
ARTICLE OPEN

Data-driven connectivity profiles relate to smoking cessation
outcomes
Laura Murray1✉, Blaise B. Frederick 2,3 and Amy C. Janes1

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

At a group level, nicotine dependence is linked to differences in resting-state functional connectivity (rs-FC) within and between
three large-scale brain networks: the salience network (SN), default mode network (DMN), and frontoparietal network (FPN). Yet,
individuals may display distinct patterns of rs-FC that impact treatment outcomes. This study used a data-driven approach, Group
Iterative Multiple Model Estimation (GIMME), to characterize shared and person-specific rs-FC features linked with clinically-relevant
treatment outcomes. 49 nicotine-dependent adults completed a resting-state fMRI scan prior to a two-week smoking cessation
attempt. We used GIMME to identify group, subgroup, and individual-level networks of SN, DMN, and FPN connectivity. Regression
models assessed whether within- and between-network connectivity of individual rs-FC models was associated with baseline cue-
induced craving, and craving and use of regular cigarettes (i.e., “slips”) during cessation. As a group, participants displayed shared
patterns of connectivity within all three networks, and connectivity between the SN-FPN and DMN-SN. However, there was
substantial heterogeneity across individuals. Individuals with greater within-network SN connectivity experienced more slips during
treatment, while individuals with greater DMN-FPN connectivity experienced fewer slips. Individuals with more anticorrelated DMN-
SN connectivity reported lower craving during treatment, while SN-FPN connectivity was linked to higher craving. In conclusion, in
nicotine-dependent adults, GIMME identified substantial heterogeneity within and between the large-scale brain networks.
Individuals with greater SN connectivity may be at increased risk for relapse during treatment, while a greater positive DMN-FPN
and negative DMN-SN connectivity may be protective for individuals during smoking cessation treatment.
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INTRODUCTION
There is substantial heterogeneity within psychopathology, such
that no two individuals with the same diagnosis are identical.
Indeed, the current diagnostic criteria for substance use disorders
(SUD), including tobacco use disorder (TUD), specify that
individuals must have a minimum of two out of eleven symptoms,
meaning up to five individuals with TUD can share no symptoms in
common beyond frequent nicotine use [1]. Yet, there may be
some SUD symptoms and related biological processes (e.g.,
craving) that are common across many individuals with SUD [2],
indicating that individuals with SUD may have both common and
individual-specific processes that contribute to their SUD. Parsing
psychiatric heterogeneity is essential for improving etiological
models of TUD and improving treatment outcomes, as different
treatment approaches may be needed for individuals who have
distinct symptom profiles.
Heterogeneity also poses a problem for neuroscientists who

seek to identify the neurobiological correlates of psychiatric
disorders to improve treatment and prevention. Different clinical
profiles may be linked to unique patterns of brain function and
different responses to treatment. Yet, unless this heterogeneity is
explicitly modeled, it remains unexplained variance that can
hinder analyses. Indeed, standard neuroimaging analyses use

nomothetic approaches to aggregate across subjects to identify
patterns in brain function on average. However, these approaches
may fail to describe any individual in the sample and may miss
important biological mechanisms that are clinically important for
one subgroup but not another [3]. However, idiographic
approaches that exclusively examine intra-individual variation
over time may not generalize to the population of interest. For
clinical science to improve psychiatric outcomes for individual
patients and at scale, it is critical to integrate nomothetic and
idiographic approaches. Approaches that simultaneously model
the general (i.e., present across the group), shared (i.e., present
within subgroups), and person-specific patterns in imaging data
can capture psychiatric heterogeneity more accurately while
allowing for generalizable conclusions about psychiatric disorders
such as TUD.
Researchers have become increasingly interested in under-

standing how disturbances in large-scale brain networks con-
tribute to TUD. The triple-network model [4] proposes that
dysfunction in the engagement/disengagement of the default
mode network (DMN), salience network (SN), and frontoparietal
network (FPN) contribute to psychopathology, including TUD [5].
The DMN includes the medial prefrontal cortex and posterior
cingulate cortex and is involved in self-referential mentalization

Received: 28 August 2023 Revised: 4 January 2024 Accepted: 8 January 2024
Published online: 27 January 2024

