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Acetylcholine muscarinic M1 receptors in the rodent prefrontal
cortex modulate cognitive abilities to establish social hierarchy
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In most social species, the attainment of social dominance is strongly affected by personality traits. Dominant individuals show
better cognitive abilities, however, whether an individual’s cognition can determine its social status has remained inconclusive. We
found that mice show better cognitive abilities tend to possess a higher social rank after cohousing. The dynamic release of
acetylcholine (ACh) in the prelimbic cortex (PL) is correlated with mouse dominance behavior. ACh enhanced the excitability of the
PL neurons via acetylcholine muscarinic M1 receptors (M1). Inhibition of M1 impaired mice cognitive performance and induced
losing in social competition. Mice with M1 deficiency in the PL performed worse on cognitive behavioral tests, and exhibited lower
status when re-grouped with others. Elevating ACh level in the PL of subordinate mice induced winning. These results provide
direct evidence for the involvement of M1 in social hierarchy and suggest that social rank can be tuned by altering cognition
through cholinergic system.
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INTRODUCTION
Dominance hierarchy is widely observed among social species,
and the social hierarchy plays a crucial role in determining
resource access and significantly impacts survival, health, repro-
ductive success, as well as various behavioral patterns [1, 2]. The
social hierarchy can be influenced by variations in individual
characteristics that impact social success, such as bravery,
persistence, and motivational drive [3–5]. Studies found that
across multiple species, the cognitive task performance of
individual is different by social rank, with dominant individuals
performing more efficiently on operant learning [6], spatial
learning [7, 8] and spatial memory tasks [9]. However, the causality
between social hierarchy and cognitive abilities is extremely
complicated and remains to be further elucidated.
Cognitive abilities are considered to be one of the character-

istics that is crucial for individuals to achieve social dominance
[10–12]. Learning capacity allows individuals to adapt to changing
environments. For example, social learning can inform individuals
about conspecifics motivations and consequently guide future
social interactions [13]. Thus, individuals with more proficient
social learning abilities have been found to be higher ranking [14].
Performances on operant foraging and spatial learning tasks are
also reported as higher in dominant individuals [6, 8, 9].
Individuals which are inherently good at cognitive performing
are more efficient at beneficial behaviors such as foraging, mate
choice, and navigation which are crucial for the propagation of the
population. Nevertheless, the impact of cognitive abilities on
social hierarchy has been essentially unknown.
The medial prefrontal cortex (mPFC) has been implicated in the

regulation of social dominance. Human imaging studies have

shown that PFC activity is engaged with social hierarchies [15]. A
rodent study indicated that the dominant rats exhibit significantly
higher levels of c-fos immunoreactivity in the prelimbic and
infralimbic subcortical regions of the mPFC that project to the
amygdala [16]. The strength of excitatory transmission in layer V
pyramidal neurons of the mPFC plays a crucial role in determining
social hierarchy, as bidirectional relationship between males
manipulation of synaptic strength switched the dominance [17].
Furthermore, the activation of the mPFC is both necessary and
sufficient to rapidly induce winning in social competitions [18]. On
the other hand, the mPFC is widely recognized as a crucial
component in cognitive regulation. The mPFC has been linked to
the function of working memory, as evidenced by disruptions in
working memory tasks following mPFC lesions [19, 20]. Evidence
from in vivo electrophysiology studies shows that single mPFC
neurons exhibit a variety of behavioral correlates during naviga-
tion and working memory tasks [21, 22]. Modulating mPFC neural
activities influences mice spatial working memory [23, 24]. Mean-
while, The mPFC is a key regulator in social cognition [25, 26]. A
more recent study found that NAc-projecting pyramidal neurons
in the mPFC is preferentially involved in social memory [27]. These
findings imply that the mPFC plays a crucial role in social hierarchy
as well as cognitive function.
Innervation of the mPFC through acetylcholine (ACh) releasing

from the basal forebrain cholinergic system has a critical
modulatory role in cognition [28]. The influence of ACh is
mediated by ionotropic nicotinic and metabotropic muscarinic
receptors, modulating synaptic transmission, inducing synaptic
plasticity, and coordinating the firing patterns of neuronal groups
[29]. Several pharmacological studies have reported that
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administration of acetylcholine muscarinic M1 receptors (M1)
agonist in the mPFC of mice could effectively improve their
performance in cognitive relative tests [30–32]. Physiological
studies have demonstrated that layer V pyramidal neurons in the
mPFC are activated by ACh via M1 [33, 34]. These studies indicated
that the cholinergic system in the mPFC may be the key
components for the mPFC to regulate cognitive functions.
However, the precise role of the cholinergic system in the
prefrontal cortex in mediating social hierarchy remains elusive.
In this study, using the dominance tube test [35], we found that

mice show better cognitive abilities tend to possess a higher social
status after cohousing. Subsequently, by using fiber photometry
recording, electrophysiological recording, viral and pharmacolo-
gical approaches, we provide evidence demonstrates that the
modulation of mice cognition through M1 in the prefrontal cortex
plays a pivotal role for social dominance.

