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Identifying novel proteins for suicide attempt by integrating
proteomes from brain and blood with genome-wide
association data
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Genome-wide association studies (GWASs) have identified risk loci for suicide attempt (SA), but deciphering how they confer risk for
SA remains largely unknown. This study aims to identify the key proteins and gain insights into SA pathogenesis. We integrated
data from the brain proteome (N= 376) and blood proteome (N= 35,559) and combined it with the largest SA GWAS summary
statistics to date (N= 518,612). A comprehensive set of methods was employed, including Mendelian randomization (MR), Steiger
filtering, Bayesian colocalization, proteome‑wide association studies (PWAS), transcript-levels, cell-type specificity, correlation, and
protein-protein interaction (PPI) network analysis. Validation was performed using other protein datasets and the SA dataset from
FinnGen study. We identified ten proteins (GLRX5, GMPPB, B3GALTL, FUCA2, TTLL12, ADCK1, MMAA, HIBADH, ACP1, DOC2A)
associated with SA in brain proteomics. GLRX5, GMPPB, and FUCA2 showed strong colocalization evidence and were supported by
PWAS and transcript-level analysis, and were predominantly expressed in glutamatergic neuronal cells. In blood proteomics, one
significant protein (PEAR1) and three near-significant proteins (NDE1, EVA1C, B4GALT2) were identified, but lacked colocalization
evidence. Moreover, despite the limited correlation between the same protein in brain and blood, the PPI network analysis
provided new insights into the interaction between brain and blood in SA. Furthermore, GLRX5 was associated with the GSTP1, the
target of Clozapine. The comprehensive analysis provides strong evidence supporting a causal association between three
genetically determined brain proteins (GLRX5, GMPPB, and FUCA2) with SA. These findings offer valuable insights into SA’s
underlying mechanisms and potential therapeutic approaches.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01807-4

INTRODUCTION
Suicide is a pressing global public health issue. According to the
survey data of the World Health Organization (WHO), more than
800,000 people lose their lives to suicide every year, and the
number of suicide attempt (SA) is several times higher than the
number of suicide deaths [1, 2]. SA is defined as self-injurious
behavior with the intent to die, and the lifetime prevalence of SA
among adults globally is estimated to be around 0.5–5% [3]. This
not only poses a risk of personal disability and reduced quality of
life but also brings a heavy burden on families and society as a
whole. SA is a complex result of the interaction of genetic,
biological, psychological, environmental and social factors, making
suicide a focus area of research [4]. Despite the many risk factors
associated with SA, our understanding of the underlying
mechanisms is still limited, and there is a lack of effective
prevention strategies to reduce the prevalence of SA. The increase
in large-scale genome-wide association studies (GWASs) over the
past few years has greatly contributed to the identification of
genetic variations associated with SA. The latest GWAS meta-

analysis conducted by the International Suicide Genetics Con-
sortium (ISGC) involved over 29,000 cases of SA or suicides from
18 cohorts worldwide [5]. The results revealed an estimated
heritability of ~6.8% for SA, highlighting the important role of
genetic factors in this complex behavior. However, deciphering
the underlying biological processes responsible for most of these
genetic effects remains challenging, hampering further under-
standing of the mechanisms behind SA and the discovery of
biomarkers and the development of drug targets.
Proteins are among the most important biological molecules in

cells, representing the main functional components of cells and
biological processes and the ultimate products of gene expression
[6]. With the widespread application of proteomic analysis
techniques recently, a large number of protein quantitative trait
loci (pQTLs) have been found in blood and brain [7–9]. These
pQTLs, located near coding genes known as cis-pQTLs, are more
likely to influence protein levels by directly affecting transcription
or translation, which provides new possibilities for exploring the
causal associations between proteins and SA from a genetic
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perspective. Proteins in the brain are closely related to the central
nervous system and play important roles in regulating brain
function, development, mental disorders, and SA [10, 11]. On the
other hand, blood proteins are easier to obtain and detect, and
they can reflect various physiological and pathological processes
[12, 13]. Therefore, integrating data from brain and blood
proteomics will provide new insights into the biological mechan-
isms of SA.
Mendelian randomization (MR) is a causal inference method

that mimics the design of natural randomized controlled trials
using genetic variation in single nucleotide polymorphisms
(SNPs) as instrumental variables (IVs), which reducing measure-
ment error and confounding, enabling reliable estimation of
causal relationships between specific proteins and SA [14].
Steiger filtering is an extension of MR that calculates the
variance explained by the exposure and outcome variables to
determine the direction of possible causal relationships of
proteins with SA [15]. Because linkage disequilibrium (LD)
between different variants within a single genetic region may
confuse MR results, Bayesian colocalization analysis was
performed to calculate the probability of shared causal genetic
variation between a specific protein and SA [16]. These methods
have been applied to various diseases, such as depression [17],
loneliness [18], post-traumatic stress disorder [19], Parkinson’s
disease [20], and stroke [21]. However, the exploration of
potential key proteins underlying SA remains limited.
In this study, we integrated brain and blood proteomic data

