Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dorsal CA3 overactivation mediates witnessing stress-induced recognition memory deficits in adolescent male mice

Abstract

Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of chronic witnessing social defeat stress on cognition and anxiety-like behaviors in adolescent mice.
Fig. 2: Neural alterations in dorsal and ventral CA3 in adolescent mice exposed to chronic witnessing social defeat stress (CWSD).
Fig. 3: Dorsal CA3 neuronal activity mediates witnessing stress-induced recognition memory deficits in adolescent mice.
Fig. 4: Inhibition or activation of vCA3 neuronal activity increases anxiety in adolescent male mice.
Fig. 5: Chronic systemic administration of vortioxetine reverses CWSD-induced recognition memory deficits and dCA3 neuronal over-activation.

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Howard R, Spivak ELJ, VanAudenhove K, Lee D, Kelly M, Iskander J. CDC grand rounds: a public health approach to prevention of intimate partner violence. MMWR Morb Mortal Wkly Rep. 2014;63:38–41.

    Google Scholar 

  2. Zolotor AJ, Denham AC, Weil A. Intimate partner violence. Obstet Gynecol Clin N Am. 2009;36:847–60. 

    Article  Google Scholar 

  3. Cooper A, Smith EL. Homicide trends in the United States, 1980–2008. NCJ 236018. Washington, DC: Bureau of Justice Statistics; 2011.

  4. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry Allied Discip. 2016;57:241–66.

    Article  Google Scholar 

  5. Teicher MH, Vitaliano GD. Witnessing violence toward siblings: an understudied but potent form of early adversity. PLoS One. 2011;6:e28852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teicher MH, Samson JA. Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry. 2013;170:1114–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry. 2010;67:113–23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Flaherty EG, Stirling J Jr, American Academy of Pediatrics. Committee on Child A, Neglect. Clinical report-the pediatrician’s role in child maltreatment prevention. Pediatrics. 2010;126:833–41.

    Article  PubMed  Google Scholar 

  9. Christie D, Viner R. Adolescent development. Bmj. 2005;330:301–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wamser-Nanney R. Types of childhood maltreatment, posttraumatic stress symptoms, and indices of fertility. Psychol Trauma. 2022;14:1263–71.

    Article  PubMed  Google Scholar 

  11. Warren BL, Sial OK, Alcantara LF, Greenwood MA, Brewer JS, Rozofsky JP, et al. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress. Dev Neurosci. 2014;36:250–60.

    Article  CAS  PubMed  Google Scholar 

  12. Patki G, Solanki N, Salim S. Witnessing traumatic events causes severe behavioral impairments in rats. Int J Neuropsychopharmacol. 2014;17:2017–29.

    Article  CAS  PubMed  Google Scholar 

  13. Patki G, Salvi A, Liu H, Salim S. Witnessing traumatic events and post-traumatic stress disorder: insights from an animal model. Neurosci Lett. 2015;600:28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sial OK, Warren BL, Alcantara LF, Parise EM, Bolanos-Guzman CA. Vicarious social defeat stress: bridging the gap between physical and emotional stress. J Neurosci Methods. 2016;258:94–103.

    Article  PubMed  Google Scholar 

  15. Iniguez SD, Flores-Ramirez FJ, Riggs LM, Alipio JB, Garcia-Carachure I, Hernandez MA, et al. Vicarious Social defeat stress induces depression-related outcomes in female mice. Biol Psychiatry. 2018;83:9–17.

    Article  PubMed  Google Scholar 

  16. Carnevali L, Montano N, Tobaldini E, Thayer JF, Sgoifo A. The contagion of social defeat stress: insights from rodent studies. Neurosci Biobehav Rev. 2020;111:12–18.

    Article  PubMed  Google Scholar 

  17. Yoshioka T, Yamada D, Segi-Nishida E, Nagase H, Saitoh A. KNT-127, a selective delta opioid receptor agonist, shows beneficial effects in the hippocampal dentate gyrus of a chronic vicarious social defeat stress mouse model. Neuropharmacology. 2023;232:109511.

    Article  CAS  PubMed  Google Scholar 

  18. Warren BL, Vialou VF, Iniguez SD, Alcantara LF, Wright KN, Feng J, et al. Neurobiological sequelae of witnessing stressful events in adult mice. Biol Psychiatry. 2013;73:7–14.

    Article  PubMed  Google Scholar 

  19. Liu H, Patki G, Salvi A, Kelly M, Salim S. Behavioral effects of early life maternal trauma witness in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:80–87.