MATERIALS AND METHODS
Subjects
Male C57 BL/6 J mice were obtained from the Southern Medical University
Animal Center (Guangzhou, China), Chat-Cre mice were a gift from
Tianming Gao at Southern Medical University (Guangzhou, China). The
behavioral experiment adhered to the guidelines set by the Chinese
Council on Animal Care. For additional details, see Supplementary
Information.

Stereotaxic injections and optic fiber/cannula implantations
The mice were positioned in a stereotactic apparatus to undergo
stereotaxic injections and optic fiber/cannula implantations. For the PL
microinfusion, the dummy cannula was replaced with an infusion cannula,
The infusion cannula was connected to a 10-μL microsyringe, which was
mounted on a microinfusion pump. AAV-U6-M1shRNA-CMV-RFP was
injected into the PL of mice to genetically interfere with M1 expression.
Immunoblotting was used to confirm the efficiency of M1 knockdown. For
additional details, see Supplementary Information.

Fiber photometry recording
Photometry was performed as described before [36]. A tube with a width-
adjustable slit is used for mice implanted with optic connectors.The
fluorescence signals were acquired using a fiber photometry system. The
data was initially segmented based on the behavioral events. The average
fluorescence and frequency of signal were then computed for both the
baseline and event phases. For additional details, see Supplementary
Information.

Behavior analysis
Tube test for social hierarchy. The tube test assay was applied as described
[17]. In brief, mice were first underwent a two-day habituation period (day
1 and day 2) in the test chamber. During the subsequent two days (day 3
and day 4), mice underwent behavioral training. After training, testing was
performed from day 5. Each mouse explored the tube once from each side
before the confrontation trials. A pair of cage mates was allowed to enter
the tube from opposite ends and meet in the middle. The trial ended when
1 of the mice retreated with all 4 paws out of the tube, becoming the
subordinate. The mouse that forced its cage mate to retreat was termed
dominant. For additional details, see Supplementary Information.

Y-maze test. The Y-maze test was applied as described [37]. In brief, the
Y-maze apparatus comprised three identical arms made of black plastic.
The start arm, novel arm, and other arm were randomly assigned in the
test. The novel arm was obstructed during the training trial. In the training
trial, mice were given a 10-min period to explore the alternative arm. After
a 1-h interval, the mice were reintroduced to the maze for a 5-min period
of unrestricted exploration, during which all three arms were made
accessible (test trial). For additional details, see Supplementary
Information.

Three-chamber test. The Y-maze test was applied as described [38]. In
brief, The apparatus consisted of a box divided into three equal
compartments. During the sociability test, a stimulus mouse was placed

inside a wire containment cup in a compartment. The other was equipped
with an empty cup. The test mouse was allowed to freely explore the
chambers for 10min. The time that the test mice spent investigating each
containment cup was measured. During the social novelty test, we
introduced a second stimulus mouse into an identical cup placed in the
chamber opposite to that of the test mouse, allowing for a 10-min
exploration. The time spent by the test mice in exploring the cup
containing either the familiar or the unfamiliar was measured. For
additional details, see Supplementary Information.

Electrophysiological recordings and procedures. All electrophysiological
recording protocols were performed in accordance with our previous
studies [39, 40]. For additional details, see Supplementary Information.

Statistical analysis
Statistical analysis was performed using Prism 8 and SPSS (version 17.0). No
specific method was used to predetermine the ideal sample size or to
randomly assign the animals to the experimental groups. The normality of
the data distribution was confirmed by the Shapiro-Wilk normality test.
Statistical differences of normally distributed data were then determined
using two-way repeated-measures ANOVA followed by Bonferroni’s
multiple comparisons test or one-way ANOVA followed by Dunnett’s
multiple comparisons test. Two experimental groups were compared using
a two-tailed paired Student’s t test test or unpaired Student’s t test test.
*p < 0.05, **p < 0.01, ***p < 0.001, n.s. not significant.

