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Neural complexity is increased after low doses of LSD, but not
moderate to high doses of oral THC or methamphetamine
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Neural complexity correlates with one’s level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During
altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined
whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of
consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness
and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15mg) and methamphetamine (MA; 10 and 20mg). In three separate
studies (N= 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three
laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity
and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta
power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any
subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced
reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power,
and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of
consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral,
or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01809-2

INTRODUCTION
The use of very low doses of psychedelics every few days, a
practice known as microdosing, has gained widespread public
attention in the past decade. Several books have detailed
transformative anecdotal reports touting wide-ranging benefits
for both healthy and patient populations [1, 2], including
improvements in mood, cognition, energy, creativity, and inter-
personal connectedness [3–10]. In response, the medical and
scientific community has begun to investigate safety and
therapeutic efficacy [11]. Low doses provide an attractive
therapeutic model if beneficial effects of high doses are retained
without safety and ethical concerns related to altered states of
consciousness [12]. Randomized controlled trials (RCTs) in healthy
populations have confirmed that low doses acutely increase
ratings for well-being, even when participants have no expecta-
tion for these effects [13–22]. However, no published RCT has
examined patient populations and only one RCT to date has
assessed outcomes after repeated use [19]. In that RCT in healthy
men, 10 µg of lysergic acid diethylamide (LSD) taken every three
days did not affect mood or cognition after a 6-week protocol.
However, the dose acutely increased ratings of energy, creativity,
connectedness, happiness, and wellness relative to placebo. The
authors described the regimen as relatively safe, with some

anxiety-related adverse effects and reduced cognitive processing
speed after 6 weeks, which did not reach significance after
correcting for multiple comparisons. Since different effects may
occur in patient populations, future RCTs are planned to further
examine clinical potential. Together, although placebo-controlled
studies have demonstrated acute improvements in mood, more
work is needed to determine health outcomes related to low dose
regimens or microdosing practices for both healthy and patient
populations.
In addition to safety and efficacy, researchers are working to

identify objective markers and potential mechanisms that may be
driving therapeutic reports. Increased plasma levels of brain-
derived neurotrophic factor (BDNF) [23], a key mediator of
neuroplasticity [24–28] were reported after low doses of LSD. In
addition, we have reported functional brain changes at both rest
and during cognitive tasks using fMRI [13] and EEG [20, 29]. In the
brain, LSD and other psychedelics are characterized by their
activity at serotonin (5-HT) 2 A receptors [30–32]. Upon activation,
5-HT2A modulates neuronal sensitivity and facilitates neurotrans-
mitter release [33–35], contributing to complex patterns of brain
activity [36, 37]. According to the “entropic brain hypothesis”
[38, 39], increases of neural complexity are a key mechanism for
therapeutic efficacy, destabilizing maladaptive patterns of
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thinking and behavior, while reflecting the "richness" of one’s
experience [40–43]. However, whether such complexity extends to
low doses of LSD is unknown.
Neural complexity has garnered scientific interest in the fields of

psychedelics and consciousness [44, 45]. When consciousness is
lost or diminished, such as during sleep, neural complexity is
reduced [43, 46–49]. Measures of electroencephalography (EEG)
complexity are superior to other EEG measures in discriminating
conscious states, including spectral analyses of neural oscillations
[50]. Thus, neural complexity has gained traction as a reliable
marker of consciousness, with the potential to consolidate existing
theories in the science of consciousness [51]. One apparent
contradiction between the fields has been that for consciousness
science, complexity follows linear increases in conscious aware-
ness, whereas for psychedelics, increased complexity is thought to
indicate a multifaceted altered state that may interfere with such
awareness [52].
To clarify the roles of neural complexity and other brain signals

after psychedelics, analyses across drug classes and doses are
required. We have previously shown that low doses of LSD (13 and
26 µg) do not induce psychedelic-like altered states [20], unlike
tetrahydrocannabinol (THC; 7.5 and 15mg) [53], a psychedelic-like
drug [54–57]. Low doses of LSD did however increase
methamphetamine-like stimulant responses. Here, we examine
whether neural complexity is linked to psychedelic-like altered
states or to other drug effect and mood states using resting state
Limpel-Ziv complexity after LSD (13 and 26 µg), THC (7.5 and
15mg), and methamphetamine (MA, 10 and 20mg). Limpel Ziv-
complexity measures repetitive strings in finite sequences to
quantify the temporal signal diversity in EEG and is a leading
measure of neural complexity in both humans [58] and rodents
[59].

