutions (G676R, F681Y,
R684H; exon 16), and harbors three familial AD mutations: Swedish
(K670N, M671L; exon 16), Arctic (E693G; exon 17), and Iberian
(I716F; exon 17) [29]. The lecanemab monoclonal antibody,
developed as an immunotherapy and tested in recent successful
clinical trials, was raised against the Arctic Aβ variant [4].
Herein, we report that spatial memory and brain metabolism

deficits exhibited by 12-month-old homozygous AppNL-G-F mice
are counteracted by the hypomorphic PDE4B, without decreasing
Aβ plaque burden. This genetically mediated protective effect
identifies PDE4B as a key regulator of disease manifestation in the
AppNL-G-F model and a promising therapeutic target for AD.

METHODS AND MATERIALS
For more detailed methodology, see the Supplementary Materials and
Methods.

Mice
The Pde4bY358C mutation from the B6.C-Pde4benu1H line [28] was bred into the
C57BL/6-Apptm3.1(NL-G-F)Tcs (AppNL-G-F) line [29] to generate App+/+;Pde4b+/+

(wild-type; WT), AppNL-G-F/NL-G-F;Pde4b+/+ (AppNL-G-F) and AppNL-G-F/NL-G-F;
Pde4bY358C/Y358C (AppNL-G-F/Pde4bY358C) littermates for phenotypic testing.
The mouse experiments were conducted in accordance with the UK Animals
(Scientific Procedures) Act 1986 under UK Home Office licences and approved
by institutional Animal Welfare and Ethical Review Bodies at the University of
Leeds and Lancaster University.

Barnes maze
The Barnes maze test was conducted as described previously with slight
modifications [31].

14C-2-DG autoradiography
The 14C-2-deoxyglucose (14C-2-DG) functional brain imaging technique
was undertaken as described previously [32, 33].

Inflammation assay
Cortical lysates (2.5 mg in 100 µl) were analyzed for 32 inflammatory
markers in duplicate using the Mouse Cytokine/Chemokine 32-Plex Array
(Eve Technologies).

Thioflavin-S staining
Aβ deposits in 4% paraformaldehyde-fixed brain sections were stained
with thioflavin-S (Toronto Research Chemicals).

RNA sequencing
Sequence data from a NovaSeq 6000 (Illumina) instrument were processed
using the R package DSeq2 [34] to identify differentially expressed
transcripts with p-values < 0.01 adjusted (adj.) for multiple testing using
the Benjamini-Hochberg false discovery rate method [35].

Western blotting
Western blotting was undertaken as previously described [31], using rabbit
polyclonal antibody PC730 to insulin-degrading enzyme (IDE) (Millipore) or
mouse monoclonal antibody AC-15 to β-actin (Sigma-Aldrich).

Statistical analysis
All data values in the text and figure legends are represented as the
mean ± standard error of the mean. A statistically significant difference was
set at p < 0.01 for RNA sequencing and p < 0.05 for other data.

RESULTS
Protective effect of hypomorphic PDE4B on spatial memory in
AppNL-G-F mice
In the Barnes maze, AppNL-G-F mice previously showed deficient
spatial learning and intact spatial reference memory at 8 months
of age [36]. Other studies report intact spatial learning but subtly
deficient spatial reference memory in AppNL-G-F mice aged
4.5 months [37] and 6 months [38]. We therefore aged mice to
12 months before evaluating their abilities in the Barnes maze.
Over 5 days of training, 12-month-old AppNL-G-F and AppNL-G-F/