RESULTS
Higher cognitive abilities predict mice social dominance after
cohousing
We employed the tube test to assess the dominant–subordinate
relationship in rodents (Fig. 1A). After identifying their social
hierarchy through the tube test, mice were subsequently
subjected to cognitive tests (Fig. 1B). In Y-maze tests, the
dominant mice exhibited prolonged duration (Fig. 1C, D; D, one-
way ANOVA, F3,24= 19.11, p < 0.001) and heightened frequency
(Fig. 1E; One-way ANOVA, F3,24= 9.610, p < 0.001) of exploration in
the novel arm compared to the other three subordinate mice. This
observation suggests that the dominant mice exhibit higher short-
term spatial working memory capabilities.
In the three-chamber tests, which test the sociability and social

novelty (Fig. 1F), the social ability of mice in different social ranks
showed no discernible variation, as there was no difference
observed in the duration spent in the social zone during the three-
chamber sociability test (Fig. 1G; Two-way ANOVA, chamber main
effect: F3,48= 4.970, p= 0.0044 ; rank main effect: F1,48= 127.5,
p < 0.001; no interaction; Fig. 1H; One-way ANOVA, F3,24= 0.2503,
p= 0.8603). Nevertheless, the dominant mice show more
preference for strange individuals during social novelty test
(Fig. 1I–K; J, Two-way ANOVA, chamber main effect:
F3,48= 6.830, p < 0.001 ; rank main effect: F1,48= 60.24, p < 0.001;
interaction: F3,48= 6.369, p= 0.001; K; One-way ANOVA,
F3,24= 5.438, p= 0.0054). Moreover, mice show no difference in
the anxiety level (Fig. S1A; One-way ANOVA, F3,24= 0.4891,
p= 0.6931), body weight (Fig. S1B; One-way ANOVA,
F3,24= 0.1930, p= 0.9001) and locomotion (Fig. S1C, D; One-way
ANOVA; S1C, F3,24= 0.4860, p= 0.6952; S1D, F3,24= 0.2442,
p= 0.8646). The findings, consistent with previous studies [8,
41–43], indicated that the dominant mice exhibit higher cognitive
abilities.
Next, mice were firstly single housed for two weeks to exclude

the possible influence of social rank on cognition [43]. Then, mice
were subjected to Y-maze and three-chamber tests. Subsequently,
the mice were group-housed in cages based on their performance
in behavioral tests, ensuring that each cage accommodated four
mice with distinct cognitive abilities (Fig. 1L). Remarkably, mice
exhibiting better cognitive performance maintain higher social
rank (Fig. 1M; Ordinal logistic regression; Y-maze: odds ratio [OR],
0.921 [95% CI 0.862–0.983], p= 0.014; social novelty test: OR, 0.941
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[95% CI 0.904–0.979], p= 0.003). The findings validate that the
cognitive abilities of subjects play a pivotal role in predicting their
social status.

The level of ACh in the prelimbic cortex (PL) is correlated with
mice effortful pushes in tube test
Cognition have been associated with the ACh release in the
prefrontal cortex [29, 44, 45]. However, the dynamic release of ACh
in the prefrontal cortex during social competition remains elusive.
We conducted fiber photometry recordings in freely behaving
mice during their participation in the tube test (Fig. 2A). The AAV

encoding G protein–coupled receptor-activation–based ACh
sensor (GRABACh3.0) [46] was injected in the PL, a subregion of
the prefrontal cortex, to monitor the real-time ACh activities
(Fig. 2B, C). We aligned ACh activities with epochs of pushing,
resistance and retreat [47]. The ACh signaling was significantly
elevated during the push epochs (Fig. 2D, E, S2A; 2D, paired t test,
ACh3.0, p= 0.0195; EYFP, p= 0.6126). but no significant change in
ACh activity was detected in the resistance(Fig. 2F, S2B; paired
t test, 2 F, ACh3.0, p= 0.2730; EYFP, p= 0.6100) and retreat epochs
(Fig. 2G, S2C; 2 G, paired t test, ACh3.0, p= 0.7216; EYFP,
p= 0.2672). In another experiment which mice pushed against a