MATERIALS AND METHODS
Study design
Three separate studies, conducted from 2020 to 2022 in the Human
Behavioral Pharmacology Laboratory at the University of Chicago,
compared two doses of a drug (LSD, THC, or MA) against placebo in a
within-subjects design. In each study, healthy adults participated in three
5 h sessions in which they received placebo or one of two drug doses
under double blind and randomized conditions separated by at least
7 days. Dependent measures included self-reported drug effects and mood
states in addition to EEG measures. Drug effects were recorded before
drug administration and at one hour or half-hour intervals after drug
administration. Altered states of consciousness were assessed retro-
spectively at session end in relation to the time of peak drug effects. At
90–120min after drug administration, during the period of anticipated
peak drug effects, EEG recordings (19 scalp electrode 10–20 placement;
ActiveTwo™ system, BioSemi B.V., Amsterdam) were conducted. We have
previously reported on task-based EEG data from the same participants
after LSD [20] and THC [60] alongside a broader assessment of mood states
and drug effects. The current report presents a new analysis of EEG resting
state under 10–20 electrodes across the LSD, THC, and MA studies using
neural complexity as the primary outcome measure.

Subjects
Healthy adults (N= 73, 33 women) 18–35 years of age participated in one
of three studies involving LSD (N= 21), THC (N= 23), or MA (N= 29). All
participants were screened with a physical examination, electrocardio-
gram, modified Structural Clinical Interview for DSM-5, and self-reported
health and drug use history. Inclusion criteria across all studies included a
body mass index of 18–32 kg/m2, English fluency, and at least a high
school education. Exclusion criteria across all studies included a history of
psychosis, severe posttraumatic stress disorder or panic disorder, past year
substance use disorder (except nicotine), pregnant or nursing, working
night shifts, and current medication aside from birth control. Exclusionary
criteria specific to the LSD study included no prior use of a classical
psychedelic drug (e.g., LSD or psilocybin), an adverse reaction to a
psychedelic drug, or unwillingness to use this type of drug again.
Exclusionary criteria specific to the THC study included reporting over 20

lifetime uses of THC-containing products, 0 uses of a THC-containing
product within the last 30 days, and a negative urine test for THC at
screening. After screening, participants attended an orientation session to
review study procedures and were instructed to abstain from drugs and
medications for 24 h before sessions. Participant compliance to drug
abstention was verified by urinalysis (CLIAwaived Instant Drug Test Cup)
and breath alcohol testing (Alcosensor III, Intoximeters, St. Louis, MO).
Female participants provided urine samples for pregnancy tests and were
tested at any phase of the menstrual cycle. To minimize drug-specific
expectancies, participants were told they might receive a placebo,
stimulant, or sedative, and either a hallucinogenic or cannabinoid drug,
in the LSD and THC studies, respectively. Participants provided informed
consent prior to beginning the study procedures, which were approved by
the University of Chicago Institutional Review Board.