Pde4bY358C mice took significantly longer to reach the target hole
than WT controls (primary latency; Fig. 1A). AppNL-G-F mice also
moved more slowly on days 1–3 (velocity; Fig. S3A), took a longer
path to the target hole (primary path length; Fig. 1B), and made
more errors (primary errors; Fig. 1C) compared with WT controls.
During the probe trial, AppNL-G-F mice spent less time than WT mice
in the target quadrant (25% of arena) (Fig. 1D), less time than WT
and AppNL-G-F/Pde4bY358C mice in the target sector (5% of arena)
(Fig. 1E), and made fewer head entries than WT and AppNL-G-F/
Pde4bY358C mice into the target hole annulus (Fig. 1F). These
measures were not different in AppNL-G-F/Pde4bY358C mice relative to
WT controls. Velocity was not significantly different between
genotypes (Fig. S3C). AppNL-G-F mice thus displayed a spatial
memory deficit that was prevented by the hypomorphic PDE4B
present in AppNL-G-F/Pde4bY358C mice.

Protective effect of hypomorphic PDE4B on brain metabolism
in AppNL-G-F mice
An increasing number of studies have shown that the onset and
progression of AD are closely linked to glucose hypometabolism in
the brain [39]. Hence, we assessed cerebral glucose metabolism as a
function of neurogenic activity in the AppNL-G-F model using the
translational 14C-2-DG brain imaging technique. In multiple brain
regions, including the stratum lacunosum-moleculare (SLM) in
hippocampal CA1 and subfields of the prefrontal cortex (PFC),
glucose utilization was significantly lower in 13-month-old AppNL-G-F

mice than in WT controls. However, significantly increased glucose
utilization was observed in AppNL-G-F/Pde4bY358C relative to AppNL-G-F

mice in many of these regions, with cerebral metabolism being
restored to the same level as that observed in WT controls
(Fig. 2A–F). Aside from the SLM, glucose utilization in the
hippocampus was not significantly different in AppNL-G-F and
AppNL-G-F/Pde4bY358C mice relative to WT controls, although a
significant increase in hippocampal metabolism was observed in
AppNL-G-F/Pde4bY358C versus AppNL-G-F mice (Fig. 2G, H). Exemplar
color-coded autoradiographs of coronal brain sections are shown in
Fig. 3. Full data are shown in Tables S1 & S2. AppNL-G-F mice thus
displayed a widespread cerebral hypometabolism that was
prevented by the hypomorphic PDE4B present in AppNL-G-F/
Pde4bY358C mice.
Since Aβ deposition in cerebral gray matter is one of the

hallmark pathologies of AD [1], we evaluated whether the Aβ
plaque burden in 12-month-old AppNL-G-F mice was affected by
hypomorphic PDE4B. The percentage of surface area occupied by
thioflavin-S-stained Aβ plaques was not significantly different
between AppNL-G-F and AppNL-G-F/Pde4bY358C mice (Fig. S4).

Partial attenuation of neuroinflammation in AppNL-G-F mice by
hypomorphic PDE4B
The involvement of neuroinflammation in AD is supported by
accumulating evidence, including the manifestation of micro-
gliosis in AppNL-G-F mice from 9 months of age [29, 40]. As PDE4B is
the predominant negative modulator of cAMP signaling in
microglia [41], which release elevated levels of inflammatory
markers when chronically activated [42], we evaluated the brain
levels of 32 inflammatory markers in 12-month-old mice. Brain
lysates from AppNL-G-F mice showed increased levels of three
cytokines (IFNγ, LIF & M-CSF; Fig. S5), four chemokines (IP-10, MIG,
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MIP-1α & MIP-1β), and one growth factor (VEGF-A; Fig. S6)
compared with WT lysates (Fig. 4A). The levels of five of these
markers (IFNγ, LIF, M-CSF, IP-10 & VEGF-A) were significantly
decreased in AppNL-G-F/Pde4bY358C compared with AppNL-G-F lysates
(Figs. S5 and S6), reflected by lower Z scores for cytokines (Fig. 4B),
chemokines (Fig. 4C), growth factors (Fig. 4D) and all 32 markers
(Fig. 4E). AppNL-G-F mice thus displayed neuroinflammation that

was partially attenuated by the hypomorphic PDE4B present in
AppNL-G-F/Pde4bY358C mice. Lysates from AppNL-G-F/Pde4bY358C mice
also showed significantly decreased levels of IL-9 (Fig. S5K),
eotaxin (Fig. S6A), and LIX (Fig. S6C) compared with WT lysates,
suggesting additional anti-inflammatory effects of PDE4B inhibi-
tion in the brains of 12-month-old mice independent of App
genotype.