with large-scale GWAS summary statistics from 14 European
cohorts on SA. We employed various methods such as MR, Steiger
filtering, and Bayesian colocalization to reveal causal relationships
between specific proteins and SA. To validate the robustness of
our findings, we conducted repeatability MR analysis using other
protein datasets and the SA dataset from FinnGen study, and
extension analysis, including proteome‑wide association studies
(PWAS) and transcript-level analysis. In addition, we performed
cell-type-specific expression to understand the expression pat-
terns of specific proteins in different cell types and compared the
consistency between the brain and blood. By constructing the
protein-protein interaction (PPI) network, we further investigated
the interactions among these proteins, and the interactions
between candidate proteins and known drug targets. The goal
of these integrative analyzes was to identify novel candidate risk
protein markers and potential drug targets for SA.

METHODS
Overall study design
This study utilized publicly available summary-level data on blood and
brain proteome as well as GWAS data on SA. The schematic overview and
framework of the present study design is shown in Fig. 1.

Human brain proteome data source
For the discovery set, human brain proteome data were acquired from the
dorsolateral prefrontal cortex (dPFC) of postmortem brain samples
donated by 400 participants of European ancestry of the Religious Orders
Study/Memory and Aging Project (ROS/MAP), which was the largest
summary-level data on brain proteomes currently publicly available [22].
Proteomic sequencing and peptide analysis were performed using isobaric
tandem mass tag peptide labeling and liquid chromatography coupled to
mass spectrometry, respectively. Genotyping was performed from either
the Illumina OmniQuad Express or Affymetrix GeneChip 6.0 platforms. The
detailed method can be described in Wingo et al. [9]. After quality control,
376 subjects had both proteomic and genetic data for subsequent analysis.
Considering that the full discovery dataset included cognitively impaired

participants, we used 144 participants with no cognitive impairment at
death from the ROS/MAP for replication [8]. Another brain proteome data
derived from dPFC of 149 individuals with both proteomic and genetic
data from the Banner Sun Health Brain and Body Donation Program
(Banner BBDP) were used for cross-study replication [23]. The proteomic

data in the Banner BBDP were profiled using similar approaches to ROS/
MAP.

Human blood proteome data source
During the discovery phase, human blood proteome data were obtained
from 35,559 Icelanders from the Icelandic Cancer Project and various
genetic programs at deCODE genetics, Reykjavík, Iceland [7]. All plasma
samples were measured using the SomaScan version 4 assay. Aptamers for
non-human proteins and aptamers listed as deprecated by SomaScan as
well as aptamers mapping to multiple genes were excluded, leaving 4907
aptamers targeted a total of 4719 unique proteins that were included in
the pQTL analysis. Genome-wide association tests were performed using
the linear mixed model implemented in BOLT-LMM by normalizing the
residuals using model normal transformation and using normalized values
as phenotypes. Detailed information can be found in the original study [7].
The human blood proteome measured from other sources was

replicated separately: (1) Pietzner et al. conducted a study in which they
detected 4775 unique protein targets from a cohort of 10,708 participants
in the Finnish study [24]. (2) Gudjonsson et al. conducted a study in which
they measured 4135 proteins from a cohort of 5368 individuals of Northern
European ancestry participating in the AGES-Reykjavik Study [25].

GWAS summary statistics of suicide attempt
For the primary analysis, summary statistics on SA were obtained from 14
cohorts of European ancestry (SA-EUR: 26,590 cases and 492,022 controls)
from the International Suicide Genetics Consortium (ISGC) [5]. Cases were
individuals who developed a non-fatal SA (13 cohorts) or died by suicide (1
cohort). A non-fatal SA was defined as a lifetime act of deliberate self-harm
with intent to die. Information on SA was determined by structured clinical
interviews in 8 cohorts, self-report questionnaires in 3 cohorts, hospital
records or International Classification of Diseases codes in 2 cohorts. GWAS
approach involved conducting analyses within European ancestry while
accounting for confounding factors such as ancestry-informative principal
components, genomic relatedness matrices, and factors capturing site of
recruitment or genotyping batch as necessary. Detailed characteristics of
these 14 European ancestry cohorts are shown in Table S1 and previous
studies [5]. For external validation, summary statistics on SA were obtained
from the FinnGen study (8978 cases and 368,299 controls) [26].
Considering that the major depressive disorder (MDD) is the most

common psychiatric disorder among individuals who die by suicide and
has the highest genetic association with SA [27], GWAS summary statistics
for SA conditional on MDD (SA-EUR | MDD: 26,590 cases and 492,022
controls) were obtained based on multi-trait conditional and joint analysis
(mtCOJO) for external validation [5]. Briefly, the mtCOJO adjusted the
GWAS summary statistics of MDD for the effects of genetically related traits
to determine putative SA-specific SNP associations [28]. Specifically, the
effect size of SNPs on SA under the MDD condition was estimated.