Drugs
LSD was manufactured by Organix and prepared in solution with tartaric
acid by the University of Chicago Investigational Pharmacy. LSD (13 or
26 μg, tartate solution in water) or placebo (water) was administered
sublingually in a volume of 0.5 mL. Participants held the solution under the
tongue without swallowing for 60 s, under observation. These doses were
selected to be below the threshold for hallucinatory effects [14] and within
the range that is used in naturalistic settings. A recent survey indicated that
13.5 μg is the average dose used for microdosing LSD (range 1.4–50 μg)
[61]. In contrast, 100–200 μg LSD reflects a “macrodose” range, inducing
comparable subjective effects to 30mg psilocybin, a dose used in studies
of psilocybin-assisted therapy [62].
THC (Marinol® [dronabinol]; Solvay Pharmaceuticals; 7.5 mg and 15mg)

was placed in opaque capsules with dextrose filler. Placebo capsules
contained only dextrose. These doses of THC produce subjective
intoxication and performance impairments [63, 64]. Prior studies have
shown that oral and smoked doses of THC produce similar peak levels of
self-reported intoxication, although the duration of effects is longer with
oral administration [65]. The 7.5 and 15mg doses reflect the amount of
THC in one-quarter and one-half of a 0.2 g cannabis cigarette containing
15% THC, which is the average THC potency observed in legal dispensaries
[66].
MA (10 and 20mg; Desoxyn; Mylan Inc) was placed in opaque capsules

with dextrose filler. Placebo capsules contained only dextrose. MA doses
were based on previous studies showing that these doses reliably produce
subjective, behavioral and neural effects in healthy volunteers [67, 68].

Self-report measures
Subjective drug effects and mood states were assessed with the Drug
Effects Questionnaire (DEQ) [69, 70], and Profile of Mood States (POMS)
[71] during each session. Specifically, three dependent measures from the
DEQ and POMS were selected a priori based on previous findings in the
LSD study [20]. These measures included the DEQ question, “Do you feel a
drug effect?” answered via 100-mm visual analog scale from 0 (not at all) to
100 (extremely), and the POMS subscales anxiety and elation, each of
which are comprised of mood adjectives rated on a Likert scale from 0 (not
at all) to 4 (extremely). Due to reported relationships between LSD and THC
and altered states of consciousness [72], at the end of each LSD and THC
session, subjects also completed the 5 Dimensions of Altered States of
Consciousness (5D-ASC) questionnaire, which we used to operationalize
altered states of consciousness, described as marked deviations in normal
waking consciousness [73]. The 5D-ASC was completed retrospectively at
session end in relation to peak drug effects. The five dimensions, or
subscales, of the 5D-ASC are oceanic boundlessness (OBM), dread of ego
dissolution (DED), visionary restructuralization (VRS), auditory alteration (A)
and vigilance reduction (VR).

EEG measures
Resting state EEG measures were obtained identically between the THC, LSD,
and MA studies. We previously reported an analysis of spectral power under
electrodes specifically placed over default mode network regions after the low
doses of LSD [20]. Here, EEG recorded 5min of continuous brain activity while
participants sat comfortably with eyes closed in a state of rest 90–120min after
drug administration, during the period of anticipated peak drug effects.
Limpel-Ziv complexity [58] quantified temporal signal diversity of single
channels with a custom script adapted from open source code (https://
github.com/jfrohlich/angelman-consciousness/tree/main/CodeFromJacoSitt),
and selected based on the reliability and validity of this measure in detecting
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neural complexity relative to other measures of signal diversity [50]. The
Limpel-Ziv (LZ76) algorithm determines signal complexity by the number of
patterns found after binarizing each data point in the signal to either above,
“1,” or below, “0,” its mean. Raw Limpel-Ziv values for each channel were
normalized to the overall entropy rate, such that the normalized value
indicates the level of signal diversity on a scale from 0 to 1, using the following
formula: % = C*log2(length(X))/length(X) [74]. Oscillatory power across five
frequency bands was assessed using a custom script [20] (delta, 1–4Hz; theta,
4–8Hz; alpha 8–13Hz; beta 13–30Hz; gamma 30–80Hz). Information on EEG
data acquisition and processing can be found in supplemental information.

