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Network-based drug repurposing for schizophrenia
Trang T. T. Truong 1, Zoe S. J. Liu1, Bruna Panizzutti 1, Jee Hyun Kim 1,2, Olivia M. Dean 1,2, Michael Berk1,3 and Ken Walder1✉

© The Author(s) 2024

Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has
gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive
understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions
between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological
variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates
binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of
the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using
the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target
the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain
samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and
healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18
promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks
revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response,
cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The
identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those
with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of
action and efficacy in alleviating the symptoms of schizophrenia.

Neuropsychopharmacology (2024) 49:983–992; https://doi.org/10.1038/s41386-024-01805-6

INTRODUCTION
Drug discovery for schizophrenia continues to be a formidable
challenge despite recent pharmacological advances. Most effec-
tive antipsychotics currently available were discovered via clinical
observations and serendipity more than 60 years ago [1]. Without
credible biomarkers as well as animal models adequately
representing the disease, the complexity of schizophrenia makes
drug development, which is already a laborious process, all the
more challenging [2, 3].
As an alternative to conventional drug discovery, drug

repurposing has recently gained popularity. Considering known
safety profiles and bioavailability, as well as established manu-
facturing processes, drug repurposing can bypass several steps
compared to conventional drug discovery, thereby reducing the
cost and risk of the development process [4, 5]. A variety of
computational drug repurposing approaches have facilitated
novel treatment research strategies by taking advantage of
expanding biomedical databases.
Recently, network analysis – the use of multiple layers of

knowledge to identify latent connections between components
has emerged as a powerful tool for drug discovery. A recent
example is integrating the human interactome with viral and drug
targets to find repurposing medications for COVID-19 [6, 7]. Fitting

well with the “one drug multiple targets” or poly-pharmacology
paradigm shift in drug discovery for complex psychiatric disorders,
a network medicine framework allows a simultaneous and
comprehensive view of various biological components and their
relationships [8–10].
Transcriptomics has been an essential feature of the genomic

landscape and offers a comprehensive reflection of molecular
status related to pathophysiology and medication effects [11, 12].
In this context, transcription factors (TFs) – as regulators of gene
expression, play a major role in driving pathological conditions.
Previous studies have highlighted the importance of exploring the
main drivers of transcriptional profiles over the simple evaluation
of all differentially expressed genes to explore the mechanism of
phenotypic transitions [13, 14]. While the impact of gene
expression regulators is amplified by the cascade of downstream
targets, such regulatory influence is affected by not only the
regulators’ expression level but also the availability of co-factors
and targets as well as post-translational modifications. Hence, TFs’
activities may not coherently correlate directly to their expression
levels and should be considered with other interacting elements,
particularly their targets [15]. Recent systems-level analyses allow
the comprehensive assessment of TF regulatory effects via gene
regulatory networks, reflecting TF and target genes interactions by
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incorporating multiple lines of evidence complementing gene
expression such as motif binding and physical protein interactions
[16–18].
In this study, we first identified the topological differences of

the TF-gene regulatory networks of schizophrenia cases versus
healthy controls using PANDA (Passing Attributes between
Networks for Data Assimilation). PANDA uses information from
different data types (i.e., motifs, protein interactions, gene co-
expression) to iteratively refine predictions of context-specific
regulatory relationships by searching for agreement among
available evidence [16]. By focusing on the differential interactions
(edges of the network), PANDA highlights meaningful patterns in
regulatory changes for genes that are not differentially expressed
[19]. These perturbations can then be utilised as network-based
signatures for finding potential drug repurposing candidates for
the treatment of schizophrenia.
The notion of signatures for drug repurposing was based on

Connectivity Map (CMap) [20] and the Library of Integrated
Network-based Cellular Signatures (LINCS) [21], where transcrip-
tional expression patterns are considered as the unique ‘signature’
of disease states as well as drug effects [22, 23]. By matching
signatures based on their dissimilarity or similarity, potential drug-
disease connections (signature reversion strategy) or drug-drug
associations (guilt-by-association strategy) respectively can be
explored and interrogated for drug repurposing [23]. Typical
signature-based approaches on differential expression profiles
have several limitations: differential expression profiles are
susceptible to poor reproducibility [18, 21] and simplistic signature
matching ignores the interactions between genes and their
functional redundancy [24]. Network-based approaches which
consider modular units as key regulators instead of a single set of
individual genes could offer a more biologically relevant approach
to mitigate these limitations. Integration of more data sources and
network models can not only improve reproducibility and
robustness but also yield more biologically relevant insights into
molecular mechanism(s) at a systems level [18, 24, 25]. Therefore,
our application of gene regulatory networks could shed light on
biologically important processes associated with numerous
phenotypes, which may be missed when looking at gene
expression alone. To our best knowledge, this is the first-time
gene regulatory networks were used for drug repurposing for
schizophrenia.