1Cognitive and Pharmacological Neuroimaging Unit, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA. 2McLean
Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA. 3Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
✉email: laura.murray@nih.gov

www.nature.com/npp

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-024-01802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-024-01802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-024-01802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-024-01802-9&domain=pdf
http://orcid.org/0000-0001-5832-5279
http://orcid.org/0000-0001-5832-5279
http://orcid.org/0000-0001-5832-5279
http://orcid.org/0000-0001-5832-5279
http://orcid.org/0000-0001-5832-5279
https://doi.org/10.1038/s41386-024-01802-9
mailto:laura.murray@nih.gov
www.nature.com/npp


and autobiographical memory. The SN includes the anterior insula,
dorsal anterior cingulate cortex, and nucleus accumbens and is
involved in integrating internal and external information to guide
behavior. The FPN includes the dorsolateral prefrontal cortex and
posterior parietal cortex including the intraparietal sulcus and
plays an important role in cognitive control and attention.
Dysfunction in one core network can impact the other networks,
highlighting the importance of both within- and between-network
connectivity in psychopathology. Although differences in large-
scale brain resting-state functional connectivity (rs-FC) have been
identified across a variety of psychiatric disorders, including TUD
[5, 6], it remains unclear to what extent person-specific
connectivity patterns are related to important clinical outcomes
(e.g., craving, difficulty maintaining abstinence), and whether
neurobiologically-defined subgroups are linked to differences in
these outcomes.
Group Iterative Multiple Model Estimation (GIMME) integrates

nomothetic and idiographic approaches to parse heterogeneity
within neuroimaging data. GIMME is a data-driven approach that
uses unified structural equation models to create sparse
connectivity maps to explain variation in resting-state data
[7, 8]. The goals of GIMME are two-fold: (1) identify relationships
between brain regions that are generalizable to the population of
interest (i.e., group-level) and (2) identify reliable person-specific
patterns of relations between brain regions that describe
individuals. GIMME can also identify subgroups that share similar
connectivity patterns, which is particularly helpful to parse
heterogeneity within a diagnostic group, such as individuals
with TUD.
Several studies have used GIMME to characterize person-

specific and subgroup-level rs-FC features and link them to clinical
variables. One study found that a GIMME-derived subgroup with
high network heterogeneity and low network density (i.e., less
connectivity between network nodes) had higher rates of child-
hood violence exposure, and that more severe childhood violence
exposure was linked to lower within-network SN and between-
network DMN-SN density [9]. Another study did not characterize
subgroups, but found that individuals with a greater proportion of
connections between the DMN and FPN (i.e., greater between-
network density) had higher levels of psychopathic traits [10]. In a
study of adults with depression, two GIMME-derived subgroups
emerged, the largest subgroup displayed a pattern of DMN
connectivity previously shown to be linked to depression. The
other subgroup displayed an atypical connectivity pattern
including no significant within-network DMN paths and a greater
number of paths including the anterior cingulate. This smaller
subgroup had more females and had higher rates of comorbid
anxiety and recurrent depression [11]. This study highlights the
importance of parsing heterogeneity within a diagnostic group, as
the GIMME method identified a subgroup of individuals with a
pattern of connectivity different from what traditional neuroima-
ging studies had found and had important demographic and
clinical differences. Together, these studies demonstrate the utility
of using data-driven approaches to characterize subtypes or
person-specific rs-FC network characteristics and link them to
specific psychiatric phenomena. However, a major gap in this
emerging literature is that few studies have used this approach in
SUD [3], and existing studies have not linked data-driven rs-FC
subgroups or person-specific network features to clinically mean-
ingful treatment outcomes, such as cue-induced craving or slips
during treatment [12].

Analytical plan
The current study aimed to test whether GIMME-derived
subgroups and person-specific rs-FC features (within- and
between-network density) were associated with three clinically-
relevant outcomes in a sample of adults with TUD, (1) pre-
cessation subjective cue-induced craving, and (2) daily diary-

reported craving for regular cigarettes and (3) use of regular
cigarettes (i.e., “slips”) during a two-week smoking cessation trial.
We hypothesized that GIMME-derived group-level connectivity
maps will show high connectivity within established resting-state
networks [4], and connectivity between the DMN and SN, shown
previously in nicotine-dependent individuals [13]. We hypothe-
sized that subgroups of similar rs-FC, if identified, would be linked
to differences in the clinical outcome measures. Although prior
research has linked greater connectivity within the SN to nicotine
dependence [13] and craving [14], and reduced negative
connectivity between the SN and DMN with nicotine withdrawal
versus satiety [15], these studies have not examined whether
individual variation in connectivity is linked to clinical outcomes
during treatment. Thus, in the current study, we used a data-
driven approach to extend prior work to a clinical context and
hypothesized that person-specific network features would be
linked to clinical outcomes, such that greater positive connectivity
in the SN would be linked to worse treatment outcomes (i.e.,
higher craving, more slips), while more negative connections
between the SN and DMN would be linked to better treatment
outcomes (i.e., less craving, fewer slips).