Statistical analysis
All statistical analyses were conducted with SPSS (version 25; SPSS Inc,
Chicago, IL). Self-report measures were analyzed using repeated measures
analysis of variance (RM-ANOVA) with dose as a within-subjects factor and
follow-up contrasts comparing each dose with placebo. Specifically, we
examined linear effects of dose in each RM-ANOVA to assess dose-
dependent effects. Then, if significant linear effects of dose were found,
follow-up planned contrasts compared each dose to placebo. For DEQ, we
examined the time course of drug effects using a two-way RM-ANOVA
(dose, time). For POMS, peak change from baseline scores were calculated
for each subject using the pre-dose baseline and the highest or lowest
value during the session.
EEG measures were analyzed using RM-ANOVA with dose as a within-

subjects factor as described above for self-report measures, here taking the
mean value (oscillatory power or Limpel-Ziv complexity) across all
10–20 scalp electrodes for each dose condition. Follow-up contrasts
compared each dose with placebo. Follow-up analyses of individual
electrodes were corrected for multiple-comparisons using an FDR
correction with a false discovery rate of 0.05.
Pearson correlations were used to assess relationships between

measures that resulted in significant linear effects RM-ANOVA. The
correlations assessed relationships between the values obtained from
the highest dose condition (26 μg LSD, 15mg THC, or 20mg MA).

RESULTS
Demographic characteristics
The mean age of participants across studies was in the mid-
twenties. Similar proportions of males and females were included,

except for the LSD study, which consisted of twice as many males
than females. Demographics across ethnicity and current drug use
were similar, with participants reporting close to two alcohol
drinking days/week, one caffeine serving/day, and close to no
tobacco use. Because the THC study was designed to exclude
individuals with over 20 total lifetime uses of cannabis,
participants in the THC study reported 12.6 lifetime uses, relative
to the ~250 lifetime uses reported in the LSD and MA groups
(Table 1).

Self-report measures
On subjective ratings (Fig. 1), LSD (13 and 26 μg), THC (7.5 and
15mg), and MA (10 and 20mg) each dose-dependently increased
ratings for feeling a drug effect (LSD: dose x time, F1,20= 11.00,
p= 0.003; THC: dose x time, F1,22= 82.96, p < 0.001; MA: dose x
time F1,28= 8.87, p= 0.006). Notably, there was no significant
difference between placebo and 13 μg LSD on ratings for feeling a
drug effect (dose x time, F1,20= 2.80, p= 0.110), indicating that
the 13 μg dose in our study reflects a “sub-perceptual” dose
described by individuals in naturalistic settings [61]. On mood
ratings, both LSD and THC increased anxiety (LSD: dose,
F1,20= 4.97, p= 0.038; THC: F1,22= 22.01, p < 0.001), while both
LSD and MA increased elation (LSD: dose, F1,19= 4.68, p= 0.043;
MA: dose, F1,28= 13.29, p < 0.001) during sessions. On retro-
spective ratings of altered states of consciousness, the low doses
of LSD did not affect any of the five subscales of the 5D-ASC,
however, THC increased responding to all five of the 5D-ASC
subscales (OBM: dose, F1,22= 12.77, p= 0.002; DED: dose,
F1,22= 25.41, p < 0.001; VRS: dose, F1,22= 23.16, p < 0.001; A: dose,
F1,22= 10.57, p= 0.004; VR: dose, F1,22= 70.38, p < 0.001).

EEG measures
In resting state, the low doses of LSD dose-dependently increased
measures of Limpel-Ziv complexity (dose, F1,20= 19.49, p < 0.001)
with no significant effect of THC or MA (Fig. 2). After LSD, the
distribution of significant electrodes appeared globally, but with
increases of complexity absent over midline electrodes, including

Table 1. Demographic and drug use information across the lysergic acid diethylamide (LSD), tetrahydrocannabinol (THC), and methamphetamine
(MA) studies.