Fig. 1 Superior cognitive abilities predict mice social dominance after cohousing. A Tube-test ranking for social hierarchy. B The timeline of
experiments. C Illustration of the Y-maze and the timeline of sample and test trial phases. D Dominant mice spent more time in the novel arm
during the test trial phase compared with subordinate mice (One-way ANOVA with Dunnett’s multiple comparisons test, n= 7 mice per group;
Rank1 vs Rank2, p= 0.007; Rank1 vs Rank3, p < 0.001; Rank1 vs Rank4, p < 0.001). E Dominant mice showed significant increase in the
percentage of entries into the novel arm during the test trial phase compared subordinate mice (One-way ANOVA with Dunnett’s multiple
comparisons test, n= 7 mice per group; Rank1 vs Rank2, p= 0.0273; n= 7 mice per group, Rank1 vs Rank3, p < 0.001; Rank1 vs Rank4,
p < 0.001). F Illustration of the three-chamber sociability and social novelty tests. G Sociability test: time spent in the empty chamber and
mouse chamber for dominant and subordinate mice (Bonferroni’s multiple comparisons test; (S–E) Rank1, p < 0.001, Rank2, p < 0.001, Rank3,
p < 0.001, Rank1, p < 0.001). H Dominant and subordinate mice show no difference in preference for the social stimulus (One-way ANOVA with
Dunnett’s multiple comparisons test, n= 7 mice per group; Rank1 vs Rank2, p= 0.9954; Rank1 vs Rank3, p= 0.8844; Rank1 vs Rank4,
p= 0.9616). I Examples of individual dominant (Rank1) and subordinate mice (Rank4) performing the three-chamber social novelty test. Heat
map indicates time in location. J Social novelty test: time spent in the familiar mouse chamber and stranger mouse chamber for dominant and
subordinate mice (Bonferroni’s multiple comparisons test; S-F Rank1, p < 0.001, Rank2, p= 0.0028, Rank3, p= 0.0576, Rank1, p= 0.280).
K Dominant mice show greater preference for the familiar mouse compared with subordinate mice (One-way ANOVA with Dunnett’s multiple
comparisons test, n= 7 mice per group; Rank1 vs Rank2, p= 0.0370; Rank1 vs Rank3, p= 0.01; Rank1 vs Rank4, p= 0.0032). L The timeline of
experiments. M Time in the novel arm during the test trial phase in Y-maze test and time in the stranger mouse chamber during the social
novelty test can predict the rank of individual mice after cohousing (Ordinal logistic regression; Y-maze: odds ratio [OR], 0.921 [95% CI
0.862–0.983], p= 0.014; social novelty test: OR, 0.941 [95% CI 0.904–0.979], p= 0.003). The data are presented as the mean ± s.e.m. *p < 0.05,
**p < 0.01, ***p < 0.001, n.s. not significant.
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block in the tube, the findings show that mice pushed against the
block also acompanied with increased ACh activity in the PL
(Fig. S2D–G). Additionally, the locomotion of mice did not exert
any influence on the ACh activity in the PL (Fig. S2H–K).
Importantly, the administration of an acetylcholinesterase inhibi-
tor (AChEI), donepezil (1.0 mg/kg) [48] did not result in any
significant changes in level of basal aggression (Fig. S2L; unpaired
t test, p= 0.936) and muscle strength (Fig. S2M; unpaired t test,
p= 0.6616). Collectively, our findings indicate that in vivo ACh
activities in the PL correlates with mice effortful pushes in tube
test.

ACh enhances the excitability of the PL neurons through M1
The neural activities of the prefrontal cortex is crucial for social
hierarchy [17]. The ACh from cholinergic neurons located in the
basal forebrain influences neural activities of the prefrontal cortex
[28]. We set out to investigate the impact of ACh on neural
activities within the PL. AAV-Dio-ChR2-EYFP was injected into

basal forebrain of Chat-Cre mice, virus was specifically expressed
in cholinergic neurons of the basal forebrain, and EYFP-containing
terminals were observed within the PL after 4 weeks (Fig. 3A).
Subsequently, slices contain the PL were cuted for patch recording
(Fig. 3B). Recordings from layer V pyramidal neurons of the PL
demonstrate that brief blue light stimulation of ChR2-containing
terminals consistently evoked depolarization, which was reversed
by the application of a selective M1 inhibitor VU0255035 (M1i,
5 μM) (Fig. 3C; paired t test, p < 0.001). Furthermore, optical
enhancement of ACh release in the PL increased the amplitude of
the miniature excitory postsynaptic currents (mEPSCs) within the
PL neurons, which was reversed by the M1i (Fig. 3D; Two-way
ANOVA; amplitude, F1,46= 9.935, p= 0.0029; frequency,
F1,46= 1.036, p= 0.3141). This effect was mimicked by bath
perfusion of ACh (1 mM) [49] (Fig. 3E; Two-way ANOVA; amplitude,
F1,48= 15.15, p < 0.0001; frequency, F1,48= 0.9563, p= 0.3330).
Taken together, our results indicate that ACh release in the PL
enhances the excitability of neurons through M1.