Statistical analysis
MR analysis. MR analysis was performed with brain and blood pQTLs as
eligible IVs to infer the causal relationship between specific proteins and
SA. Before MR analysis, IVs must meet three key assumptions: strongly
associated with exposure, independent of confounders, or affecting
outcome only through exposure [14]. To meet assumption 1, we first
selected SNPs that achieved genome-wide association (p < 5E−08) and
F-statistics >10, and then obtained conditionally independent SNPs
(r2 < 0.2 and clump window >10,000 kb) as IVs through LD based on the
1000 Genomes European reference panel in subsequent analysis. Relatively
relaxed clustering thresholds can improve the ability to detect effects and
make it possible to test for bias in MR estimates [29]. To meet assumption 2
and 3, the following steps were taken further: (1) To minimize the risk of
false positives, our study focused exclusively on cis-pQTLs, which are
located within a 10 Mb range upstream and downstream of protein-coding
genes. This approach was taken because trans-pQTLs, which map to genes
not directly involved in coding for the targeted proteins or intergenic
regions, make it difficult to ascertain the presence of vertical or horizontal
pleiotropic pathways. (2) To avoid potential pleiotropic effects, SNPs of IVs
that showed significant associations (p < 5E−08) with more than five
proteins simultaneously were excluded from subsequent analysis. (3) To
assess potential confounding effects, SNPs of each candidate protein were
searched in the PhenoScanner database to determine whether they were
significantly associated with potential confounding (p < 5E−08) [30]. (4) To
avoid ambiguity or potential biases, SNPs with ambiguous palindromic
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structure were removed when exposure and outcome data were
harmonized.
The primary MR analysis was performed using the Wald ratio (number of

SNPs for IVs= 1) or the inverse variance weighted (IVW) method (number of
SNPs for IVs >1) via the R-based “TwoSampleMR” package. The IVW method
included fixed effects models and random effects models, depending on the

presence of significant heterogeneity as assessed by Cochrane’s Q test [31].
To ensure the robustness of the results, complementary MR analysis
methods can be implemented depending on the number of SNPs, including
maximum likelihood ratio, MR-Egger, weighted median, and penalized
weighted median analysis. The MR Egger intercept test further conducted to
examine horizontal pleiotropy [32]. Finally, the Steiger filtering method was

Fig. 1 Schematic overview and framework of the present study design. First, we selected relatively independent cis-pQTLs from the brain
and blood proteome datasets as IVs. Second, candidate proteins associated with SA were identified by a series of MR analyses. Third, the
direction of causal association between candidate proteins and SA was ensured by Steiger filtering analysis. Fourth, whether proteins and SA
share common causal variants was investigated by Bayesian colocalization. Fifth, to ensure the reliability of our findings, we conducted strictly
independent cis-pQTL MR analysis, replicate dataset MR analysis, PWAS analysis, and eQTL MR analysis. Lastly, additional analyses
encompassed cell-type-specific expression, correlation analysis between blood and brain protein effects, enrichment analysis, PPI network
analysis, and identification of druggable proteins. ROS/MAP Religious Orders Study/Memory and Aging Project, Banner BBDP Banner Sun
Health Brain and Body Donation Program, NCI normal healthy control, pQTL protein quantitative trait loci, SA suicide attempt, GWAS Genome-
wide association studies, IVW inverse-variance weighted, MR Mendelian randomization, PWAS proteome‑wide association studies, eQTL
expression quantitative trait loci, PPI protein-protein interaction.
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applied to ensure that causality was not distorted by the presence of reverse
causality [15]. Multiple testing corrections were applied using false discovery
rate (FDR) method with the “fdrtool” package considering the number of
proteins analyzed [33]. A significance threshold of FDR < 0.05 was used to
determine statistical significance, while findings with p < 0.001 that did not
meet the FDR < 0.05 threshold were considered suggestive significant. This
approach helps control for the possibility of false positives and ensures more
reliable and stringent statistical interpretation of the results.