Demographics LSD THC MA

Category N or Mean ± SD (Range) N or Mean ± SD (Range) N or Mean ± SD (Range)

Subjects (Male/Female) 21 (14/7) 23 (12/11) 29 (14/15)

Age, Years 25 ± 5 (19–33) 26 ± 7 (18–34) 24 ± 4 (19–33)

Body Mass Index, kg/m2 22.2 ± 2.6 (18–28.2) 22.9 ± 2.4 (19.5–26.6) 22.3 ± 2.1 (17.4–26.1)

Race/Ethnicity

Caucasian 17 12 18

African American 1 1 2

Asian 1 1 3

Other/>1 Race 2 9 6

Current Drug Use in Past Month

Alcohol, drinks/week 4.9 ± 4.1 (0–17) 3.2 ± 0.7 (0–11) 2.1 ± 1.4 (0–6)

Alcohol, drinking days/week 2.3 ± 1.4 (0–5) 2.2 ± 1.5 (0–5) 1.6 ± 1.2 (0–5)

Caffeine, servings/day 1.4 ± 1.1 (0–3.5) 1.0 ± 0.2 (0–4) 1.4 ± 1.2 (0–4)

Tobacco, times/day 0.4 ± 1.8 (0–8.5) 0.3 ± 0.2 (0–5) 0.1 ± 0.5 (0–2.5)

Total Lifetime Drug Use, Nonmedical

Psychedelic 10.5 ± 21.3 (1–100) 0.9 ± 0.4 (0–6) 3.9 ± 10.6 (1–56)

Cannabis 241.9 ± 453.5 (5–2000) 12.6 ± 1.4 (1–20) 269.2 ± 931.4 (0–5000)

MDMA 1.6 ± 3.9 (0–16) 0.2 ± 0.1 (0–2) 0.5 ± 1.2 (0–5)

Stimulant 25.7 ± 108.8 (0–500) 0.4 ± 1.1 (0–5) 2.0 ± 4.1 (0–20)

Opiate 3.5 ± 6.6 (0–30) 0 ± 0 (0–0) 3.5 ± 8.1 (0–40)
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Pz. In spectral power across frequency bands (RM-ANOVA results
in Supplementary Table 1), the low doses of LSD, but not THC or
MA, desynchronized, or reduced, spectral power in the low
frequency delta and theta bands (Fig. 3). In addition to reducing
low frequency power, LSD increased high frequency gamma
power. While LSD showed no effect on alpha power, THC and MA
affected alpha bidirectionally, with THC reducing, and MA
increasing alpha power relative to placebo conditions, particularly
over frontal electrodes. MA also increased beta and gamma
power.

Relationships between self-report and EEG measures
Given that the low doses of LSD affected both self-report and EEG
measures, including feeling a drug effect and increasing Limpel-
Ziv complexity, our next step was to determine whether the
changes in EEG predict the self-reported effects across the LSD,
THC, and MA studies. Surprisingly, greater limpel-Ziv complexity
after 26 μg LSD was not associated with any subjective ratings,
including feeling a drug effect, anxiety, or elation (Fig. 4), nor for
any of the five altered states of consciousness measures on the
5D-ASC (not shown). Whereas Limpel-Ziv complexity did not
predict self-reported effects after LSD, the low frequency
desynchronization induced by LSD did predict self-reported
mood states, with reductions in EEG delta and theta power
associated with increases in elation. Participants that reported
more elation after the 26 μg dose also reported more anxiety.
After 15 mg THC, alpha power, but not Limpel-Ziv complexity,
was related to two of the five 5D-ASC subscales, specifically DED
and VR. After 20 mg MA, no EEG measures were related to self-
report measures.

Examination of age-related effects
In supplemental analysis of age-related effects, we examined
neural complexity and neural oscillations under placebo condi-
tions of the THC study (30–35 relative to 18–20 years of age;
Fig. S1). Adult relative to adolescent-aged participants showed
global reductions in low frequency oscillations and increases in
neural complexity, similar to the low doses of LSD relative to
placebo.