METHODS
RNA sequencing data
Dorsolateral prefrontal cortex (DLPFC) RNA sequencing data were accessed
from the CommonMind Consortium [26]. After quality control, a total of
532 post-mortem samples belonging to the MSSM – Pitt – Penn Brain Bank
were collected from 279 healthy control subjects and 253 people with
schizophrenia. Genes being expressed at more than 0.5 count per million
(CPM) in at least 30% of samples were kept for downstream analyses. While
within- and between-sample normalisations are commonly used for gene
expression analyses such as differential expression, a comprehensive
benchmark study of normalisation techniques for co-expression network
construction by Johnson et al. found that any normalisation mainly results
to worse performance than not using it [27]. Therefore, in this study, no
normalisation was applied to the read counts given the lack of evidence
justifying its use in network construction.
The R package variancePartition was used to produce expression

residuals as input for the co-expression network [28]. We accounted for
covariates with the most variance explained and/or the greatest spreads in
the linear mixed model as shown in Supplementary Fig. 1 (i.e., diagnosis,
sex, RNA integrity number, cell type composition, institution, age of death,
intronic rate, intragenic rate, intergenic rate, ribosomal RNA rate). These
covariates were regressed out (i.e., we excluded the effects by such
variables), followed by the adding back of main variable of diagnosis and
the intercept. The expression residuals were pre-processed (removal of
genes with no counts, taking the average of duplicated genes) before
being calculated for co-expression in PANDA using Pearson correlations.

Gene co-expression regulatory networks
The R package PANDA was used to build the bipartite gene regulatory
network that linked TFs to their target genes via a guilt-by-association
approach with two main scenarios: (1) if TF A was known to regulate gene
B, then TF A may regulate gene C which is co-expressed with gene B; (2) if
TF X regulates gene Y then a TF Z interacting with TF X may also co-
regulate gene Y [16]. PANDA integrates three sources of information to
infer the TF-gene regulatory network: TF physical protein-protein interac-
tions (TF - TF links), gene co-expression (gene - gene links) and TF motif
binding sites (TF - gene links) [16].
TF protein-protein interactions (PPI) were obtained from the STRING

database [29] with confidence scores reflecting how likely an interaction
was considered to be true from combined sources of evidence. A threshold
of 0.7 (high confidence) was applied to the combined score to convert the
score to binary (0 implies no interaction and 1 implies high likelihood of
interaction). Binding motifs were acquired from previous studies [30, 31],
where TF binding domain sequences (i.e., motifs) were scanned for their
presence in the promoter regions of genes where transcription initiates.
Expression residuals, TF PPI and binding motifs were inputted in PANDA

with the following non-default parameters to make sure only mutual
connections shared by PPI, co-expression and TF motifs were considered in
the networks: mode = “legacy”, remove.missing.motif = True, remove.-
missing.ppi = True, remove.missing.genes = True. Two separate regulatory
networks were built for schizophrenia cases and healthy control subjects.
Edge weight of each network implied the strength of connection of TFs
and genes, reflected via Pearson’s correlation coefficient between the TF
and the target gene.

Differential schizophrenia network
To find the differences in regulation in schizophrenia patients as compared
to healthy control subjects, the two corresponding regulatory networks
were first aligned and filtered to keep intersections of genes and TFs only.
Then the differential network was estimated by subtracting the edge
weights of the healthy control network from those of schizophrenia
network. All networks were imported and visualised in Cytoscape [32].
Gene regulatory network analysis is based on the hypothesis that

alterations in the way TFs regulate genes lead to “targeting” patterns that
explain phenotypic perturbations or reactions to specific stimuli. When
conducting comparative gene regulatory network analysis, TFs that
regulate gene sets with different patterns (e.g., changing targets,
disturbance in the order of targeting intensity) in the compared
phenotypes are typically identified as “differential targeting” TFs [33].
Enrichment analysis of differential targeting was performed based on
Subramanian et al. rank-based gene set enrichment analysis (GSEA) [34] via
the R package ClusterProfiler [35], with gene lists ranked based on
differential targeting score and pathway reference from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [36].
Wilcoxon signed-rank test was applied on the non-normally distributed

targeting scores (Shapiro–Wilk normality test) to identify TFs with
significant differential targeting between schizophrenia and healthy
control subjects. To account for multiple testing correction, Benjamini-
Hochberg adjusted q-values were generated.