Bayesian colocalization analysis. Bayesian colocalization was performed to
enhance the evidence of causality by assessing the posterior probability that
the protein and SA share the same causal variant (rather than the variant
being shared coincidentally due to correlation through LD) [16]. The
colocalization method with default parameters tested the posterior
probability of 5 hypotheses: H0: no association with either trait; H1: association
with trait 1 (pQTL), not with trait 2 (SA GWAS); H2: association with trait 2 (SA
GWAS), not with trait 1 (pQTL); H3: association with trait 1 (pQTL) and trait 2
(SA GWAS), with distinct causal variants; H4: association with trait 1 (pQTL) and
trait 2 (SA GWAS), with a shared causal variant. We define genes based on the
posterior probability PPH4> 75% with strong evidence of colocalization [34].

Replication and extension analysis. To ensure the robustness of our results,
we performed strictly independent cis-pQTL (r2 < 0.001) MR analysis. The
independent cis-pQTL analysis allowed us to examine the causal associations
between proteins and SA while minimizing potential confounding due to LD
[29]. In addition, we performed MR analyses using replicate datasets, which
involved using summary data for other protein sources and outcomes from
SA-EUR|MDD and FinnGen study to validate our findings, ensuring the
consistency and reliability of our results. Moreover, FUSION is a powerful
strategy that combines protein abundance measurements with summary
statistics fromGWAS to identify genes whose cis-regulated protein abundance
correlates with complex traits [35]. To further validate the association of
candidate proteins with SA, PWAS were carried out using FUSION. Briefly, we
used FUSION pipeline with default settings to combine the genetic effect of SA
(SA GWAS z-score) with the protein weights by calculating the linear sum of
z-score ×weight for the independent SNPs at the locus to perform the PWAS
of SA [35]. Furthermore, we performed additional validation by conducting MR
analysis based on brain eQTLs at the transcriptional level using eQTL data
obtained from the PsychENCODE project [36].

Cell-type-specific expression and correlation analysis. The cell-type-specific
expression profile of genes associated with potential causal proteins in the
brain was investigated using human single-cell RNA-seq data obtained
from the Cell Types Database (https://portal.brain-map.org/atlases-and-
data/rnaseq). Individual layers of the cortex were dissected, and nuclei
were dissociated and sorted using the neuronal marker NeuN from human
brain tissues. Nuclei were sampled from post-mortem and neurosurgical
(MTG only) donor brains and expression was profiled with SMART-Seq v4
RNA-sequencing. To capture various aspects of expression specificity (ES),
the cell-type expression specificity (CELLEX) tool was employed [37]. In
addition, the correlation between the shared pQTLs identified in the brain
and blood using effect estimates from the MR analysis was investigated by
Pearson correlation analysis, and the different p value thresholds to
investigate whether the correlations change as the significance increases.

Enrichment, PPI network, and druggable analysis. The Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was conducted to identify the GO terms and KEGG
pathways enriched by the candidate protein [38]. To explore the
interactions between SA-associated proteins identified in this study and
investigate whether proteins identified using blood data could interact
with proteins identified using brain data, we utilized the STRING database
to investigate the PPI network for proteins with p < 0.05 based on MR
analysis [39]. In addition, to assess the potential of identified proteins as
therapeutic targets, we searched the Drug-Gene Interaction Database
(https://www.dgidb.org/), DrugBank (https://www.drugbank.ca), and Open
Targets (https://www.opentargets.org/) [40, 41] and explored the associa-
tions between identified proteins and established targets of anti-suicidal or
antidepressant medications through the STRING database.

RESULTS
MR and colocalization in the brain proteome
Primary MR analysis of brain pQTLs and SA GWAS revealed 94
proteins with genetically determined effects that showed

suggestive evidence (p < 0.05; Tables S2 and S3). After multiple
testing correction, 10 of these proteins remained significant
(FDR < 0.05; Table 1 and Fig. 2A). Specifically, we observed that
increased protein abundance of 8 proteins in the brain was
significantly associated with a decreased SA risk, including
glutaredoxin 5 (GLRX5; OR: 0.84; 95% CI: 0.78–0.90), beta
3-glucosyltransferase (B3GALTL; OR: 0.79; 95% CI: 0.70–0.89),
alpha-L-fucosidase 2 (FUCA2; OR: 0.80; 95% CI: 0.72–0.90), tubulin
tyrosine ligase like 12 (TTLL12; OR: 0.67; 95% CI: 0.54–0.83), AarF
domain containing kinase 1 (ADCK1; OR: 0.81; 95% CI: 0.72–0.91),
Metabolism of cobalamin associated A (MMAA; OR: 0.77; 95% CI:
0.66–0.89), 3-hydroxyisobutyrate dehydrogenase (HIBADH; OR:
0.67; 95% CI: 0.53–0.84), and double C2 domain alpha (DOC2A; OR:
0.44; 95% CI: 0.28–0.71), while increased protein abundance of 2
proteins in the brain was significantly associated with an increased
SA risk, including GDP-mannose pyrophosphorylase B (GMPPB;
OR: 1.64; 95% CI: 1.33–2.03) and Acid phosphatase 1 (ACP1; OR:
1.19; 95% CI: 1.08–1.32). Similar findings were found when
applying robust MR approaches, including maximum likelihood,
weighted median and penalized weighted median methods
(Table S4). Cochrane’s Q test and MR Egger intercept test provided
no evidence of heterogeneity or pleiotropy for the aforemen-
tioned proteins. The Steiger filtering analysis confirmed the
correct causal direction from the protein level to SA for all MR-
identified proteins (Table S5). However, Bayesian colocalization
analysis revealed strong evidence of genetic colocalization with
SA for only three out of the ten proteins, namely GLRX5, GMPPB,
and FUCA2 (Table S6). This finding further supported their
potential causal relationship with SA.