Fig. 2 The level of ACh in the PL is correlated with mouse dominance behavior in tube test. A Fiber photometry recording of ACh release in
the PL during dominance tube test. B, C AAV-Syn-GRABACh3.0 were injected in the PL of C57 mice. D Example fluorescence trace from the PL
region of a dominant mouse during tube test. Different behavioral epochs are indicated by colored shading. E Heat map (upper) and plot
(middle) of fluorescence changes across animals aligned to the initiation of push. Yellow bold line and gray shadow indicate mean and SEM,
respectively. Lower, quantification of change in fluorescence signals before and after push initiation (paired t test: ACh3.0 t(9)= 2.838,
p= 0.0195; EYFP t(12)= 0.5199, p= 0.6126; 10 events from three ACh3.0-expressing mice, 13 events from three EYFP-expressing mice). F Heat
map (upper) and plot (middle) of fluorescence changes across animals aligned to the initiation of resistance. Lower, quantification of change
in fluorescence signals before and after resistance initiation (paired t test: ACh3.0 t(14)= 1.141, p= 0.273; EYFP t(14)= 0.5218, p= 0.61; 15
events from three ACh3.0-expressing mice, 15 events from three EYFP-expressing mice). G Heat map (upper) and plot (middle) of fluorescence
changes across animals aligned to the initiation of retreat. Lower, quantification of change in fluorescence signals before and after retreat
initiation. (paired t test: ACh3.0 t(2)= 0.4099, p= 0.7216; EYFP t(4)= 1.288, p= 0.2672; 3 events from three ACh3.0-expressing mice, 5 events
from three EYFP-expressing mice). The data are presented as the mean ± s.e.m. *p < 0.05, n.s. not significant.
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Cognitive impairment induced lose in social competition in
tube test
Next, we conducted an investigation into the role of the PL M1 in
spatial memory and social novelty (Fig. 4A). In Y-maze test, micro-
injection of M1i (5 μM) into the PL reduced duration (Fig. 4B;
unpaired t test, t(22)= 2.944, p= 0.0075) and frequency of
exploration (Fig. 4C; unpaired t test, t(22)= 2.602, p= 0.0163) in
the novel arm compared to the control mice. In addition, the
application of M1i into the PL does not exert any influence on the
duration spent in the social zone during the three-chamber
sociability test (Fig. 4D, E; 4D, two-way ANOVA; chamber main
effect: F1,44= 0.5696, p= 0.4545; M1i main effect: F1,44= 337.7,
p < 0.001; no interaction; 4 F, unpaired t test, t(22)= 0.8548,
p= 0.0163), while in social novelty test, inhibition of M1 reduced
mice preference for strange individuals (Fig. 4F–H; 4 G, two-way
ANOVA; chamber main effect: F1,44= 2.135, p= 0.1511; M1i main
effect: F1,44= 19.84, p < 0.001; interaction: F1,44= 7.609,
p= 0.0084; 4H, unpaired t test, t(22)= 4.529, p= 0.0075). The
results suggest that the blockade of M1 in the PL impaired both
spatial memory and social novelty in mice.
Next, dominant individuals were administered either ACSF or

M1i. The social hierarchy was confirmed at 6 h, 24 h, and 48 h post
drug delivery (Fig. 4I, J). We found that antagonism of M1 disrupts
expression of social dominance (Fig. 4K). Notably, dominance
returns when the effect of the drug is removed (Fig. 4L; Wilcoxon
signed-rank test, Test1, ACSF vs. M1i p= 0.024; Test2, ACSF vs. M1i
p= 0.034; Test3, ACSF vs. M1i p= 0.180). These data indicate that
M1 is required to maintain a dominant status in a stable social
hierarchy.
We further identified whether M1 modulates individual social

dominance via their cognitive influence. The expression of M1 in
the PL were interfered by injection of the AAV encoding M1shRNA
[50] (Fig. 4M). We confirmed a high efficiency of M1 knockdown in
the PL of mice after AAV-U6-M1shRNA-CMV-RFP injection (Fig. 4N,
S3; 4 N, unpaired t test, t(10)= 5.469, p < 0.001). After virus
expression, cognitive performance tests were conducted on the
mice. Subsequently, mice were mixed raised in cage with two
shRNA-mice and two control mice, the tube test was conducted