Finding drug repurposing candidates
The 100 top positively differential TFs and 100 top negatively differential
TFs based on the differential targeting score were submitted to the
CLUEreg tool of the GRAND database [33] which utilises differential
network signatures to find drugs that potentially target the disease’s gene
signature. The drug typically is expected to revert the abnormal alterations
to normality, knowing as “signature reversion” approach in signature-
based drug repurposing [23]. Herein, ideal drug matches are the ones that
negatively regulate the top 100 positively regulated TFs in samples with
schizophrenia, and positively regulate the top 100 negatively regulated TFs
in schizophrenia. The similarity of a pair of network-based signatures was
evaluated by cosine similarity score and statistical significance was
calculated to compare such score with those of other pairs. The more
negative cosine value suggests the drug’s signature is more dissimilar to
the disease, suggesting higher likeliness of reversing the queried disease.

RESULTS
Using a large RNA-seq dataset of 532 post-mortem brain samples
[26], we built co-expression gene regulatory networks for
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schizophrenia cases and healthy control subjects. Patient clinical
features of samples used in the RNA-sequencing are in
Supplementary Table 1. Each network was pruned to retain
15,831 genes and 413 TFs overlapping in both schizophrenia and
healthy control networks. In corresponding networks for each
phenotype (Supplementary Fig. 2 for schizophrenia cases and
Supplementary Fig. 3 for healthy controls – due to limited space
only top 200 edges for each network were illustrated), an edge
connecting a TF to its target gene reflects the likelihood of
the regulatory relationship. The edge weight was represented by
the z-score of the confidence interval calculated by PANDA [16].
To find topological differences between the gene regulatory

networks of schizophrenia versus healthy controls, we subtracted
the edge weights of the healthy control network from those of the
schizophrenia network. TFs with significant differential targeting
scores between schizophrenia and healthy control subjects were
represented in Fig. 1. Bar plot of variance partitioned on the
variables accounted in variancePartition’s linear mixed model for
these TFs is presented in Supplementary Fig. 4. The network with
the top 100 differential regulatory edges sorted by largest
absolute value is shown in Fig. 2. Sum of edge weights was used
as a summary measure for each node (i.e., gene or TF). The term
“gene targeting” implies the weighted in-degree of each gene (i.e.,
the sum of the incoming edge weights from all TFs in the network
to that gene), and “TF targeting” implies the weighted out-degree
for each TF (the sum of outgoing edges from that TF to all its
target genes).
The gene targeting difference between the schizophrenia and

healthy control networks was then used as ranking metric for
enrichment analysis of differential targeting. Significant pathways
are presented in Fig. 3. The full enrichment results can be found in
Supplementary Table 2. Positive normalised enrichment score
(NES) implies more TF targeting and negative NES implies less TF
targeting on the corresponding pathway in schizophrenia.
Ribosome and oxidative phosphorylation were most positively
targeted pathways by TFs, while platelet activation and focal
adhesion were most negatively targeted pathways.
From the differential network, the 100 top positively differential

TFs and 100 top negatively differential TFs were then used as

network-based signatures to query for potential drug repurposing
candidates for schizophrenia. From the top 100 drug repurposing
candidates highlighted by the GRAND database, we focused on
drugs having Unique Ingredient Identifier (UNII) generated by US
Food and Drug Administration [37], that have known activities in
the central nervous system, have been approved or are under-
going clinical trials (Table 1). The full results with relevant literature
review evidence can be found in Supplementary Table 3.