Fig. 1 Protective effect of hypomorphic PDE4B on spatial memory in AppNL-G-F mice assessed by the Barnes maze. A Primary latency (s). All
three genotypes showed a significant decrease over the five training days (Friedman’s ANOVA, WT: χ24= 37.819, p < 0.001; AppNL-G-F:
χ24= 39.847, p < 0.001; AppNL-G-F/Pde4bY358C: χ24= 43.518, p < 0.001). Genotypic differences were observed from day 2 (Kruskal-Wallis test, day
2: χ22= 8.939, p= 0.011; day 3: χ22= 10.142, p= 0.006; day 4: χ22= 15.830, p < 0.001; day 5: χ22= 10.712, p= 0.005). B Primary path length (m).
All three genotypes showed a significant decrease over the five training days (Friedman’s ANOVA, WT: χ24= 34.880, p < 0.001; AppNL-G-F:
χ24= 27.624, p < 0.001; AppNL-G-F/Pde4bY358C: χ24= 37.867, p < 0.001). Genotypic differences were observed on days 4 and 5 (Kruskal-Wallis test,
day 4: χ22= 10.078, p= 0.006; day 5: χ22= 9.441, p= 0.009). C Number of errors. All three genotypes showed a significant decrease over the
five training days (Friedman’s ANOVA, WT: χ24= 26.726, p < 0.001; AppNL-G-F: χ24= 15.075, p= 0.005; AppNL-G-F/Pde4bY358C: χ24= 34.562,
p < 0.001). Genotypic differences were observed on days 4 and 5 (Kruskal-Wallis test, day 4: χ22= 11.461, p= 0.003; day 5: χ22= 7.209,
p= 0.027). D Time (s) spent in target quadrant. Genotypic differences were observed (ANOVA, F2,41= 4.304, p= 0.02). E Time (s) spent in target
sector. Genotypic differences were observed (ANOVA, F2,41= 6.111, p= 0.005). F Number of head entries into the target hole annulus.
Genotypic differences were observed (ANOVA, F2,41= 5.547, p= 0.007). G Heat maps showing the cumulative time spent in localities of the
arena. 12-month-old WT (n= 15), AppNL-G-F (n= 17) and AppNL-G-F/Pde4bY358C (n= 15) mice. Data are plotted as mean ± SEM. *p < 0.05;
**p < 0.01 vs. WT. #p < 0.05; ##p < 0.01 vs. AppNL-G-F. Open circles, females; closed circles, males; broken line, chance level.
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Modulation of differentially expressed genes in AppNL-G-F mice
by hypomorphic PDE4B
As PDE4B regulates cAMP gradients and ultimately the transcrip-
tion factor CREB [43], we performed transcriptomic analysis

(RNA sequencing) on cerebral cortical tissue from 12-month-old
mice to identify molecular pathways potentially underlying the
protective effect of PDE4B inhibition in AppNL-G-F mouse brain.
Among 76,076 gene transcripts that were robustly expressed, 531