MATERIALS AND METHODS
Participants
Forty-nine participants with nicotine dependence (28 male, 21 female)
were recruited as a part of a larger clinical trial of smoking cessation aids;
nicotine replacement therapy and nicotine-free electronic cigarettes. This
study uses data from the pre-cessation baseline MRI scan and clinical
outcome measures during the two-week nicotine replacement therapy
and e-cigarette smoking cessation intervention. Participants between the
ages of 18 and 45 (Table 1) were recruited based on smoking nicotine
cigarettes daily for at least the last six months and being willing to use
nicotine replacement therapy and an e-cigarette for 2 weeks. Exclusion
criteria included SUD in the last year (except cannabis, tobacco, or alcohol),
current moderate or severe cannabis or alcohol use disorder, a major

Table 1. Participant characteristics.

Measure N (%)

Sex

Male 28 (57.14)

Female 21 (42.86)

Race

White/European American 34 (69.38)

Asian 6 (12.24)

Black/African American 5 (10.20)

More than one race 4 (8.16)

Ethnicity

Non-Hispanic 45 (91.83)

Hispanic 4 (8.16)

Measure Mean (SD)

Age in years 28.35 (6.36)

Fagerström test for nicotine dependence score 4.49 (1.86)

Average number of cigarettes per day 11.62 (5.34)

Age started smoking, years 17.73 (3.68)

Pack-years 6.65 (5.98)

Desire to smoke pre-MRI (1–5) 2.14 (1.06)

Desire to smoke post-MRI (1–5) 2.71 (1.16)

Desire to smoke difference 0.57 (1.32)

Pack-years refer to a numerical value of lifetime tobacco exposure,
considering both intensity (packs) and duration (years), where a pack-
year is twenty cigarettes used every day for one year.
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depressive episode in last three months, lifetime DSM-5 diagnosis of
organic mental disorder, psychotic disorders, bipolar 1, positive urine drug
screen (except cannabis) or alcohol breath screen at the MRI, history of
head trauma with loss of consciousness >3min, MRI contraindications,
claustrophobia, and propylene glycol sensitivity/allergy. Participants
provided written informed consent in accordance with the Mass General
Brigham Institutional Review Board.

Procedure
The larger study consisted of a psychiatric interview to determine eligibility
and an MRI scan prior to cessation, a check-in one week after the MRI scan,
post-treatment MRI scan one week after the check-in visit, and follow-up
visits 4 and 8 weeks after the post-treatment MRI. To normalize all fMRI
procedures relative to the last cigarette smoked, all participants smoked
one of their own cigarettes in the laboratory approximately 60min before
the MRI scan. The MRI scan included a 6-minute resting-state scan followed
by a 30-minute smoking-cue reactivity task, described in detail in [16].
To assess cue-induced craving, 15 minutes before entering the scanner

and immediately upon exiting the scanner, participants completed the
positive and negative affect schedule (PANAS) [17], which had a single
item, “desire to smoke” added to the scale. Participants rated their desire to
smoke from 1 (“Very Slightly”) to 5 (“Extremely”). Cue-induced craving was
measured by computing the total score post-scan minus pre-scan.
Following the MRI scan, participants were provided with nicotine

patches (dose-dependent on current cigarette use) alone (n= 20) or
nicotine patches and a nicotine-free e-cigarette (n= 29). Participants were
instructed to refrain from smoking regular cigarettes during the two-week
intervention. Participants completed daily diary assessments that assessed
the number of regular cigarettes used and cigarette craving. Craving was
rated from 0 (“none at all”) to 10 (“extremely high”) and was averaged to
compute the mean daily cigarette craving during the treatment period. To
assess the number of “slips” during the treatment, daily diary reports of the
number of regular cigarettes used were summed and cross-referenced
with reports obtained during the post-treatment visit to ensure accuracy.