two weeks later to allow for the re-establishment of social
hierarchy among these mice (Fig. 4O). In the cognitive perfor-
mance tests, M1 knockdown in the PL reduced duration and
frequency of exploration in the novel arm compared to the control
mice (Fig. 4P, Q; 4 P, unpaired t test, t(30)= 2.343, p= 0.0260; 4Q,
unpaired t test, t(30)= 3.491, p= 0.0015). Meanwhile, shRNA-mice
did not exert any difference on the duration spent in the social
zone during the three-chamber sociability test compared with
control mice (Fig. 4R, S; 4 R, two-way ANOVA; chamber main effect:
F1,60= 0.5658, p= 0.4549; shRNA main effect: F1, 60= 97.51,
p < 0.001; no interaction; 4 S, unpaired t test, t(30)= 0.09571,
p= 0.9244), However, they demonstrated a reduced preference
for strange individuals (Fig. 4T–V; 4 T, two-way ANOVA; chamber
main effect: F1,60= 0.2612, p= 0.6112; shRNA main effect:
F1,60= 35.61, p < 0.001; interaction: F1,60= 8.586, p= 0.0048; 4 V,
unpaired t test, t(30)= 2.530, p= 0.0169). Two weeks after mixed
raising, most shRNA-mice occupied a subordinate position within
the cage (Fig. 4W; unpaired t test, t(30)= 3.189, p= 0.0033). These
findings suggest that down regulation of M1 in the PL impairs
cognitive performance and contributes to a decline in tube test
ranks.

Elevating ACh level induced winning against previously
dominant opponents through M1 in the PL
We further investigate whether the elevation of ACh levels in the
PL of subordinate mice could potentially influence their social
hierarchy. Donepezil (1.0 mg/kg), or saline was intraperitoneally
injected into rank 4 mice with ACSF or M1i (5 μM) [51] micro-
injection into the PL (Fig. 5A). Mice establishing a stable social
hierarchy through the examination of dominance-subordinate
relationships during the pretest phase of tube test training.
Subsequently, the social rank was confirmed at 6 h, 24 h and 48 h
following drug delivery (Fig. 5B). Consistent with the aforemen-
tioned findings, our study reveals that elevated ACh levels in
subordinate mice induced winning in the tube test, and this effect
is attenuated by administration of M1i in the PL (Fig. 5C, D; 5D,
Wilcoxon signed-rank test, Test1, Phy vs. Saline p= 0.020, Phy
+M1i vs. Saline p= 0.066; Test2, Phy vs. Saline p= 0.023, Phy+M1i

Fig. 3 ACh enhances the excitability of the PL neurons through M1. A Schematic representation showing viral injection in mice and the
recording configuration in acute slices. B Virus expression in HDB cholinergic neurons (left) and the fiber in the PL (right). C Representative
traces and summarized data showing depolarized potentials in pyramidal cells of the PL layer 5 (paired t test, t(6)= 11.63, p < 0.001; n= 7 cells
from three mice). D Sample traces and summarized data showing the effects of photostimulation on mEPSCs recorded from pyramidal cells of
the PL layer 5 in response to M1i (Two-way ANOVA with Bonferroni’s multiple comparisons test, Baseline vs. Light p < 0.001; M1i vs. M1i+Light
p å 0.9999; Light, n= 12 from four mice, Light+M1i, n= 13 from four mice). E Sample traces and summarized data showing the effects of bath
application of ACh on mEPSCs recorded from pyramidal cells of the PL layer 5 in response to M1i (Two-way ANOVA with Bonferroni’s multiple
comparisons test, Baseline vs. ACh p < 0.001; M1i vs. M1i+ ACh p å 0.9999; ACh, n= 13 from four mice, ACh+M1i, n= 13 from four mice). The
data are presented as the mean ± s.e.m. ***p < 0.001; n.s. not significant.
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vs. Saline p= 0.059; Test3, Phy vs. Saline p= 0.060, Phy+M1i vs.
Saline p= 0.317).

DISCUSSION
The association between social hierarchy and cognitive abilities
has been extensively corroborated by numerous studies; however,
the causal relationship between social hierarchy and cognitive
abilities remains unidentified. Here, we define that higher
cognitive abilities are crucial for mice to attain a higher social
status, and the modulation of M1 in the PL can influence mice’s
social hierarchy through the impact on cognitive abilities.
Animals in the wild constantly encounter environmental

fluctuations. Augmenting cognitive abilities could potentially
optimize individuals’ resource acquisition and elevate their social
status. While dominance with better cognitive abilities has been
implicated in many studies [6, 9, 42, 43, 52], others have failed to
reveal the correlation between social rank and cognitive abilities
[53, 54]. These inconsistent findings may be attributed to