DISCUSSION
We addressed whether low doses of LSD (13, 26 μg) and moderate
to high doses of THC (7.5, 15 mg) and MA (10, 20 mg) increase
neural complexity, a neural correlate of consciousness. Neural
complexity was assessed alongside spectral power and self-
reported drug effects and mood states, including altered states of
consciousness. Using resting state EEG, we detected dose-
dependent increases in neural complexity after low doses of
LSD, but not THC or MA. Self-reported drug effects after LSD were
minimal, including some increases in anxiety and elation after the
26 μg dose relative to placebo, and no differences between the
13 μg dose and placebo on any subjective measure. THC increased
ratings for altered states of consciousness and anxiety, and MA
increased elation. In spectral power analyses, low doses of LSD
reduced delta and theta power, while THC and MA bidirectional
affected alpha power, with THC decreasing, and MA increasing
alpha power. LSD reductions in low frequency power related to
elation. No associations between neural complexity and either
spectral power, self-reported drug effects, or mood states were
found across the LSD, THC, and MA studies.

Fig. 1 Subjective drug effects across LSD, THC, and MA studies. A Drug Effects Questionnaire measure of Feel Drug Effect over sessions.
B Profile of Mood States measures of Anxiety and Elation, peak response minus baseline. C 5-Dimensions of Altered States of Consciousness
rated retrospectively at session end in relation to peak drug effects. *p < 0.05, **p < 0.01, ***p < 0.001.
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Our main finding was that low doses of LSD, which were too
low to affect altered states responses on the 5D-ASC, were
nonetheless sufficient to increase Limpel-Ziv complexity. Greater
Limpel-Ziv complexity has been reported after high doses of LSD
(75 μg, intravenous [IV]) [75], psilocybin (225 mg/kg oral and 2mg,
IV) [75, 76], dimethyltryptamine (DMT, 20 mg, IV) [77], and
ketamine (0.1–0.5 mg/kg, intravenous) [75, 78]. These doses also
increase altered states responses, influencing prior interpretations
that Limpel-Ziv complexity is a biomarker for altered states of
consciousness [76] or “psychedelic state” [75]. A recent microdos-
ing study reinforced this interpretation, finding no changes in
Limpel-Ziv complexity after 0.5 g of dried psilocybin mushrooms
[79]. Our work provides two key pieces of evidence that neural
complexity is neither necessary nor sufficient for altered states of
consciousness. First, greater Limpel-Ziv complexity was not
necessary for altered states responses on the 5D-ASC after THC
(7.5, 15 mg). Second, greater Limpel-Ziv complexity was not
sufficient to induce altered states responses on the 5D-ASC after
low doses of LSD (13, 26 μg).
What is the role of neural complexity after low doses of LSD?

Historically dismissed as noise [80], signal complexity assists in the
detection of weak signals, allowing subthreshold neurons to fire
[81, 82]. The 5-HT2A receptor modulates sensitivity of neurons

[36, 83], which may contribute, alongside the facilitation of
excitatory synaptic transmission [33, 34], to a role for 5-HT2A
activity in generating sources of complexity. The functional
relevance of increased complexity after low doses of LSD is
informed by prior work demonstrating that neural complexity is
associated with better task performance [84], and is a better
predictor of clinical outcomes to psychiatric treatment when
compared to other brain and self-report measures [85]. Neural
complexity is also generally reduced in individuals with mental
disorders relative to healthy populations and increases with
healthy brain development [80]. While some reports detected
relationships between psychosis and neural complexity [86],
others found that developmental increases in complexity were
blunted in individuals with schizophrenia [87]. Here, we speculate
that the somewhat lateralized pattern of complexity after LSD
reflects changes in network activity, including default mode
network disintegration [38, 39], given slight reductions in
complexity under the midline Pz electrode over the posterior
cingulate cortex [83]. Furthermore, in these same participants, we
reported that the low doses of LSD increased neural responses to
reward [29] and improved accuracy in detecting neutral faces
relative to happy or angry faces [20]. Together, our findings that
low doses of LSD increase neural complexity raise important

Fig. 2 Limpel-Ziv complexity across LSD, THC, and MA studies under 10–20 electrode placements of over prefrontal (Fp), frontal (F),
temporal (T), parietal (P), occipital (O), and central (C) regions. Each dose condition shows % change relative to placebo. Red indicates
increases and blue indicates decreases. Yellow rings indicate FDR-corrected significance in scalp electrodes relative to placebo conditions;
seven significant electrodes in the 13 μg LSD condition did not pass FDR correction. Bar graphs show ANOVA results comparing the three
doses for each study averaging all 10–20 scalp electrodes together are shown at right. ***p < 0.001.
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Fig. 3 Spectral power analysis across LSD, THC, and MA studies. Each dose condition shows % change relative to placebo. Red indicates
increases and blue indicates decreases. Yellow rings map FDA-corrected significance in electrodes relative to placebo conditions. ANOVA
results comparing the three doses for each study averaging all 10–20 scalp electrodes together are shown in Table S1.