    Article  PubMed  Google Scholar 

  20. Sial OK, Gnecco T, Cardona-Acosta AM, Vieregg E, Cardoso EA, Parise LF, et al. Exposure to vicarious social defeat stress and Western-style diets during adolescence leads to physiological dysregulation, decreases in reward sensitivity, and reduced antidepressant efficacy in adulthood. Front Neurosci. 2021;15:701919.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakatake Y, Furuie H, Yamada M, Kuniishi H, Ukezono M, Yoshizawa K, et al. The effects of emotional stress are not identical to those of physical stress in mouse model of social defeat stress. Neurosci Res. 2020;158:56–63.

    Article  CAS  PubMed  Google Scholar 

  22. Borsini A, Giacobbe J, Mandal G, Boldrini M. Acute and long-term effects of adolescence stress exposure on rodent adult hippocampal neurogenesis, cognition, and behaviour. Mol Psychiatry. 2023;28:4124–37.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iniguez SD, Riggs LM, Nieto SJ, Dayrit G, Zamora NN, Shawhan KL, et al. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. Stress. 2014;17:247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kwarteng F, Wang R, Micov V, Hausknecht KA, Turk M, Ishiwari K, et al. Adolescent chronic unpredictable stress leads to increased anxiety and attention deficit/hyperactivity-like symptoms in adulthood. Psychopharmacology. 2022;239:3779–91.

    Article  CAS  PubMed  Google Scholar 

  25. Caruso MJ, Crowley NA, Reiss DE, Caulfield JI, Luscher B, Cavigelli SA, et al. Adolescent social stress increases anxiety-like behavior and alters synaptic transmission, without influencing nicotine responses, in a sex-dependent manner. Neuroscience. 2018;373:182–98.

    Article  CAS  PubMed  Google Scholar 

  26. Page CE, Coutellier L. Adolescent stress disrupts the maturation of anxiety-related behaviors and alters the developmental trajectory of the prefrontal cortex in a sex- and age-specific manner. Neuroscience. 2018;390:265–77.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Teng T, Li X, Fan L, Xiang Y, Jiang Y, et al. Impact of inosine on chronic unpredictable mild stress-induced depressive and anxiety-like behaviors with the alteration of gut microbiota. Front Cell Infect Microbiol. 2021;11:697640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22.

    Article  CAS  PubMed  Google Scholar 

  29. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  CAS  PubMed  Google Scholar 

  30. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci. 2022;45:120–32.

    Article  CAS  PubMed  Google Scholar 

  32. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci. 2017;18:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron. 2013;77:955–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshioka T, Yamada D, Kobayashi R, Segi-Nishida E, Saitoh A. Chronic vicarious social defeat stress attenuates new-born neuronal cell survival in mouse hippocampus. Behav Brain Res. 2022;416:113536.

    Article  PubMed  Google Scholar 

  36. Terranova JI, Yokose J, Osanai H, Marks WD, Yamamoto J, Ogawa SK, et al. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron. 2022;110:1416–31.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q, He Q, Wang J, Fu C, Hu H. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc. 2018;13:118–33.

    Article  PubMed  Google Scholar 

  38. Sanchez C, Asin KE. Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–57.

    Article  CAS  PubMed  Google Scholar 

  39. Felice D, Guilloux JP, Pehrson A, Li Y, Mendez-David I, Gardier AM, et al. Vortioxetine improves context discrimination in mice through a neurogenesis independent mechanism. Front Pharmacol. 2018;9:204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Torrisi SA, Geraci F, Tropea MR, Grasso M, Caruso G, Fidilio A, et al. Fluoxetine and vortioxetine reverse depressive-like phenotype and memory deficits induced by Abeta1-42 oligomers in mice: a key role of transforming growth factor-beta1. Front Pharmacol. 2019;10:693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A, Huang H, et al. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr Biol. 2019;29:1938–53.e6.

    Article  CAS  PubMed  Google Scholar 

  42. Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science. 2021;371:153–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finnell JE, Lombard CM, Padi AR, Moffitt CM, Wilson LB, Wood CS, et al. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One. 2017;12:e0172868.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Li JT, Wang H, Niu WP, Zhang CC, Zhang Y, et al. Role of trace amineassociated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res. 2021;167:105571.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, et al. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci. 2005;25:6221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, et al. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci US A. 2004;101:7158–63.

    Article  CAS  Google Scholar 

  47. Walker-Descartes I, Mineo M, Condado LV, Agrawal N. Domestic violence and its effects on women, children, and families. Pediatr Clin N Am. 2021;68:455–64.