DISCUSSION
The current study deployed network analyses to identify different
targeting patterns of TFs in schizophrenia versus healthy controls.
We then applied the acquired TF signatures of differential network
targeting for drug repurposing. While TFs are generally expressed at
lower levels than non-TF genes, their effects may be amplified by
the cascade of regulatory mechanisms they induce [38]. The use of
differential targeting enabled the comparison of the flow of
regulation rather than the state of single genes as in differential
expression, where TFs could be less prioritised than their potential
targets with higher expression [39]. Herein, we found our most
differentially targeting TFs (Fig. 1) were not the most differentially
expressed genes highlighted by a previous study by Fromer et al.
using a similar dataset [40]. However, these TFs have been
associated with schizophrenia in other studies as shown in
Supplementary Table 5. Moreover, no significantly enriched path-
ways by differentially expressed genes were observed in Fromer
et al., while we identified some pathways enriched by the differential
targeting. Interestingly, our enrichment analysis of differential
targeting highlighted several main biological functions (Fig. 3), i.e.,
energy metabolism, immune response, cell adhesion and thyroid
hormone signalling, which are highly relevant to schizophrenia.
Impaired energy metabolism has been reported in schizophre-

nia, mainly owing to mitochondrial dysfunction [41, 42]. Mito-
chondria engage in oxidative phosphorylation, which is the main
energy-producing pathway [43]. There have been abnormalities
reported in schizophrenia in the gene expression and activity of
oxidative phosphorylation complexes, mostly of complex I,
affecting the production of high-energy phosphates [44]. Positive

Fig. 1 Transcription factors with significant differential targeting between schizophrenia and healthy control subjects. Statistical
significance was set as Benjamini-Hochberg adjusted q-values < 0.05. Green lines imply increased targeting or increased regulatory effects on
respective genes (positive z-score) in schizophrenia. Red lines represent decreased targeting or decreased regulatory effects on corresponding
genes (negative z-score) in schizophrenia.
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symptomology and active psychosis are associated with increased
complex I activity, whereas residual psychosis is associated with
decreased activity [45]. Antipsychotics have been shown to
decrease oxidative phosphorylation and related respiratory
responses in different neuronal cell models, potentially via
complex I [46, 47]. For ribosomes, increased total protein levels
and protein synthesis were reported in induced pluripotent stem
cells derived from schizophrenia patients versus healthy controls
[48]. We also found antipsychotic drugs reduced overall expres-
sion of ribosomal genes and protein synthesis in neuronal-like
cells [49]. The validity of this finding is suggested by research
showing that N-acetylcysteine which ameliorates redox dysfunc-
tion may have benefits in schizophrenia, especially negative
symptoms [50].
The immune response has been associated with schizophrenia,

given many risk genes of the disorder also play roles in
inflammation and pathogen life cycles [51, 52]. Such links support
the hypothesis of schizophrenia being a pathogenetic autoim-
mune disease: pathogen-induced knockdown may contribute to
the immune activation in the patient’s brain and lymphocytes, as
well as immune-related gene variants in schizophrenia [53, 54].
While there are contradictory results regarding the direction of
cytokine level changes that could result from different disease
stages and patient conditions, disturbances in cytokine levels and
interactions may be significant contributors to schizophrenia
pathophysiology [55]. Agents affecting inflammation such as
minocycline and celecoxib have been explored in schizophrenia
with variable results [56–58].

Cell adhesion is a major contributor to maintaining neuronal
structure and regulates synaptic plasticity, as well as complex
brain functions such as memory and learning [59]. In the
developing nervous system, disrupted neuronal cell adhesion
can cause neural circuits to malfunction, potentially leading to
several neuropsychiatric diseases including schizophrenia [60].
Integrins, cadherins and claudins are among the main groups of
cell adhesion molecules and are linked via the actin cytoskeleton.
Cadherins are responsible for homotypic adhesion between cells
(forming adherens junctions), integrins are responsible for
adhesion between the cell and its extracellular matrix (contribut-
ing to focal adhesion), and claudins form the tight junction
regulating paracellular barrier permeability [61, 62]. Proteoglycans
provide a contact link between the cell membrane and the
surrounding extracellular matrix [63]. Abnormalities of these
elements have been reported in schizophrenia: reduced focal
adhesion in patient-derived cells [64], negative correlation
between expression of tight junction mRNAs and disease duration
[65], and loss of adherens junctions in human iPSC-derived neural
progenitors carrying a risk variant [66]. Altered levels of immune
cell adhesion molecules in the plasma of schizophrenia patients
also suggested the link of disrupted cell adhesion to abnormal
immunomodulation in the disorder as discussed previously
[67, 68].
Thyroid hormones have been known to play a vital role in

neuronal and glial development, leading to their associations with
multiple neurological disorders including schizophrenia [69–71].
Decreased phosphatidylinositol phospholipid levels as well lower