Fig. 2 Protective effect of hypomorphic PDE4B on brain metabolism in AppNL-G-F mice assessed by 14C-2-DG brain imaging. AppNL-G-F mice
show hypometabolism that is corrected in AppNL-G-F/Pde4bY358C mice in multiple subfields of the PFC (A), cerebral cortex (B), septum (C),
thalamus (D), basal ganglia (E), and mesolimbic pathway (F). AppNL-G-F also show hypometabolism selectively in the DHSLM and SLM that was
corrected in AppNL-G-F/Pde4bY358C mice (G, H). In other hippocampal subfields, AppNL-G-F mice did not show hypometabolism, whereas
metabolism was enhanced in these subfields in AppNL-G-F/Pde4bY358C mice. 13-month-old WT (n= 15), AppNL-G-F (n= 17) and AppNL-G-F/
Pde4bY358C (n= 15) mice. Data are plotted as mean ± SEM. Student’s t-test with Bonferonni-Holm post hoc correction for multiple comparisons.
*p < 0.05; **p < 0.01 vs. WT. #p < 0.05; ##p < 0.01 vs. AppNL-G-F. Brain region abbreviations are defined in Table S1.

P. Armstrong et al.

4

Neuropsychopharmacology



were differentially expressed (DE) at an adjusted significance
threshold of p < 0.01 in AppNL-G-F (527 up, 4 down) (Fig. S7A;
Table S3) and 462 were DE in AppNL-G-F/Pde4bY358C (379 up, 83
down) (Fig. S7B; Table S4) versus WT mice. The number of DE
transcripts in AppNL-G-F/Pde4bY358C versus AppNL-G-F mice was 117
(21 up, 96 down) (Fig. S7C; Table S5).
Among the 531 transcripts DE in AppNL-G-F mice, 314 were also

DE in AppNL-G-F/Pde4bY358C versus WT but not significantly
different between AppNL-G-F and AppNL-G-F/Pde4bY358C (Table S6),
suggesting transcriptional effects of the AppNL-G-F allele that were
not significantly affected by hypomorphic PDE4B. Included in
them are CCl3 (1 up) encoding MIP-1α (Fig. S8A), corroborating the
inflammatory marker assay result, as well as Itgax (4 up) (Fig. S8B),
a marker of disease-associated microglia (DAM) activation, and
Gfap (4 up) (Fig. S8C), a marker of astrocyte activation (reactive
astrogliosis).
Among the remaining 217 transcripts DE in AppNL-G-F mice, all

but one (C1qb) were not significantly different between AppNL-G-F/
Pde4bY358C and WT mice (Table S7). Included in them is Cxcl5 (1
up) encoding LIX (Fig. S8D), as well as the DAM activation markers
Fth1 (2 up) (Fig. S8E) and Mamdc2 (4 up) (Fig. S8F), and the
reactive astrocyte markers Dbi (2 up), Aqp4 (9 up), Ifitm3 (1 up) and
Osmr (6 up) (Fig. S8G–J). Hypomorphic PDE4B had the greatest
modulatory effect on 13 transcripts (from four genes), as they
were significantly different between AppNL-G-F/Pde4bY358C and
AppNL-G-F mice (blue dots, Fig. S7C; Table S8). These most
modulated transcripts include Ide (7 up from 7) (Fig. 5A), Btaf1
(3 up from 5) (Fig. 5B), and Padi2 (2 up from 2) (Fig. 5C), whose
expression was normalized by the hypomorphic PDE4B present in
AppNL-G-F/Pde4bY358C mice. Also included is C1qb (1 up from 1)
(Fig. 5D), a marker of homeostatic microglia, which was
significantly different between AppNL-G-F/Pde4bY358C and WT mice,
indicating a milder modulatory effect of the PDE4B hypomorph.
AppNL-G-F mice thus displayed gene expression differences that
were modulated by the hypomorphic PDE4B present in AppNL-G-F/
Pde4bY358C mice.
Among the 75,545 transcripts that were not DE in AppNL-G-F

versus WT mice, 41 were DE in AppNL-G-F/Pde4bY358C (14 up, 27
down) versus both WT and AppNL-G-F mice (Table S9). AppNL-G-F/
Pde4bY358C mice thus displayed gene expression differences
driven by hypomorphic PDE4B that were not significantly affected
by the AppNL-G-F allele (e.g., Casp9 and Nr1d1; Fig. S8K, L). A further