fMRI data collection and preprocessing
The MRI scan was conducted on a Siemens Prisma 3 T scanner with a 64-
channel head coil. Resting-state fMRI was acquired using the following
parameters: TR= 720ms, TE= 30ms, slices= 66, phase encode direction
posterior to anterior, flip angle= 66°, voxel size= 2.5 × 2.5 × 2.5 mm,
GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) fac-
tor= 2, multiband acceleration factor= 6. Multiecho multiplanar rapidly
acquired gradient echo structural images were acquired with the following
parameters: TR= 2500ms, TE= 3.3, 6.98, 8.79, and 10.65 ms, flip angle=
7°, resolution= 1.33 × 1 × 1mm. Images were preprocessed using FSL [18].
The data processing pipeline included brain extraction using BET, MCFLIRT
motion correction, coregistration and normalization to MNI space, slice-
time correction, spatial smoothing at 6 mm FWHM, and high-pass filtering
at 0.01 Hz. Data were denoised using independent component analysis
using FIX [19].
Eleven regions of interest were selected to characterize key nodes of the

DMN, SN, and FPN. DMN ROIs (n= 2) included the medial prefrontal cortex
and posterior cingulate, SN ROIs (n= 5) included the left and right anterior
insula, dorsal anterior cingulate, and left and right nucleus accumbens, FPN
ROIs (n= 4) included the left and right dorsolateral prefrontal cortex and
left and right intraparietal sulcus. To characterize person-specific rs-FC,
participant-specific ROIs were created that corresponded with established
resting-state networks [20] but were scaled to individual anatomy. This was
achieved by projecting a 400-area gradient-weighted Markov Random
Field parcellation [20] onto individual structural scans that were processed
using FreeSurfer 5.3.0., which were then coded based on spatial overlap
with the Yeo et al. 17-network parcellation [21]. Parcels corresponding to
the ROIs were selected and combined to make eleven subject-specific
anatomical ROIs for each subject (See Supplemental Materials). Mean
timeseries at each volume were extracted for each ROI and used as input
for GIMME models.

GIMME
Subgrouping GIMME (S-GIMME, version 0.7–8) was used in R to estimate
individual, subgroup, and group-level maps of rs-FC. The GIMME process
incorporates both contemporaneous and time-lagged (t-1) information
between ROIs and autoregressive effects, allowing for the estimation of the
presence of a significant connection and its directionality. The steps for

S-GIMME are described previously [7, 22]. Briefly, S-GIMME begins with an
empty null network and fits person-specific unified structural equation
models by iteratively adding paths that contribute to better model fit, first
identifying connections shared amongst the group, then subgroup, and
finally individual-specific connections. GIMME is a sparse network mapping
approach, meaning only paths that account for a significant amount of
variance are added until excellent model fit is achieved on two out of four
standard fit indices: comparative fit index (CFI ≥ 0.95), non-normed fit
index (NNFI ≥ 0.95), root-mean-square error of approximation (RMSEA ≤
0.05), and the standardized root-mean-square residual (SRMR ≤ 0.05).
Additionally, paths that become non-significant with the addition of new
connections are pruned.
S-GIMME begins with estimating group-level connections, which

continues until there are no connections that would significantly improve
a majority (75%) of individuals’ models. Following the group-level search,
subgroups of individuals with similar connectivity patterns are estimated
using the Walktrap community detection algorithm to compute a sparse
count similarity matrix that considers the presence of the connection and
its sign (positive or negative beta value). Subgroup-level connections are
constructed similarly to the group-level estimation, adding paths that
improve model fit for most individuals in a subgroup. Finally, GIMME
estimates individual-level models by adding any additional paths.

Cluster validation
Evaluating cluster solutions is an emerging area of research, with recent
reviews highlighting the importance of evaluating cluster solutions to
ensure that a given solution truly contains subjects that are more related to
each other than they are to subjects outside the cluster [12]. The stability
and validity of the GIMME subgrouping solution were evaluated using the
R package perturbR [23]. PerturbR incrementally introduces noise to
network edges while maintaining the original graph’s overall properties
and compares perturbed cluster solutions with the original solution. A
cluster solution is considered stable if the graph has 20% or more of its
edges perturbed before the cluster solution for the rewired graph is as
different as when 20% of the nodes are randomly placed into different
clusters [23].