variations in species selection and the diverse behavioral tasks.
According to our data, the relationship was consistently observed
in mice, as well as in tasks assessing spatial working memory and
recognition abilities. Meanwhile, cognitive performances have
been suggested to determine social success [10, 55]. However, for
cognitive or behavioral attributes, which are highly plastic,
measures should be conducted prior to the establishment of the
hierarchy in order to prevent the potential confounding factor
that attribute expression is merely a consequence of social rank;
hence, assessing the predictive ability of cognitive performances
for individual social rank remains challenging and has not been
demonstrated in these studies. In our study, mice were socially
isolated prior to behavioral tests in order to mitigate the influence
of social hierarchy. Consequently, our study further revealed that
mice exhibiting higher cognition possess the ability to acquired
social dominance upon integration into a group setting. Moreover,
by modulating the cholinergic system to manipulate cognitive
flexibility in mice of varying social ranks, we insure that higher
cognitive abilities can qualify mice to win a competition and
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achieve a higher status in a social hierarchy. This is consistent with
previous research indicating that forthcoming dominants exhibit
significantly better performance than their cage-mates in the
Morris water maze working memory task prior to the establish-
ment of social dominance [41].
Through fiber photometry recording, we observed a signifi-

cant release of ACh in the PL during mice pushing against
opponents. Moreover, mice pushed against the block also
accompanied with increased ACh activity in mPFC. Furthermore,
no significant change in ACh activity was detected when mice
walked through the tube without an opponent. Using a
pharmacological approach, we identified that elevating the
ACh level does not seem to boost dominance by enhancing
basal aggression level or physical strength. These findings
suggest that ACh activity in the PL was generally enhanced
during effortful pushes. The prefrontal cortex has been
implicated in the neural processes underlying cost-benefit
analysis and effort-based decision-making [56–60]. We propose
that ACh activity may influence these cognitive processes
mediated by the prefrontal cortex and serve as a neurobiological

basis for dominance-related personality traits, such as persever-
ance or competitive drive.
Recording from the PL pyramidal neurons indicated that these

neurons are activated during effortful behaviors in social
competition [18]. In the PL, M1 is widely distributed throughout
somata and dendrites including spines [61]. Therefore, the
activation of ACh in the PL may serve as a crucial regulator via
M1 during social competition. However, ACh in the PL may release
from cholinergic fibers originating from basal forebrain ChAT
neurons as well as ChAT interneurons within the PL, further
investigation is required to determine the specific source of ACh
that is relevant in the processing. Although our recording results
during tube test indicates the enhanced release of ACh in social
competition. The electrophysiological and pharmacological results
identified the ACh involved in rank modulation through M1 in the
PL. However, further investigation is needed to determine
whether the PL neurons in dominance mice exhibit heightened
sensitivity to ACh or increased expression of M1, which contribute
to social dominance. Furthermore, different GABAergic interneur-
ons in mPFC exhibit distinct, or even opposite, outcomes in

Fig. 5 Elevating ACh level induced winning against previously dominant opponents through M1 the prefrontal cortex. A Schematic for
drugs delivery. B The timeline of experiments. C Social rank change of a cage after drugs treatment in the rank-4 mouse. D Average rank
change after drugs treatment in the rank-4 mice. (Wilcoxon signed-rank test, Test1, Phy vs. Saline p= 0.020, Phy+M1i vs. Saline p= 0.066;
Test2, Phy vs. Saline p= 0.023, Phy+M1i vs. Saline p= 0.059; Test3, Phy vs. Saline p= 0.060, Phy+M1i vs. Saline p= 0.317; n= 6 mice/group).
The data are presented as the mean ± s.e.m. *p < 0.05, n.s. not significant.