Fig. 2 Top 100 differential connections of the differential gene regulatory network of schizophrenia versus healthy control. Orange
triangles are transcription factors and blue circles are their targeted genes. Node sizes are proportional to their targeting score. Green edges
imply increased targeting in schizophrenia, red edges represent decreased targeting in schizophrenia. Edge weights/thickness are
proportional to the absolute differential targeting of corresponding connections.
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expression levels of genes relevant to this signalling pathway were
reported in the post-mortem prefrontal cortex of schizophrenia
patients [72, 73]. Interestingly, phosphatidylinositol signalling can
activate focal adhesion kinase - a central signalling component of
focal adhesion, linking to the aforementioned cell adhesion
processes [74].
Our drug repurposing utilising the disease signature of

differential targeting TFs to find compounds that may correct
the abnormalities in schizophrenia. This is the first time drug
repurposing based on differential targeting networks has been
applied in schizophrenia. It should be noted that different
repurposing methodologies could produce different results, for
example transcriptomics-based versus genetically-driven. Zhang
et al. 2019 utilised a different methodology based on genetic-trait
associations and CommonMind Consortium data was used for
expression quantitative trait loci analysis [75]. In the Zhang et al.
study, repurposing for schizophrenia led to one candidate
surviving correction for multiple testing, i.e., phenformin – a
withdrawn anti-diabetic agent. While the reported impaired
glucose homoeostasis of schizophrenia could be relevant to the
potential of phenformin in the disorder, antipsychotics have also
been widely associated with metabolic abnormalities [76]. It is
challenging to determine whether the metabolic traits linked to
schizophrenia could be specific to the disorder or the off-target
effects of medications. While 5 out of our 10 top drugs were in the
list of drugs associated with schizophrenia in Supplementary Fig. 6
from Zhang et al. (khellin, kaempferol, carbachol, vidarabine,
benfotiamine) – none of these survived multiple testings
(phenformin was the only one that did in Zhang et al. study).

While the different strategies for drug repurposing could offer
alternatives suiting different data availability, every drug repur-
posing candidate should be considered carefully with as much
validation as possible. In this study, apart from comprehensive
literature review, we replicated the primary dataset’s analyses by
applying similar methods to two independent post-mortem
datasets from CommonMind Consortium and PsychENCODE
(details in Supplementary Methods and Results). Our findings
revealed a high replication rate, with 94 out of 100 repurposing
candidates replicated in at least one dataset. Notably, 49 of these
candidates were replicated in all datasets examined. This supports
the notion that TF-based network methodologies could improve
reproducibility as mentioned above.
Among the top drugs highlighted in Table 1, rimonabant and

kaempferol had preclinical evidence supporting beneficial effects
for schizophrenia. Rimonabant is an inverse agonist of cannabi-
noid receptors and has been shown to normalise psychotic-like
behaviours in animal models of schizophrenia [77, 78]. Rimona-
bant, previously approved as anti-obesity drug, was withdrawn
from European market in 2008 due to negative psychiatric side
effects (depression and anxiety) [79]. Therefore, comorbid
depression was part of exclusion criteria in a 16-week randomised
controlled trial in 2011 on neurocognitive impairments in
schizophrenia. The trial found rimonabant improved specific
learning deficit based on response to positive feedback with no
significant difference in anxiety/depression subscale of Brief
Psychiatric Rating Scale (BPRS) score [80]. Kaempferol, a poly-
phenol, has exhibited neuroprotection in rat models of hippo-
campal damage and memory deficits via the activation of SIRT1 –

Fig. 3 Grouping of significantly enriched KEGG pathways. Significantly enriched KEGG pathways (q-value < 0.05) are blue labels at the
bottom half of the chord diagram, with links grouping them to four main biological functions at the top half. KEGG pathways are ordered
clock-wisely as per significance of p-values. Green links imply increased targeting in schizophrenia, red links represent decreased targeting in
schizophrenia.
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a neuroprotective gene in schizophrenia [81–83]. Alendronic acid,
an osteoporosis medication, has been also highlighted as a
repurposing candidate for schizophrenia in another study using a
drug-protein interactome [84]. It has been demonstrated that
alendronic acid inhibits acetylcholinesterase (AChE) and markedly
reduces AChE activity in the frontal cortex of rats [85, 86].
Interestingly, a Cochrane review of clinical randomised trials
revealed that the addition of acetylcholinesterase inhibitors to
antipsychotics leads to improvements in the overall psychopathol-
ogy, negative symptomatology, and depressive symptoms in
individuals diagnosed with schizophrenia [87]. This suggests
alendronic acid could be beneficial for schizophrenia via its effect
on AChE.
The top drug repurposing candidates with known mechanisms

