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Chemogenetic activation of CRF neurons as a model of chronic
stress produces sex-specific physiological and behavioral
effects
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Trauma and chronic stress exposure are the strongest predictors of lifetime neuropsychiatric disease presentation. These disorders
often have significant sex biases, with females having higher incidences of affective disorders such as major depression, anxiety,
and PTSD. Understanding the mechanisms by which stress exposure heightens disease vulnerability is essential for developing
novel interventions. Current rodent stress models consist of a battery of sensory, homeostatic, and psychological stressors that are
ultimately integrated by corticotropin-releasing factor (CRF) neurons to trigger corticosteroid release. These stress paradigms,
however, often differ between research groups in the type, timing, and duration of stressors utilized. These inconsistencies, along
with the variability of individual animals’ perception and response to each stressor, present challenges for reproducibility and
translational relevance. Here, we hypothesized that a more direct approach using chemogenetic activation of CRF neurons would
recapitulate the effects of traditional stress paradigms and provide a high-throughput method for examining stress-relevant
phenotypes. Using a transgenic approach to express the Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs
(DREADD) receptor hM3Dq in CRF-neurons, we found that the DREADD ligand clozapine-N-oxide (CNO) produced an acute and
robust activation of the hypothalamic-pituitary-adrenal (HPA) axis, as predicted. Interestingly, chronic treatment with this method of
direct CRF activation uncovered a novel sex-specific dissociation of glucocorticoid levels with stress-related outcomes. Despite
hM3Dq-expressing females producing greater corticosterone levels in response to CNO than males, hM3Dq-expressing males
showed significant typical physiological stress sensitivity with reductions in body and thymus weights. hM3Dq-expressing females
while resistant to the physiological effects of chronic CRF activation, showed significant increases in baseline and fear-conditioned
freezing behaviors. These data establish a novel mouse model for interrogating stress-relevant phenotypes and highlight sex-
specific stress circuitry distinct for physiological and limbic control that may underlie disease risk.
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INTRODUCTION
The ability to respond to environmental and homeostatic
perturbations is critical for survival, and accordingly, the stress
response is highly conserved across species [1–8]. In response to
stress, corticotropin-releasing factor (CRF) neurons, including in
the paraventricular nucleus of the hypothalamus (PVN), prefrontal
cortex, hippocampus, basolateral and central amygdala (BLA, CeA),
and bed nucleus of the stria terminalis (BNST), modulate
physiological, behavioral, and endocrine responses [9–20]. Limbic
and cortical afferents converge onto CRF neurons in the PVN to
initiate the hypothalamic-pituitary-adrenal (HPA) stress response,
resulting in glucocorticoid secretion from the adrenal gland into
circulation [17, 21–26].
Chronic stress and activation of CRF neurons are strongly linked

to neuropsychiatric disorder development [17, 19, 21, 27–38].
Rodent models are commonly used to investigate the

mechanisms by which chronic stress exposure contributes to risk
as they recapitulate many of the behavioral and physiological
effects seen in humans. Most models involve a battery of
psychological, sensory, and homeostatic stressors, and while
effective in inducing stress responses, the type, duration, and
timing of exposure varies widely across research labs and
produces an array of behavioral and physiological changes that
rely on the individual animal’s perception of and response to the
stress, often resulting in variability between cohorts of animals
even within a single lab [39–45]. Even widely used models, such as
chronic variable or unpredictable stress, are often modified to fit
the needs of individual groups. Sex differences in the efficacy of
some models add an additional complication, hindering our
collective ability to uncover important sex-specific mechanisms in
stress-related disorders or rigorously assess novel treatment
efficacy [46–50].
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To minimize variability and create a high-throughput system for
investigating stress-relevant disorders, we developed a mouse
model using the Gq-coupled Designer Receptors Exclusively
Activated by Designer Drugs (DREADD) hM3Dq to selectively
activate all CRF neurons in a temporally defined window and used
palatable cookie dough treats to administer CNO, eliminating the
need for daily intraperitoneal (i.p.) injections [51]. The DREADD
ligand clozapine-N-oxide (CNO) activates the canonical Gq path-
way, triggering neuronal discharge [51, 52]. Viral injection is the
most common method for DREADD expression; however, notable
drawbacks include variability in injection site placement, labor
cost, and latency of expression. To minimize this variance, we
utilized a transgenic strategy in which CRF-Cre mice were crossed
with mice expressing a floxed DREADD hM3Dq gene. Here, we
show that chemogenetic CRF-neuron activation effectively initi-
ates the HPA axis stress response and that repeated, chronic
activation induces sex- and brain region-specific effects.