Linking rsFC with clinical outcomes
To test whether individual-level GIMME-derived within- or between-
network density (i.e., the proportion of connections within or between
network nodes) was associated with clinical outcomes, separate linear
regressions were conducted with the positive and negative within-network
(DMN-DMN, SN-SN, FPN-FPN) and between-network (DMN-SN, SN-FPN,
FPN-DMN) density as predictors of each clinical outcome. To account for
variation in the total number of connections, proportions were used. Slips
during treatment were modeled using negative binomial regression to
account for over-dispersed count data. Craving during treatment and cue-
induced craving were log-transformed to reduce heteroskedasticity. All
analyses included age, sex, baseline nicotine dependence, and treatment
type as covariates. Analyses were Bonferroni corrected across the within
and between-network models of the three clinical outcomes of interest
(i.e., p < 0.05/6= 0.008).

RESULTS
Model fit
All person-specific resting state networks fit the data well,
according to average indexes: RMSEA= 0.0678, SRMR= 0.0395,
CFI= 0.9615, and NNFI= 0.9375.

Group-level connectivity
Group-level connectivity is summarized in Fig. 1A. Contempora-
neous connections were detected within the SN (n= 2), FPN
(n= 4), DMN (n= 1), and between the SN and FPN (n= 1) and SN
and DMN (n= 2). Group-level lagged connections were detected
within the FPN (n= 2) and DMN (n= 1) in addition to auto-
regressive effects for each ROI.

Subgroup connectivity and validation
Two subgroups of participants were identified (Fig. 1B). The first
subgroup (n= 39) had 6 subgroup-level connections, and the
second subgroup (n= 10) had 18 subgroup-level connections.
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However, perturbR cluster validation indicated that the subgroup-
ing solution was not stable or valid (see Supplement). Thus, we did
not proceed with analyses testing whether subgroups differed on
clinical outcome measures.

Person-specific network features and clinical outcomes
We tested whether person-specific measures of within- and
between-network density were associated with the three clinical
outcome variables: slips and daily-diary ratings of cigarette
cravings during treatment and cue-induced craving at baseline.
Network metrics were only interpreted in regression models if
significant connections were found for at least 25% of the sample
(Table 2).
Slips during treatment was positively associated with the

density of positive SN-SN connections (χ2= 21.841, p < 0.001;
b= 69.796, s.e.= 23.100, p < 0.003). The density of positive DMN-
FPN connections was associated with fewer slips during treatment
(χ2= 26.195, p < 0.001; b=−42.318, s.e.= 14.565, p < 0.004)
(Fig. 2). These effects were unchanged when adding baseline
cigarette use as a covariate in the model.
Craving for regular cigarettes during treatment was associated

with between-network connectivity (R2= 0.447, F(10,37)= 2.990,
p < 0.007). The density of negative DMN-SN connections was
related to decreased craving during treatment (β=−0.480,
p < 0.002) (Fig. 3) and the density of positive SN-FPN connections
(β= 0.528, p < 0.005) was related to increased craving during
treatment. The density of negative SN-FPN connections was
associated with increased craving during treatment (β= 0.453,
p < 0.010) and more cue-induced craving (β= 0.359, p= 0.043),
but these effects did not survive multiple comparisons correction.

DISCUSSION
The study used a novel data-driven approach to characterize
group-, subgroup-, and person-specific rs-FC features in adults
with nicotine dependence and linked these features to clinical
measures: cue-induced craving and craving and slips during
treatment. As hypothesized, we found significant within-network
connectivity in the SN, DMN, and FPN for all subjects and
significant between-network connections in the SN-DMN and
FPN-SN. However, the novel contribution of the current study is
linking person-specific rs-FC and clinical outcomes.
Individuals with a greater density of positive SN-SN connections

(i.e., more connectivity between SN regions) experienced more
slips (i.e., smoked more cigarettes) during treatment. These
findings were driven by dorsal anterior cingulate-insula

Table 2. Descriptive statistics of network connectivity.