MR and colocalization in the blood proteome
Primary MR analysis of blood pQTLs and SA GWAS identified 109
proteins that showed suggestive evidence of genetically deter-
mined effects (p < 0.05; Tables S7 and S8), but only one protein
survived after multiple testing correction (FDR < 0.05; Table 1 and
Fig. 2B). Genetically determined higher levels of platelet endothe-
lial aggregation receptor 1 (PEAR1) were found to be associated
with a decreased risk of SA (OR: 0.81; 95% CI: 0.74–0.89). The
results from maximum likelihood MR analysis for PEAR1 plasma
protein were consistent with those from the IVW method, and no
heterogeneity was detected (Table S4). The Steiger filtering
analysis supported that the correct causal direction from protein
level to the development of SA for PEAR1 plasma protein
(Table S5). Considering that blood pQTL studies measure proteins
using aptamer-based approaches, we verified whether MR results
were confounded by aptamer-binding effects. The IVs of PEAR1
(rs4661012 and rs4661075) were not known missense variants and
did not exhibit high LD with missense variants. Therefore, the IVs
were not susceptible to aptamer-binding effects. However, the
colocalization results of PEAR1 (PPH4= 42.44%) suggested the
identified association might be a product of LD, indicating a lack
of strong evidence for a causal relationship between PEAR1 and
SA.
When we relaxed the significance threshold to p < 0.001, the

three additional proteins (NDE1, EVA1C, and B4GALT2) identified
by the MR analysis did not provide strong evidence for a causal
association with SA in the colocalization analysis (Table S6), taking
into account that the higher number of proteins analyzed in the
blood affected the number of proteins that survived multiple
corrections.

Replication and extension analysis
To further confirm the significant causal association of the three
candidate brain proteins (GLRX5, GMPPB, and FUCA2) with SA, we
conducted a series of replication analyses (Table 2). Firstly, the
causal associations of these three proteins with SA remained
significant when considering strict independent IVs (r2 < 0.001) for
SA from the discovery protein dataset and SA-EUR GWAS
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(Table S9). Secondly, we replicated the MR analysis of the multiple
corrected surviving proteins in the discovery dataset, and found
that the direction of effect of the available proteins was consistent
with the findings in the discovery dataset (Table S10). This
demonstrated the robustness of our results, despite the lack of
instrumental variables for two of the three candidate proteins
(GMPPB and FUCA2) in the replicate dataset. Thirdly, the
significant causal associations of the three candidate brain
proteins with SA were confirmed after external validation using
mtCOJO adjustment for MDD as a secondary outcome (Table S11).
Finally, the associations for GLRX5 and GMPPB were replicated in
the FinnGen study, and the association for FUCA2 was direction-
ally consistent in replication analysis (Table 2).
In addition, through confirmatory PWAS, we found that all three

candidate brain proteins showed significant associations with SA
risk (GLRX5: Z-score=−3.49, p= 4.83E−04; GMPPB: Z-score=
3.67, p= 2.39E−04; FUCA2: Z-score=−3.53, p= 4.22E−04)
(Table S12). At the perspective of transcription level, two of the
three candidate genes had suitable IVs, and MR analysis showed
consistent results between the transcription level and the protein
level (GLRX5; OR: 0.7; 95% CI: 0.58–0.85; GMPPB; OR: 1.15; 95% CI:
1.09–1.22) (Table S13). Taken together, strong evidence supports a
significant causal association of these three candidate brain
proteins with SA.

Cell-type-specific expression of the SA-related genes
We utilized human single-cell RNA-seq data to investigate the
specific enrichment and expression patterns of the three
candidate brain proteins in different brain cell types (Table S14).
Our analysis revealed that GLRX5 was predominantly enriched in
pericyte and glutamatergic, GMPPB was specifically expressed in
glutamatergic neurons, and FUCA2 showed expression in micro-
glia, pericyte and vascular leptomeningeal cells (VLMC). These
findings provide insights into the cell-type specificity of these
proteins within the brain.