Fig. 4 Cognitive impairment induced lose in social competition in tube test. A The timeline of experiments. B, C Micro-injections of M1i in
the PL of mice decrease the time spent exploring the novel arm (B, unpaired t test, t(22)= 2.944, p= 0.0075; n= 12 mice/group) and the
percentage of entries into the novel arm (C, unpaired t test, t(22)= 2.602, p= 0.0163; n= 12 mice/group) during the Y-maze test trial phase.
D Time spent in the empty chamber and mouse chamber for ACSF and M1i injection mice in sociability test (Bonferroni’s multiple
comparisons test; (S–E) Saline, p < 0.001, M1i, p < 0.001). E Inhibition of M1 has no effect on mice preference for the social stimulus (unpaired t
test, t(22)= 0.8548, p= 0.0163; n= 12 mice/group). F Examples of ACSF and M1i injection mice performing the three-chamber social novelty
test. Heat map indicates time in location. G Time spent in the familiar mouse chamber and stranger mouse chamber for ACSF and M1i
injection mice in social novelty test (Bonferroni’s multiple comparisons test; (S–E) Saline, p < 0.001, M1i, p= 0.0742). H Inhibition of M1
decrease mice preference for the familiar mouse (unpaired t test, t(22)= 4.529, p= 0.0075; n= 12 mice/group). I Schematic for injection of M1i
in rank tube test. For experiment groups, in every cage, only the identified dominant mouse received M1i injection. For control groups, the
dominant mouse received ACSF. J The timeline of experiments. K Social rank change of a cage after M1i (left) or ACSF (right) treatment in the
dominant mouse. L Average rank change after M1i (red) or ACSF (gray) injection in dominant mice (Wilcoxon signed-rank test, Test1, ACSF vs.
M1i p= 0.024; Test2, ACSF vs. M1i p= 0.034; Test3, ACSF vs. M1i p= 0.180; n= 6 mice/group). M Representative confocal images of AAV-U6-
M1shRNA-CMV-RFP (red) distribution in the PL. N The protein levels of M1 were decreased in the PL of mice injected with an AAV expressing
M1-shRNA. unpaired t test, t(10)= 4.355, p= 0.0014; (n= 6 mice/group). O The timeline of experiments. P M1shRNA-mice spent less time in
the novel arm during the test trial phase compared with control mice. unpaired t test, t(30)= 2.343, p= 0.0260; (n= 16 mice/group).
Q M1shRNA-mice showed significant decrease in the percentage of entries into the novel arm during the test trial phase compared with
control mice. unpaired t test, t(30)= 3.491, p= 0.0015; (n= 16 mice/group). R Time spent in the empty chamber and mouse chamber for
mCherry- and M1shRNA-mice in sociability test (Bonferroni’s multiple comparisons test; (S–E) mCherry, p < 0.001, M1shRNA, p < 0.001).
S Interference of M1 expression in the PL has no effect on mice preference for the social stimulus. unpaired t test, t(30)= 0.09571, p= 0.9244;
(n= 16 mice/group). T Examples of control and M1shRNA-mice performing the three-chamber social novelty test. Heat map indicates time in
location. U Time spent in the familiar mouse chamber and stranger mouse chamber for control and M1shRNA-mice in social novelty test
(Bonferroni’s multiple comparisons test; (S–E) mCherry, p < 0.001, M1shRNA, p= 0.0703). V Interference of M1 expression in the PL decreases
mice preference for the familiar mouse. unpaired t test, t(30)= 2.530, p= 0.0169; (n= 16 mice/group). W Social rank for control (gray) and
M1shRNA-mice (red) in a cage. unpaired t test, t(30)= 3.189, p= 0.0033; (n= 16 mice/group). The data are presented as the mean ± s.e.m.
*p < 0.05, **p < 0.01, ***p < 0.001, n.s. not significant.
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dominance tube test [62]. Further investigation is warranted to
elucidate the precise involvement of specific ACh receptors in
modulating GABAergic interneurons during social competition.
Cholinergic signaling in the mPFC exerts crucial influence on

circuit dynamics underlying cognitive processing [29]. Enhanced
activity of basal forebrain cholinergic axon fibers in the mPFC
resulted in improved object recognition memory in mice [44].
ChAT interneurons directly elicit neuronal excitation across cortical
layers and contribute to attentional processes [63]. Intra-mPFC
infusion of α4β2 or α7 nAChR agonist enhanced object recogni-
tion memory [64, 65]. Our finding revealed that inhibition of M1 in
the PL resulted in impaired cognitive performance in mice. The
M1 subtype is the predominant muscarinic receptor in the cortex
[66]. In the mPFC, activation of postsynaptic M1 mediates a slow
membrane depolarization and increases neuronal firing frequency
[67, 68]. Previous study has shown that M1 promote phosphoryla-
tion and membrane insertion of AMPA receptor GluA1 subunit
and enhanced synaptic delivery [69, 70]. In consistent, our finding
indicated that ACh release induced depolarized membrane
potentials and increased the amplitude of sEPSC in pyramidal
neurons through M1. Previous work has shown that synaptic
strength in the pyramidal neurons of the dorsal mPFC is linked
with social hierarchy status, and alterations in synaptic strength
via manipulation of AMPAR expression can change an individual’s
status consistent with the results seen in dominant relative to
subordinate mice in the tube test for dominance, supporting the
role of mPFC synaptic strength in the relationship to dominance
behavior.
Conclusively, our results provide compelling evidence that

cognitive abilities are key regulators in determining intermale
social hierarchy. Given the association between an deficiency in
dominance and various mental disorders [71], our findings have
the potential to provide valuable insights into the treatment of
these psychiatric conditions.
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