of action tended to affect the main biological processes enriched
by the differential TFs. Khellin, kaempferol and ellagic acid likely
affect oxidative phosphorylation. Khellin, a phytochemical
extracted from Ammi visnaga, could rescue mitochondrial
dysfunction in common forms of familial Parkinson’s disease
(Table 1 of screening study by Mortiboys et al.) [88]. Kaempferol
can also reduce oxidative stress [81, 89]. Ellagic acid, a phenolic
acid, was found to alleviate clozapine‑induced oxidative stress and
mitochondrial dysfunction in cardiomyocytes [90].

With the relevance of the immune response to schizophrenia,
targeting pathogens may ameliorate the disorder. Vidarabine, an
antiviral mainly used against herpes simplex virus, has been
reported to improve a patient’s schizo-affective disorder possibly
induced by the viral infection as per a case study reported by
Schlitt et al. [91]. Associations of herpes simplex virus to
schizophrenia have been found not only in the immediate viral
carriers but also in their offspring [92–94].
Benfotiamine and carbachol may be beneficial via phosphatidy-

linositol signalling. Benfotiamine, a derivative of thiamine, improved
cognitive function and suppressed glycogen synthase kinase-3
activity in an animal model of Alzheimer’s disease [95]. Glycogen
synthase kinase-3 is a target of Akt, which is a downstream effector
of phosphatidylinositol 3-kinase activation [96]. Carbachol, a
cholinergic activator, targets M3 muscarinic receptors which
enhances phospholipase Cβ 3 in phosphatidylinositol signalling
[97]. Cholinergic activation of M3 and M1 receptors induced by
carbachol was also found to facilitate synaptic plasticity in a model
of GABA dysfunction in schizophrenia [98]. Alizapride (a dopamine
2 receptor antagonist) and glutamine (the main precursor of
glutamate) affect the main neurotransmission targets of current
antipsychotic drugs [99–101]. While the dopaminergic and
glutamatergic pathways were not among the most significantly

Table 1. Shortlisted drug repurposing candidates for the treatment of schizophrenia.

Drug Cosine Q-value Pharmacological targets Therapeutic indication

Alendronic-acid −0.3871 <0.001 Farnesyl diphosphate synthase -
InhibitorGeranylgeranyl pyrophosphate
synthetase - Inhibitor Acetylcholinesterase -
Inhibitor

Glucocorticoid-induced osteoporosis - Approved
Osteoporosis - ApprovedPaget’s disease - Approved

Khellin −0.3446 <0.001 Cytochrome P450 1A1 - Inhibitor
Aryl hydrocarbon receptor - Activator
Ca2+ influx - Inhibitor

Angina pectoris - ApprovedAsthma - Approved
Vitiligo - Phase II

Rimonabant −0.3203 <0.001 Cannabinoid CB1 receptor - Inverse Agonist
Cannabinoid CB2 receptor - Inverse Agonist

Obesity - ApprovedArteriosclerosis - Phase IIIFatty
liver disease - Phase III

Kaempferol −0.3165 <0.001 Ribosomal protein S6 kinase alpha 5 -
Inhibitor
DNA topoisomerase II - Inhibitor
Monoamine oxidase A - Inhibitor
Ribosomal protein S6 kinase alpha 3 -
Inhibitor

Osteoarthritis - Phase II
Cancer - Preclinical Depression - Preclinical

Alizapride −0.3008 <0.001 Dopamine D2 receptor - Antagonist Nausea and vomiting - Approved

Glutamine −0.2953 <0.001 Protein-glutamine gamma-
glutamyltransferase - Substrate
CTP synthase 1 - Antagonist
Apoptotic process - Inhibitor
Glutaminase kidney isoform, mitochondrial
- Substrate

Short bowel syndrome - Approved

Carbachol −0.2939 <0.001 Muscarinic acetylcholine receptor - Agonist
Acetylcholinesterase - Substrate

Elevated intraocular pressure - Approved

Vidarabine −0.2821 0.0271 Adenosine receptor - Agonist
Thymidine kinase - Substrate
Human herpesvirus 1 DNA polymerase -
Inhibitor