Subjects with non-zero proportions (N) Mean (SD) Range

Within-Network

DMN-DMN pos 49 0.119 (0.019) 0.071–0.156

DMN-DMN neg 6 0.003 (0.009) 0.000–0.033

SN-SN pos 49 0.272 (0.033) 0.214–0.300

SN-SN neg 3 0.002 (0.007) 0.000–0.030

FPN-FPN pos 49 0.336 (0.039) 0.245–0.387

FPN-FPN neg 49 0.307 (0.034) 0.204–0.354

Between-Network

DMN-FPN pos 49 0.047 (0.021) 0.029–0.102

DMN-FPN neg 48 0.043 (0.020) 0.000–0.102

DMN-SN pos 49 0.076 (0.019) 0.031–0.119

DMN-SN neg 13 0.009 (0.017) 0.000–0.059

SN-FPN pos 49 0.079 (0.026) 0.033–0.142

SN-FPN neg 16 0.011 (0.017) 0.000–0.061

To account for differences in the total number of connections, within and between-network connectivity was calculated using proportions. Not all participants
had significant paths between network nodes, so we provide a count of participants with any significant paths within or between-network paths, in addition
to the mean, standard deviation, and range of the network density metrics. Network metrics were only interpreted in regression models if there were
significant connections for at least 25% of the sample.

Fig. 1 GIMME-derived resting state connectivity maps.
A Summary connectivity map displaying significant group-level
connections in black, subgroup-level connections in green, and
individual-level connections in gray. Solid lines indicate contem-
poraneous connections, and dashed lines indicate time-lagged
connections (t-1). B Subgroup-level connectivity maps for the two
GIMME-derived subgroups.
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connectivity since few participants had significant connectivity
between the nucleus accumbens and other SN ROIs. Consistent
with this finding, several studies have shown that greater
connectivity within the SN, particularly the anterior insula and
dorsal anterior cingulate, is linked to nicotine dependence [13],
more frequent cigarette use [24], greater smoking cue-reactivity
[14, 25], and predicts relapse [26–28]. Our findings, when
combined with existing literature, suggest that individuals with
greater SN connectivity represent a particularly vulnerable group,
as they may experience greater sensitivity to smoking cues in the
environment and may be at increased risk for relapse during quit
attempts.
Conversely, individuals with a greater density of positive DMN-

FPN connections experienced fewer slips during treatment.
Relatively little prior work has reported significant connectivity
between these networks in samples with SUD. However, regions of
the FPN coactivate with the DMN during tasks requiring regulation
of internally oriented processes [29] and have been suggested to
play a role in regulating introspective processes [30]. Thus, greater
DMN-FPN connectivity may help individuals better guide behavior

in the context of heightened internally oriented processing (e.g.,
craving, withdrawal) during quit attempts. Additional research is
needed to understand whether there is a robust link between DMN-
FPN connectivity and nicotine dependence.
Consistent with hypotheses, individuals with a greater density

of negative SN-DMN connections (i.e., more anticorrelated
connectivity) reported lower craving for regular cigarettes during
treatment. Prior work has shown that reduced anticorrelated
activity between the SN-DMN after a 24-hour abstinence period
was associated with higher levels of craving [15]. Our findings are
consistent with and extend prior research to link SN-DMN
connectivity to craving during a two-week smoking cessation
treatment. Additionally, participants in our study received
pharmacologic intervention (i.e., NRT scaled to baseline nicotine
use), whereas participants in Lerman et al (2014) were in an acute
nicotine withdrawal state. Thus, the consistency of our findings
may suggest that links between SN-DMN connectivity and craving
are related to non-pharmacological aspects of abstinence.
A growing body of research suggests that enhanced con-

nectivity between the SN and DMN is associated with more focus

Fig. 3 Associations between between-network connectivity and craving during treatment. Negative DMN-SN density was associated with
lower craving during cessation, while positive SN-FPN density was associated with higher craving during cessation.

Fig. 2 Associations between within- and between-network connectivity and slips during treatment. Positive SN-SN density was associated
with more slips, while positive DMN-FPN density was associated with fewer slips.
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on internal affective states. For example, baseline craving was
associated with enhanced connectivity ventral AI and DMN [14],
and regions of the SN may enhance the self-referential processing
of smoking cues by modulating the DMN [31]. Moreover, the
connectivity between regions of the SN and DMN is enhanced
during abstinence [32], and conversely, nicotine administration
acutely reduces the time spent in the frontoinsular DMN [33].
Together, these findings highlight that SN-DMN interactions are
modulated by internally oriented affective states such as craving.
While other findings demonstrate a pharmacological effect of
nicotine (or nicotine abstinence) impacts SN-DMN connectivity
[15, 32, 33], a novel contribution of the current work is that
variance in SN-DMN connectivity can be detected even following
recent smoking and is predictive of treatment outcomes.
Combined with prior findings suggesting that enhanced DMN-
SN connectivity may be linked with greater craving, our findings
suggest that greater anticorrelated connectivity between the SN
and DMN may be protective for individuals attempting to reduce
smoking.
An unexpected finding was that the density of positive SN-FPN