Consistency comparison in brain and blood
To investigate the correlation between brain-based and plasma-
based proteins, we compared the MR effect estimates for proteins
that were shared between the two datasets. Firstly, we observed a
mild correlation between the MR results for brain and blood
proteins when considering all proteins without a specific p value

threshold in the MR analysis (Pearson correlation= 0.266,
p < 0.001, number of proteins= 151) (Fig. 3A). Secondly, when
applying a p value threshold, the correlation coefficient increased
to a moderate level, but it did not reach statistical significance
(Fig. 3B, C). This could be attributed to the limited number of
proteins that were shared between the brain and blood datasets
(MR analysis with p < 0.05 in brain or blood: Pearson correlation=
0.391, p= 0.053, number of proteins= 25; MR analysis with
p < 0.05 in both brain and blood: Pearson correlation= 0.454,
p= 0.306, number of proteins= 7). These results suggested a
potential correlation between the MR effect estimates of shared
proteins, although larger sample sizes and more shared proteins
were needed to establish statistical significance.

Enrichment and PPI network, and potential drug targets
GO and KEGG enrichment analysis revealed that the three
significant brain-based proteins were associated with various
biological pathways, including metabolic pathways, lysosomes,
neuronal cell bodies, and glutathione oxidoreductase activity
(Table S15). PPI network analysis using the STRING database
indicated potential interactions between the significant brain-
based protein GLRX5 and the suggestive brain-based proteins
TXN, TXNRD1, and SOD2 (Fig. 3D). In addition, we found protein
interactions between important proteins from the brain and blood
datasets. For instance, the significant brain-based protein GMPPB
may be connected with the suggestive blood-based protein
B4GALT2, while the significant brain-based protein FUCA2 may be
connected with the suggestive blood-based protein CPB2. More-
over, STRING also revealed that GLRX5 was associated with
Glutathione S-Transferase Pi 1 (GSTP1), the target of Clozapine and
Clomipramine, GMPPB was associated with Eukaryotic Translation
Elongation Factor 2 (EEF2), the target of Esketamine, and FUCA2
was associated with Orosomucoid 2 (ORM2), the target of
Imipramine (Fig. 4).

DISCUSSION
In this study, we employed an integrated approach, including
discovery and confirmatory study designs, integrating brain and
blood-derived proteomic data with the largest SA GWAS data to
date. Our aim was to investigate the genetically determined
potential proteins associated with SA using comprehensive

Fig. 2 Volcano plots of the MR results for specific proteins on the risk of SA. A The MR results for 811 brain proteins on the risk of SA. B The
MR results for 1333 blood proteins on the risk of SA. Odds ratios (OR) for increased risk of SA were expressed as per unit increase in protein
levels. Red, blue, and gray dots denote positive significant, inverse significant, and nonsignificant associations, respectively. OR odds ratios, MR
Mendelian randomization.
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methods, including MR, Steiger filtering, colocalization, and PWAS.
The results obtained from our analysis of brain proteomics data
revealed the identification of 10 proteins (GLRX5, GMPPB,
B3GALTL, FUCA2, TTLL12, ADCK1, MMAA, HIBADH, ACP1, DOC2A)
that showed significant associations with SA. Notably, three of
these proteins (GLRX5, GMPPB, and FUCA2) exhibited strong
evidence of colocalization and were further replicated in in other
datasets, providing robust support for their involvement in SA. In
contrast, our analysis of blood proteomics data identified one
protein with significant association (PEAR1) and three proteins
with near-significant associations (NDE1, EVA1C, B4GALT2). How-
ever, these proteins lacked substantial evidence of colocalization,
limiting the confidence in their role in SA. Furthermore, our
findings highlight the significance of glutamatergic neuronal cells
in the pathogenesis of SA, as the genes corresponding to brain
proteins supported by MR evidence were predominantly
expressed on the surface of these cells. In addition, despite the
limited correlation between proteins in brain and blood, our
analysis revealed certain proteins that participate in the same PPI
network, suggesting potential interactions and crosstalk between
brain and blood in the context of SA.
GLRX5 encodes a mitochondrial protein that plays a critical role