106 transcripts were DE in AppNL-G-F/Pde4bY358C (55 up, 51 down)
versus WT but not versus AppNL-G-F mice (Table S9), suggesting
modulation by the AppNL-G-F allele of PDE4B hypomorph-driven
gene expression differences (e.g., Per2; Fig. S8M).
As increased levels of IDE (insulysin), encoded by Ide, have been

observed in brain tissue from 9–18-month-old APPswe/PSEN1dE9
[44, 45] and Tg2576 [46] transgenic mice that overexpress human
Swedish mutant APP, we quantified the amount of IDE in brain
lysates from 12-month-old mice by western blotting. Consistent
with the RNA sequencing results, the level of IDE was upregulated
in AppNL-G-F versus WT mice, but this upregulation was blunted in
AppNL-G-F/Pde4bY358C lysates (Fig. 5E, F), confirming a modulating
effect of hypomorphic PDE4B on IDE expression. Correlation
coefficients revealed positive correlations between brain levels of
IDE and inflammatory marker Z scores across all genotypes
(Fig. S9), indicating that higher levels of IDE were associated with
greater inflammation.

DISCUSSION
Authentic animal models serve as valuable tools for determining the
molecular mechanisms of disease progression and testing potential
therapeutic approaches. The AppNL-G-F model develops Aβ plaques,
neuroinflammation, damaged synapses, and behavioral and
cognitive deficits, while accurately recapitulating endogenous APP
expression [29, 30]. However, it was unknown whether AppNL-G-F

mice also replicate the cerebral hypometabolism that is a hallmark
feature of AD [39]. Accumulating studies have shown that this
decline in cerebral glucose metabolism occurs before pathology
and symptoms manifest, continues as symptoms progress, and is
more severe than the gradual decline in metabolic efficiency during
normal aging [47]. 18-fluorodeoxyglucose positron emission
tomography (PET) brain imaging in AD patients has observed
cerebral glucose metabolism deficits in a range of brain regions,
including the PFC and medial temporal lobe/hippocampus [48, 49],
with this hypometabolism being a potentially useful diagnostic
biomarker [50].
Using the translational 14C-2-DG brain imaging technique, we

observed that 13-month-old AppNL-G-F mice exhibit widespread
glucose hypometabolism in multiple brain regions, which was
prevented by the hypomorphic PDE4B present in AppNL-G-F/
Pde4bY358C mice. Glucose utilization was highest in the thalamus,

Fig. 3 Exemplar 14C-2-DG color-coded autoradiographs obtained from coronal brain sections of 13-month-old WT, AppNL-G-F, and AppNL-G-F/
Pde4bY358C mice. A Orbitofrontal cortex (+2.46 mm from bregma). B Medial PFC (+ 1.98 mm from bregma). C Hippocampus (−3.16 mm from
bregma). Higher rates of metabolism are indicated by red/orange and lower rates indicated by yellow/white. Scale bar indicates tissue 14C
concentration (nCi/g).
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consistent with the distribution of PDE4B in the primate brain
[51, 52]. Targeted inhibition of PDE4B is thus an intervention that
increases cerebral metabolism in AppNL-G-F mice (i.e., improves the
neuronal energy state) and therefore has the potential to be
disease-modifying in patients. By contrast, acute pretreatment of
normal mice and rats with the pan-PDE4 inhibitor rolipram
decreases glucose utilization in brain tissue [53–56]. Moreover,
pan-PDE4 inhibitors have dose-dependent side effects of nausea
and emesis – attributed to the selective inhibition of PDE4D –
which limit their tolerability and translational value [57].
The SLM serves as a relay between the entorhinal cortex (EC) and

the CA1 and is believed to represent the substrate of distinct
aspects of spatial and episodic memory [58, 59]. Neurons of the EC
that send projections to the CA1 are the initial degenerating cells in
AD [60]. Considering the spatial memory impairment of AppNL-G-F