C.H. Murray et al.

6

Neuropsychopharmacology



questions about its role in conscious processes, including how
these roles may be operationalized and related to cognitive,
behavioral, and therapeutic outcomes.
Complementing our analysis of neural complexity, we assessed

spectral power across frequency bands. Whereas neural complex-
ity reflects irregular fluctuations in neuronal activity, the power of
neural oscillations reflects synchronized neuronal firing. We found
no associations between changes in neural complexity and
spectral power, supporting findings that neural complexity is not
inherently linked to changes in oscillatory power [80]. Low doses
of LSD reduced low frequency power in the delta and theta bands
and increased high frequency power in the gamma band.
Reduced theta has been reported after low, 0.5 g doses of dried
psilocybin mushrooms [79]. Here, LSD had no effect on alpha
power under 10–20 electrodes, whereas THC and MA bidirection-
ally affected alpha, with THC reducing and MA increased alpha
power, particularly over frontal brain regions. THC reductions in
alpha [57, 88] and psychostimulant increases in frontal alpha
[89, 90] have been documented in prior reports.
Alpha oscillations are often associated with rest and inversely

related to neural activity [91]. When eyes close, unperturbed
neurons in the occipital lobe begin to synchronize in a resting
rhythm, the alpha oscillation. When eyes open, diverse firing
patterns return and desynchronize or reduce alpha power. Thus,
MA-induced increases in frontal alpha may suggest a state with
less mental contents, whereas THC-induced reductions in alpha
may suggest altered states with active contents and disrupted
cognition. Indeed, we previously reported that THC induces
diverse phenomenological reports during rest [53] and impairs
task performance [60]. Reductions in alpha power have been
reported across psychedelics, including high doses of LSD
(75 μg,IV) [92], psilocybin (2 mg, IV) [93], and DMT (20mg, IV)
[77] as a prominent signature of the psychedelic state, alongside
increases in neural complexity [37]. Our findings here suggest that
alpha desynchronization, rather than neural complexity, is a
sensitive marker of altered states of consciousness. Together,
alpha power and neural complexity may reflect discrete neural
signatures representing the multifaceted nature of conscious
states after psychedelics [52].
The current analysis includes both strengths and weaknesses. A

key limitation is that three separate studies were pooled for the
current analysis. However, each study included two doses and
placebo following identical EEG procedures. In addition, the
participants in all studies were not regular users (reported 0 use in
last 30 days) of the experimental drug administered. As a result,
the THC group reported less total lifetime uses of cannabis than
the LSD and MA groups, however the groups were well matched
on other demographic metrics. We note that our analysis did not
include a measure to assess “richness of experience” which has
previously been associated with Limpel-Ziv complexity [77].

Future studies should examine whether increased richness of
experience can occur alongside Limpel-Ziv complexity indepen-
dently from or prior to the induction of altered states of
consciousness.
In conclusion, we report that low doses of LSD increase neural

complexity (Limpel-Ziv) in the absence of altered states of
consciousness (5D-ASC). At low doses, we speculate that 5-HT2A
activation increases neural complexity via heightened neuronal
sensitivity, and at high doses, greater 5-HT2A activation disrupts
endogenous firing patterns that desynchronizes alpha rhythms
and induces altered states. Increases in complexity after low doses
of LSD, in the absence of psychedelic-like drug effects, raise
important questions about potential roles for the diversity of
neural signaling after low doses of LSD in conscious processes,
which may have behavioral and therapeutic relevance.
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