    Article  Google Scholar 

  48. Frampton JE. Vortioxetine: a review in cognitive dysfunction in depression. Drugs. 2016;76:1675–82.

    Article  CAS  PubMed  Google Scholar 

  49. Bennabi D, Haffen E, Van Waes V. Vortioxetine for cognitive enhancement in major depression: from animal models to clinical research. Front Psychiatry. 2019;10:771.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang XD, Su YA, Wagner KV, Avrabos C, Scharf SH, Hartmann J, et al. Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci. 2013;16:706–13.

    Article  CAS  PubMed  Google Scholar 

  51. Wang XX, Li JT, Xie XM, Gu Y, Si TM, Schmidt MV, et al. Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Transl Psychiatry. 2017;7:e1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci. 2011;31:10721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barker GR, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27:2948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26:91–104.

    Article  CAS  PubMed  Google Scholar 

  55. Jing W, Zhang T, Liu J, Huang X, Yu Q, Yu H, et al. A circuit of COCH neurons encodes social-stress-induced anxiety via MTF1 activation of Cacna1h. Cell Rep. 2021;37:110177.

    Article  CAS  PubMed  Google Scholar 

  56. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. 2017;42:1715–28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vo BN, Marron Fernandez de Velasco E, Rose TR, Oberle H, Luo H, Hopkins CR, et al. Bidirectional influence of limbic GIRK channel activation on innate avoidance behavior. J Neurosci. 2021;41:5809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bannerman DM, Deacon RM, Offen S, Friswell J, Grubb M, Rawlins JN. Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav Neurosci. 2002;116:884–901.

    Article  CAS  PubMed  Google Scholar 

  59. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, et al. Regional dissociations within the hippocampus-memory and anxiety. Neurosci Biobehav Rev. 2004;28:273–83.

    Article  CAS  PubMed  Google Scholar 

  60. Khalil OS, Pisar M, Forrest CM, Vincenten MC, Darlington LG, Stone TW. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur J Neurosci. 2014;39:1558–71.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Papadogiannis A, Dimitrov E. A possible mechanism for development of working memory impairment in male mice subjected to inflammatory pain. Neuroscience. 2022;503:17–27.

    Article  CAS  PubMed  Google Scholar 

  62. Finnell JE, Muniz BL, Padi AR, Lombard CM, Moffitt CM, Wood CS, et al. Essential role of ovarian hormones in susceptibility to the consequences of witnessing social defeat in female rats. Biol Psychiatry. 2018;84:372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mouri A, Ukai M, Uchida M, Hasegawa S, Taniguchi M, Ito T, et al. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis. Neuropharmacology. 2018;133:23–37.

    Article  CAS  PubMed  Google Scholar 

  64. Han Y, Zhang L, Wang Q, Zhang D, Zhao Q, Zhang J, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 2019;107:37–45.

    Article  CAS  PubMed  Google Scholar 

  65. Gorbunova AA, Kudryashova IV, Manolova AO, Novikova MR, Stepanichev MY, Gulyaeva NV. Effects of individual stressors used in a battery of “chronic unpredictable stress” on long-term plasticity in the hippocampus of juvenile rats. Acta Neurobiol Exp. 2017;77:244–53.

    Article  Google Scholar 

  66. Tzanoulinou S, Gantelet E, Sandi C, Marquez C. Programming effects of peripubertal stress on spatial learning. Neurobiol Stress. 2020;13:100282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isgor C, Kabbaj M, Akil H, Watson SJ. Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus. 2004;14:636–48.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Xiao-Dong Wang, PhD, for technical assistance and feedback.

Funding

This work was supported by the Beijing Natural Science Foundation (grant No., 7222236), the National Natural Science Foundation of China (grant No., 82271569, 82171529, 82071528, and 82001418), the Capital Medical Development Research Fund (2020-2-4113 and 2022-1-4111). The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TS, JL, and Y-AS designed research; XL, RL, Y-XS, H-LW, and HW performed research; RL, XL, TW, YM, X-XL, and QW analyzed data; JT, TS, and XL wrote the manuscript.

Corresponding authors

Correspondence to Ji-Tao Li or Tian-Mei Si.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, R., Sun, YX. et al. Dorsal CA3 overactivation mediates witnessing stress-induced recognition memory deficits in adolescent male mice. Neuropsychopharmacol. 49, 1666–1677 (2024). https://doi.org/10.1038/s41386-024-01848-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-024-01848-9

Search

Quick links