mice, it is noteworthy that their hippocampal hypometabolism was
restricted to the SLM. However, AppNL-G-F mice also exhibited
hypometabolism in the PFC, which itself has a role in spatial
memory formation [61, 62]. The restoration of glucose metabolism
in both the SLM and PFC thus likely contributed to the improved
spatial memory of AppNL-G-F/Pde4bY358C mice.
Cerebral glucose hypometabolism has previously been observed

in transgenic APP-overexpressing mouse models of AD. The PDAPP

strain showed glucose hypometabolism across multiple brain
regions at 10 months of age [63], but this reached statistical
significance only in the posterior cingulate cortex in 17-month-old
mice following Bonferroni correction for multiple comparisons [64].
The PS/APP strain had localized hypometabolism in several brain
regions but an unaltered whole brain average at 16 months [65],
whereas the 3xTg-AD strain showed widespread hypometabolism
in all measured brain regions at 18 months of age [66].
The area occupied by thioflavin-S-stained Aβ plaques in brain

sections from 12-month-old AppNL-G-F mice was similar to that
previously reported for 11-month-old AppNL-G-F mice, which showed
a mild corticolimbic Aβ pathology relative to age-matched 5xFAD
and APPswe/PSEN1dE9 mice that overexpress APP [67]. The similar
Aβ plaque burdens of AppNL-G-F and AppNL-G-F/Pde4bY358C mice in
the present study suggest that a decrease in Aβ plaque load is not
responsible for the prevention of spatial memory and brain
metabolism deficits by hypomorphic PDE4B. The situation in
AppNL-G-F/Pde4bY358C mice is thus comparable with that of the
∼30% of older adults without signs of cognitive impairment who
exhibit the neuropathological features of AD upon autopsy at the
time of death [68]. This is not, however, contradictory to PDE4B
being a promising therapeutic target for AD. There is a need for
non-Aβ-directed therapies for AD because Aβ-targeting antibodies

Fig. 4 Partial attenuation of neuroinflammation in AppNL-G-F mice by hypomorphic PDE4B. A Heatmap analysis of Z scores of 32
inflammatory markers, each column indicating a different mouse. AppNL-G-F mice show elevated levels of inflammatory markers, which are
partly decreased in AppNL-G-F/Pde4bY358C mice. Composite Z scores for cytokines (B), chemokines (C), growth factors (D), and all 32 markers
(total; E) are elevated in AppNL-G-F mice but modulated by the PDE4B inhibition in AppNL-G-F/Pde4bY358C mice. 12-month-old WT (n= 7), AppNL-G-
F (n= 6) and AppNL-G-F/Pde4bY358C (n= 5) mice. Data are plotted as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 vs. WT. #p < 0.05; ##p < 0.01;
###p < 0.001 vs. AppNL-G-F. Open circles, females; closed circles, males; ♀, significant difference in females only.

P. Armstrong et al.

6

Neuropsychopharmacology



have shown only modest cognitive benefit in early AD [4, 5], and
more than 20% of individuals diagnosed with AD do not have Aβ
plaque burden as assessed by PET imaging [69].
Despite the central role of PDE4B in inflammation [70–72], the

upregulation of multiple inflammatory markers in both AppNL-G-F/
Pde4bY358C and AppNL-G-F mice suggests that the protective effect of
hypomorphic PDE4B cannot be attributed to a broad anti-
inflammatory response. Although TNFα levels were not significantly
affected by genotype, the lack of detectable TNFα in four of the five
AppNL-G-F/Pde4bY358C mice is consistent with the known suppression of
TNFα production by PDE4B ablation and selective inhibition [72, 73].
RNA sequencing to identify molecular pathways potentially