in the biosynthesis of iron-sulfur clusters, which are required for
maintaining normal iron homeostasis [42]. Several studies have
indicated an association between blood iron homeostasis and SA
risk [43], and abnormal iron homeostasis may be related to
neurological and mental health [44, 45]. Nonetheless, there is a
dearth of comprehensive research on the relationship between
brain iron homeostasis and SA. Thus, our study provides a genetic
basis for further determination of the need for comprehensive
consideration of iron homeostasis in SA risk assessment and
treatment. Moreover, we found that GLRX5 was predominantly
enriched in pericytes and glutamatergic neurons. Pericytes play an
important role in maintaining vascular function and the stability of
the blood-brain barrier [46]. Glutamatergic neurons are one of the
main types of excitatory neurons in the brain [47]. They play a key
role in the transmission of neural information and the formation of
neural networks by releasing glutamate as a neurotransmitter.
Notably, the rapid antidepressant efficacy of ketamine is primarily
based on the glutamate system [48]. In addition, the PPI network
also revealed that GLRX5 interacts with GSTP1, the target of
Clozapine—the first medication sanctioned by the US FDA for
preventing suicidal behavior [4], suggesting its possible involve-
ment in the mechanism of SA and its potential drug target value.
In summary, our study not only provides valuable insights into the
intricate relationship between iron homeostasis and SA but also
offers a foundation for exploring the involvement of GLRX5 in
blood-brain barrier stability and the functioning of glutamatergic
neurons.
GMPPB encodes GDP-mannose pyrophosphorylase, which

catalyzes the conversion of mannose-1-phosphate and GTP to
GDP-mannose [49]. Previous studies have demonstrated dysregu-
lation of GMPPB and mannose in depression, with increased levels
of GMPPB proteins observed in the postmortem prefrontal cortex
of patients with MDD and in a mouse model of chronic variable
stress [50]. In addition, Deng et al. reported an association
between elevated brain levels of GMPPB and an increased risk of
MDD (OR [95%CI]= 1.452 [1.268–1.633]) by integrating proteomic
data from the brain and MDD GWAS data [17]. Consistent with
these findings, our study revealed that increased levels of GMPPB
in the brain per standard deviation (SD) were associated with a
64% increased risk of SA. Notably, even after accounting for the
effects of MDD, increased levels of GMPPB in the brain per SD
remained associated with a 46% increased risk of SA. These results
provide further support for the potential involvement of GMPPB in
both MDD and SA. Moreover, the specific expression of GMPPB in
glutamatergic neurons, and its interaction with EEF2—the target
of Esketamine, a recently prominent novel antidepressant shownTa
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to alleviate suicidal ideation—further emphasizes its significance
in the context of SA [51]. Our findings highlight the potential of
GMPPB as a promising biomarker, however, further investigation
and validation are necessary to elucidate the exact mechanism of
action of GMPPB in SA.
FUCA2 encodes α-L-fucosidase and plays an important function

in cellular lysosomes [52, 53]. Dysfunction of intracellular
lysosomes has been linked to a variety of neurological diseases
such as Parkinson’s disease and Alzheimer’s disease [54], as well as
psychiatric disorders such as depression and SA [55]. The
mechanisms underlying the association between lysosomal
dysfunction and suicidal behavior are not fully understood, but
several hypotheses may offer explanations. First, the accumulation
of intracellular metabolites may lead to increased oxidative stress
and cytotoxicity, resulting in damage to the nervous system [56].
This cellular damage may be involved in the development of SA.
Second, lysosomal dysfunction may interfere with the synthesis,
release, and clearance of neurotransmitters [57], thereby affecting
the balance of the neurotransmitter system, which may adversely
affect mood and cognitive functions, thereby increasing the risk of
SA. In addition, FUCA2 also plays a regulatory role in the innate
immune system and IGF transport. The innate immune system
plays an important role in neurodevelopment, inflammatory
responses, and neuronal protection [58]. As an important growth

factor, IGF participates in key processes such as proliferation,
growth and survival of nerve cells [59]. An in-depth understanding
of the mechanism of action of FUCA2 in SA may help to develop
new treatment approaches and prevention strategies, and provide
a new direction for the intervention of SA.
Our study observed a significant but weak correlation between

MR estimates of the same protein in brain and blood, although the
strength of the correlation increased as we applied stricter p value
thresholds in the MR analysis. This suggests that findings from one
tissue are difficult to generalize directly to other tissues, especially
when considering the effects of the blood-brain barrier [60]. This
means that biomarkers between blood and brain may be tissue-
specific, while their expression may differ in different tissues.
Interestingly, our PPI network analysis revealed that some blood-
based proteins extended the brain-based PPI network, such as
GMPPB in the brain that may interact with B4GALT2 in the blood,
FUCA2 in the brain that may interact with CPB2 in the blood. This
suggests that brain state may influence certain peripheral
biomarkers detected in SA, which are predominantly detectable
in blood. On the other hand, the discovery of the PPI network may
provide clues to further understanding the role of proteins
detected in one tissue in the pathogenesis of SA in another.
Although our evidence is still preliminary, our findings suggest
that both the brain and blood may be valuable avenues for