connections was related to more craving during treatment.
Regions of the SN, especially the dorsal AI, show reactivity to
external smoking cues [14] and functional coupling with goal-
directed networks, including the FPN [34]. The SN has also been
proposed to be a dynamic switch between the DMN and FPN,
modulating internally and externally-oriented attention [34, 35].
Individuals with more positive SN-FPN connectivity may be more
likely to engage with external cues in the environment, leading to
increased craving during quit attempts. More negative SN-FPN
connectivity was also related to increased craving, but this effect
did not survive multiple comparisons correction. Recently, Drossel
et al. found that distinct subtypes of individuals with SUDs were
linked to different patterns of rs-FC. In “reward-type” individuals
(i.e., higher approach-related behavior), substance use was related
to decreased connectivity in the FPN and SN, while in “cognitive-
type” (i.e., lower executive function), substance use was related to
increased connectivity in the FPN and SN [36]. This suggests that
different individuals have distinct neurobiological pathways
contributing to their craving. Further research will advance
intervention approaches for important clinical targets (i.e., craving)
but are tailored to individual differences in neurobiological
pathways.

Strengths and limitations
The current study’s strengths include using a novel technique that
merges nomothetic and idiographic modeling approaches to link
group- subgroup- and person-specific rs-FC features with clinical
treatment outcomes in individuals with TUD. It is one of the first to
use this approach in a SUD sample while also assessing the
robustness and validity of the data-driven subgroups. However, it
also has several limitations. First, the six-minute resting-state scan
was relatively brief, however, with a TR= 720, this seemingly short
sequence allowed us to contribute 500 data points to the GIMME
analysis, well above the time points tested in a prior validation
study [37], which demonstrate robust S-GIMME results with time
points as low as 60. Indeed, signal-to-noise ratios could be
impacted by factors such as the multi-band acceleration factor
[38] and smaller voxel size [39] that our current study used,
although this is somewhat balanced by the fact that the TR is
sufficiently short that respiration is unaliased in the data, and can
be fully removed. However, further replication and validation of
our findings is desirable in datasets with longer scan durations.
Second, although we identified two subgroups, one with relatively
more between-network connections than the other, these
subgroups were not robust or stable based on established
subgroup validation approaches [23]. A recent review [12]
highlights that most existing studies that identify brain-based
subtypes of psychopathology do not test for the validity of the

subtyping solution and do not assess the clinical utility of the
approach by linking them with clinical treatment outcomes.
Although the sample size of the current study (n= 49) is larger
than the minimum recommended sample for S-GIMME (n≥25), an
important next step in this work would be external validation to
determine whether a similar cluster solution of rs-FC is present in
larger clinical trials of adults with TUD. Additionally, a larger
sample size may have improved the power to detect associations
between GIMME-derived network features and clinical outcomes.
This point is especially relevant for the finding linking antic-
orrelated DMN-SN connectivity with craving, as only thirteen
subjects had significant anticorrelated SN-DMN activity. Never-
theless, we are encouraged by our results being consistent with
prior studies [15] and theory [40]. Finally, the smoking cessation
trial was brief, and it is unclear whether associations between
baseline rs-FC would predict longer-term treatment outcomes.

CONCLUSION
This study used a novel data-driven approach to model within and
between-network rs-FC in adults with nicotine dependence and
linked these features to clinical outcomes during a two-week NRT-
assisted quit attempt. The GIMME approach allowed us to parse
neurobiological heterogeneity by identifying patterns of rs-FC that
were shared across the sample while also modeling significant
connections that are unique to only a subset of participants or an
individual participant and linking these rs-FC patterns to clinical
outcomes. We found that individuals with more SN connectivity
had more slips during treatment while individuals with more FPN-
DMN connectivity had fewer slips. Greater density of antic-
orrelated DMN-SN connections was also linked to lower cigarette
craving during treatment, while positive SN-FPN connectivity was
linked to greater craving. These results extend prior research on
the importance of SN, DMN, and FPN network connectivity in
nicotine dependence by linking individual variation in intra and
internetwork connectivity to treatment outcomes and suggest
that high SN connectivity may be a risk factor for smoking relapse,
while greater positive DMN-FPN and anticorrelated SN-DMN
connectivity are protective factors during nicotine-cessation
treatment.
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