underlying the protective effect of hypomorphic PDE4B revealed
that 531 of 76,076 robustly expressed gene transcripts were DE in
cerebral cortical tissue from AppNL-G-F versus WT mice. None of the
PDE4 transcripts (Pde4a–d) were DE in AppNL-G-F mice (Table S10),
unlike the upregulation of Pde4b in cultured microglia exposed to
Aβ peptides [11]. Among APP-overexpressing mouse models, the
3xTg-AD strain exhibited increased PDE4B and PDE4D protein
levels in hippocampus and PFC, which were decreased by
rolipram [22], and the APPswe/PSEN1dE9 strain exhibited
increased PDE4B and PDE4D protein levels in cerebral cortex,
which were decreased by roflumilast [24].
Among the transcripts DE in AppNL-G-F mice, 59% were also DE in

AppNL-G-F/Pde4bY358C versus WT mice, including the upregulation of
CCl3, encoding MIP-1α that was also upregulated in the inflamma-
tory marker assay. None of the Pde4b transcripts (0 of 9) were DE in
AppNL-G-F/Pde4bY358C versus WT mice (Table S10), as expected from
prior analyses of Pde4bY358C mouse brain tissue [28]. Both increased
and decreased expression of Pde4b in the hippocampus have been
shown to impair contextual fear memory in mice [74].
Remarkably, the levels of only 13 of the DE transcripts – from four

genes: Ide, Btaf1, Padi2, and C1qb – were significantly different

between AppNL-G-F/Pde4bY358C and AppNL-G-F mice, suggesting that
their expression was the most modulated by the hypomorphic
PDE4B. The 13 include all Ide (7 of 7), Padi2 (2 of 2), and C1qb (1 of 1)
transcripts, but only three of the five Btaf1 transcripts in the RNA
sequence dataset. Multiple independent transcripts thus provide
support for three of these genes at the conservative adjusted
significance threshold employed (p < 0.01), but we cannot exclude
the possibility that the single transcript representing C1qb is a false
positive.
Padi2, encoding protein-arginine deiminase type-2 (PADI2) that

converts arginine residues in proteins into citrullines (citrullina-
tion) through deamination [75], and Ide, encoding a ubiquitously
expressed metalloprotease (IDE) that cleaves peptides including
Aβ [76, 77], are noteworthy because their expression is
upregulated in postmortem AD patient brains compared with
age-matched controls. Markedly increased levels of PADI2 are
detected in hippocampal samples from AD patients, and the
immunoreactivity of PADI2 and citrullinated proteins coincides
with glial fibrillary acidic protein (GFAP)-positive astrocytes [78].
Increased levels of IDE are detected in postmortem brains from
patients with moderate AD pathology (Braak stages III–IV)
although decreased levels of IDE are found in severe AD (Braak
stages V–VI) [79].
IDE levels in cerebral cortex from 9-month-old APPswe/

PSEN1dE9 mice are elevated after the formation of the first Aβ
plaques and show a positive correlation with full-length APP levels
[44]. In 10- and 18-month-old APPswe/PSEN1dE9 mice, the
expression of IDE is inversely correlated with spatial memory in
the Morris water maze [45]. In 16-month-old Tg2576 mice,
increased IDE expression appears within GFAP-positive astrocytes
surrounding Aβ plaques [46]. Like these transgenic APP-
overexpressing strains, 12-month-old AppNL-G-F mice, but not
AppNL-G-F/Pde4bY358C mice, show upregulation of IDE protein in the