Paroxysmal supraventricular tachycardia -
ApprovedKeratoconjunctivitis - Approved Epithelial
keratitis - ApprovedHerpes simplex infection - Phase
III

Ellagic-acid −0.2738 <0.001 Tyrosine-protein kinase TIE-2 - Inhibitor
Aldose reductase - Inhibitor
Casein kinase II alpha - Inhibitor

Follicular lymphoma - Phase II HPV infection - Pilot
randomised controlled trial

Benfotiamine −0.2321 0.0317 Glycogen synthase kinase-3 - Inhibitor Type 1 diabetes mellitus - Phase IIAlzheimer’s disease
- Phase II

Cosine: Similarity of drug versus disease, more negative is better (more dissimilar). Q-value: Benjamini-Hochberg corrected p-value. Phase refers to the current
clinical trial stage.
As a validation for drug repurposing results, we applied the similar analyses using two independent post-mortem datasets as replications of the main dataset:
HBCC Brain Bank from CommonMind Consortium, BrainGVEX study from PsychENCODE [26, 109]. A Supplementary Methods and Results. We found 49 out of
100 repurposing candidates with statistical significance (q-value < 0.05) from the current dataset (MSSM – Pitt – Penn Brain Bank from CommonMind
Consortium) were replicated in both datasets. Only 6 drugs were not replicated in any analysed datasets. All shortlisted drugs in Table 1 were replicated in at
least one dataset, with 6 candidates (alendronic-acid, rimonabant, alizapride, glutamine, carbachol, ellagic-acid) being replicated in both datasets.
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enriched pathways by differential targeting of TFs, they still had
significant nominal p-values (Supplementary Table 2). Circulating
glutamate and glutamine levels was suggested to be under dual
regulatory pattern in schizophrenia. Madeira et al. reported
increased glutamine/glutamate ratio versus healthy individuals at
the recent onset of schizophrenia followed by a decrease of the
ratio in chronic patients [102]. A meta-analysis of 1H magnetic
resonance spectroscopy studies found higher glutamine in frontal
brain region of schizophrenia patients, yet both glutamine and
glutamate levels reduced at a faster rate with age comparing
with healthy controls [103]. It was unclear if such glutamatergic
changes were due to the progression of the disease or
antipsychotic usage, making it hard to justify the potential of
glutamine for treatment.
There are some limitations of this study. The methodology has

not been subjected to benchmarking, due to the lack of suitable
ground-truth drug repurposing datasets for sensitivity and
specificity analyses. Gene regulatory networks may be biased
towards well-studied TFs and proteins. The results depend on
limited treatment response data, which could have been yielded
from non-neuronal cell types. In addition, the transcriptomics data
was not derived from drug-naïve patients, potentially diminishing
the importance of the main targets of current medications (e.g.,
dopamine antagonists) in the drug repurposing results. Never-
theless, the identified repurposing candidates may work on poorly
addressed pathological features of schizophrenia, as highlighted
by the enriched pathways potentially targeted by them. Only post-
mortem samples from DLPFC were considered, hence the results
may not be generalisable to other brain regions. The DLPFC focus
is due to the various evidence showing abnormalities in
schizophrenia from genetics to functional imaging [104–107]. It
would be important to examine other brain regions in the future.
Furthermore, a hurdle in post-mortem brain analyses lies in the
fact that even with the inclusion of explicit, observed covariates,
there may still be an incomplete accounting for the effects of RNA
degradation or other latent variables [108]. In view of this, the
results of this study should be interpreted carefully, as more
research is necessary before clinical implementation.
In conclusion, our study deployed comprehensive network-

based approaches taking advantage of high-throughput data and
prior knowledge to elucidate gene expression regulation driven by
TFs in schizophrenia. Energy metabolism, immune response, cell
adhesion, and thyroid hormone signalling are among the
significant pathways that have been unveiled to be most
regulated by the TFs in the disorder. Using the TF signatures
from regulatory perturbations in schizophrenia, we ultimately
searched for potential drugs that can be repurposed to treat
schizophrenia. The best repurposing candidates with known
mechanisms were then described in the context of TF-targeted
pathways. Those candidates, especially ones with supported
preclinical evidence such as kaempferol, should be studied further
on their potential mechanisms of action and efficacy in
ameliorating schizophrenia.
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