Fig. 3 The correlation and PPI network between brain-based and plasma-based proteins. A Correlation of MR effect between brain and
blood proteins (no p value threshold). B Correlation of MR effect between brain and blood proteins (p value < 0.05 in brain or blood).
C Correlation of MR effect between brain and blood proteins (p value < 0.05 in both brain and blood). D PPI network for brain or blood
proteins with p value < 0.05. MR Mendelian randomization, PPI protein-protein interaction.
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detecting proteins associated with SA. The three brain proteins we
identified, along with their associated blood proteins, are
promising candidates to be prioritized for future research. Further
research can deeply explore the role of these proteins in the
mechanism of SA, and provide more insights for the development
of prediction and intervention strategies of SA.
Our research possesses several advantages. Firstly, we inte-

grated pQTLs from brain and blood, using both a discovery and
confirmatory study design. This comprehensive approach allowed
us to thoroughly investigate and validate the key proteins
implicated in the pathogenesis of SA. Secondly, we utilized the
latest and largest GWAS dataset of SA, ensuring heightened
statistical power and the reliability of our study. Additionally, our
employed multiple independent yet complementary methodolo-
gies to identify novel SA-associated proteins, including MR
analysis to uncover potential causal associations, Steiger filter
analysis to ensure the correct direction of association, and
Bayesian colocalization analysis to confirm that potential causal
associations were not distorted by LD, PWAS to reinforce the
evidence for brain proteins, and eQTL-based MR analysis to
explore the association between the transcription levels of
candidate brain proteins and SA. Lastly, we performed a
comprehensive phenotypic GWAS scan of the candidate proteins
identified in the MR analysis (Table S16), which showed that the
IVs for these candidate proteins were not strongly correlated with
other risks that may affect SA risk, suggesting that the candidate
proteins are unlikely to exhibit widespread horizontal pleiotropy.
However, there are some limitations to our study that need to

be considered. Firstly, the sample size of proteomic data obtained
from brain tissue was small compared to the blood proteomic
data, which limited the amount of brain proteins we were able to
detect using pQTL. Secondly, our study focused only the dPFC
region and blood samples, while other brain regions such as the
hippocampus and amygdala have also been implicated in SA [61].
As protein data from different brain regions become more
available in the future, it may provide more insights into the
identification of proteins associated with specific brain regions.
Thirdly, the brain pQTL datasets we used were from individuals
with Alzheimer’s disease and cognitively normal older adults.
Although we performed validation on cognitively normal people,
past studies have shown that although genetic variants found to
be associated with protein levels are not disease-specific nor age-
specific [62]. However, a large sample of pQTL studies from
healthy individuals of different ages may be more desirable.
Fourthly, despite being the largest to date, the SA summary data
from the ISGC faces limitations, notably in estimating SNP-
heritability for SA at 7.5% based on SA-EUR, highlighting the
challenge of capturing the complete genetic landscape. Addition-
ally, data constraints hinder a comprehensive evaluation of various

population, demographic, environmental factors, and confound-
ing effects. Finally, our analysis was based on European samples,
and further validation is necessary to assess the generalizability of
our findings to individuals of non-European ancestry.

CONCLUSIONS
In conclusion, our comprehensive analysis provides compelling
evidence supporting a causal association of three genetically
determined brain proteins (GLRX5, GMPPB, and FUCA2) with SA.
These findings shed light on the involvement of glutamatergic
neurons, iron homeostasis, and lysosomal dysfunction in the
underlying mechanisms of SA. In addition, considering that the
candidate potential protein interacts with established anti-suicide
or antidepressant drug targets, making it a potential therapeutic
target for suicide drug intervention, further animal experiments
and clinical trials are needed in the future.

DATA AVAILABILITY
Brain pQTL data from 376 subjects in the ROS/MAP study are available through
https://doi.org/10.7303/syn23627957. The smaller pQTL data from 144 participants
with no cognitive impairment in the ROS/MAP study are available through https://
doi.org/10.7303/syn2580853. Brain pQTL data from the 149 participants in the Banner
BBDP study are available through https://doi.org/10.7303/syn2580853. Blood pQTL
data for all 4907 aptamers from 35,559 Icelanders are available at https://
www.decode.com/summarydata/ and Supplementary Materials from the original
study [7]. Blood pQTL data from 10,708 participants in the Finnish study are available
in Supplementary Materials from the original study [24]. Blood pQTL data from 5368
participants in the AGES-Reykjavik Study are available in Supplementary Materials
from the original study [25]. Data from the AGES-Reykjavik study are available
through collaboration (AGES_data_request@hjarta.is) under a data usage agreement
with the IHA. Brain eQTL data from the PsychENCODE are available in Supplementary
Materials from the original study [36]. The International Suicide Genetics Consortium
(ISGC) GWAS summary statistics for suicide attempt are available at https://
tinyurl.com/ISGC2021. The FinnGen study GWAS summary statistics for suicide are
available at https://www.finngen.fi/en.
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