Fig. 5 Modulation of differentially expressed cerebral cortical genes in AppNL-G-F mice by hypomorphic PDE4B. A Ide (mean of 7
transcripts). B Btaf1 (mean of 3 transcripts). C Padi2 (mean of 2 transcripts). D C1qb (1 transcript). E Immunoreactivity of IDE protein normalized
to β-Actin in brains. Genotypic differences were observed (Kruskal-Wallis test, χ218= 14.259, p= 0.001). F Typical blot of 50 µg protein from
brains probed with anti-IDE and anti-β-Actin antibodies. 12-month-old WT (n= 7), AppNL-G-F (n= 6) and AppNL-G-F/Pde4bY358C (n= 5) mice. Data
are plotted as mean ± SEM. **adj. p < 0.01, ****adj. p < 0.0001 vs. WT; ####adj. p < 0.0001 vs. AppNL-G-F for A–D. ***p < 0.001 vs. WT; ##p < 0.01 vs.
AppNL-G-F for (E).
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brain – conceivably representing a compensatory mechanism
aimed to decrease Aβ, MIP-1α, and MIP-1β levels. Despite the
involvement of GFAP-positive astrocytes in the expression of Padi2
and Ide, this cell type is unlikely to mediate the modulation of
these transcripts by PDE4B inhibition because Gfap was upregu-
lated in both AppNL-G-F and AppNL-G-F/Pde4bY358C mice. However,
the upregulation of some less abundant reactive astrocyte
markers, such as Aqp4, was blunted in AppNL-G-F/Pde4bY358C mice.
The normalization of IDE expression in AppNL-G-F/Pde4bY358C

mice suggests that activation of the cAMP signaling pathway
negatively regulates IDE expression. This observation is consistent
with the finding that IDE expression in streptozotocin-treated
APPswe/PSEN1dE9 mice is decreased by administration of the
cAMP analog and non-subtype-selective cAMP phosphodiesterase
inhibitor bucladesine in a dose-dependent manner [80]. The
convergence between our observations in AppNL-G-F mice and
published findings from transgenic mice that overexpress APP
suggest that cerebral hypometabolism and IDE upregulation are
not artifacts related to the non-physiological overproduction of
various APP fragments in the APP-overexpressing strains [30].
Although we have identified that the Pde4bY358C hypomorph

corrected expression changes of specific cortical transcripts but did
not decrease Aβ plaque burden in AppNL-G-F mice, a limitation of this
study is that it has not elucidated the mechanism underlying the
protective effect of hypomorphic PDE4B in the AppNL-G-F model.
Since we aimed to evaluate the neurocognitive effects of genetically
inhibiting PDE4B in AppNL-G-F mice, the study did not include a
group with the Pde4bY358C mutation on a WT (App+/+) background.
Previous studies have employed similar experimental designs
without a treatment-only App+/+ group to assess the effects of
genetic modifications in AppNL-G-F mice [81–83]. However, the lack
of a Pde4bY358C-only group precluded statistical analysis of Pde4b
genotype as an independent variable. Consequently, an additional
limitation is that we could not evaluate the effect of PDE4B
inhibition in 12-month-old mice independently of the AppNL-G-F

mutant allele. Another limitation is that the AppNL-G-F model does
not exhibit tau-containing neurofibrillary tangles, a histopathologi-
cal hallmark of AD [29, 30]. Rolipram suppresses tau phosphoryla-
tion in 11-month-old 3xTg-AD mice [22] and in the rTg4510 mouse
model of frontotemporal dementia at 3–4 months of age [84], but
no work has been published on the effects of PDE4B subtype-
specific inhibition on tau pathology. A further limitation is that the
B6.C-Pde4benu1H mouse line employed does not permit spatial or
temporal control over expression of the Pde4bY358C mutation. A
Pde4bY358C conditional knock-in line would allow us to test whether
hypomorphic PDE4B can arrest or reverse progression at different
stages of disease in the AppNL-G-F model.
In summation, our data show that AppNL-G-F mice exhibit spatial

memory and brain metabolism deficits that are prevented by
targeted inhibition of PDE4B, a cAMP hydrolyzing enzyme that has
been implicated in the pathogenesis of AD by a recent meta-
analysis of GWAS data [7]. To the best of our knowledge, this is the
first study demonstrating that PDE4B subtype-specific inhibition
has a protective effect in a preclinical model of AD. This novel
finding identifies the PDE4B subtype as a key regulator of disease
manifestation in the AppNL-G-F model and a promising therapeutic
target for AD.
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