METHODS
Detailed methods are presented in Supplementary Materials

Animals
Adult (10–20 weeks) male and female mice heterozygous for the CRF-Cre
transgene and hM3Dq transgene (CRF-Cre+/- X DREADD+/-, defined as
DREADD+ ) or heterozygous for the CRF-Cre transgene and wild-type for
the hM3Dq transgene (CRF-Cre+/- X DREADD-/-, defined as DREADD-) were
used for DREADD studies. Adult (8–9 weeks) male and female C57BL/6 J
mice were used for chronic multimodal stress. All animal experiments were
approved by the University of Maryland Baltimore Institutional Animal Care
and Use Committee and conducted in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.

CNO administration
For i.p. injections, clozapine N-oxide (CNO) dihydrochloride (Hello Bio,
catalog #HB6149) was prepared in 0.9% saline at 1 mM. Cookie dough
treats were prepared at 0.1 mg CNO/g dough (Transgenic Dough Diet, Bio-
Serv catalog #S3472, sugar cookie (Pillsbury), or Reese’s Peanut Butter
(Pillsbury)).

Hypothalamic-Pituitary-Adrenal response to CNO and acute
restraint stress
HPA axis reactivity to an i.p. CNO injection or 15min restraint was
measured as previously described [53]. 10 uL of blood was collected from a
tail snip at specified time points, and plasma corticosterone levels were
measured by 125I-Corticosterone radioimmunoassay (MP Biomedicals,
catalog #07120103).

Chronic multimodal stress
8–9 week male and female C57BL/6 J mice were subjected to stress for
14 days as described [54, 55]. Stress consisted of restraint in a 3D printed
restraint tube (Ender 3 printer, Creality), in a cage tilted 30° while being
subjected to white noise, strobe lights, and predator odor (fox urine, Trap
Shack Company). These mice were only examined for changes in the von
Frey filament test.

Immunohistochemistry and thymus collection
3 h after a single CNO injection, mice were anesthetized and transcardially
perfused and the thymus was dissected out. c-Fos immunohistochemistry
was performed using c-Fos (1:2500, Synaptic Systems #226–308) and anti-
guinea pig (1:200, Alexa Fluor 568, Thermo Fisher, #11075) antibodies and
Hoechst counterstain (1:2000, Thermo Fisher, #33342). c-Fos density was
normalized to Hoechst for each section. For HA immunohistochemistry,
sections were probed using HA (1:800, Cell Signaling Technologies, #3724)
and anti-rabbit antibodies (1:1000, Alexa Fluor 594, Thermo Fisher #A-11012).

von Frey filament test
Mice were placed on a suspended wire mesh, and monofilaments of
increasing diameter with forces ranging from 0.008 to 11.0 g (NC Medical,

catalog #NC12775-01) were pressed against the hind paw skin. Responses
(withdrawal/no withdrawal) were recorded until the foot was withdrawn
for 5 consecutive trials.

Open-field testing
Mice were placed in a 24-inch x 24-inch open plexiglass box and allowed
to explore freely for 10mins. Perimeter was defined as 6 inches from any
wall, and corners were defined by a 6-inch x 6-inch square. Center was
defined as a 12-inch x 12-inch square in the arena center. Sessions were
analyzed using Noldus Ethovision XT tracking software.

Fear-conditioning
Day 1: Mice were habituated to context A for 10min followed by context B
for 10min. Day 2: mice were placed in context A for 5 min and a 30 sec
baseline was collected with a 65 dB tone. An 80 dB tone (conditioned
stimulus, CS) was presented for 30 sec co-terminating with a 1 sec 0.6 mA
shock. 3 tone-shock pairings were presented. Days 3–7: Mice were placed
in context B and a 30-sec baseline was collected. The CS tone was
presented for 30 sec and the baseline – CS tone presentation was repeated
for 15 trials with 30-sec intertrial intervals. Movement was measured using
a piezoelectric accelerometer and recorded using SR-Lab software.

Statistical analysis
All data are presented ± SEM. Statistical measurements were performed in
GraphPad Prism and RStudio, and figures were prepared in GraphPad
Prism and BioRender. Details for all statistical tests are presented in figure
legends and Tables S2 and S3. Outliers were determined using Grubbs’ test
with alpha set to 0.05. All testing was conducted by experimenters blinded
to treatment and genotype groups.

RESULTS
The DREADD ligand clozapine-N-oxide effectively activates
the HPA axis in CRF-Cre+ /DREADD+ mice
To validate that chemogenetic CRF neuron activation initiates an
HPA stress axis hormonal response and to determine optimal CNO
dosing to produce physiologically relevant responses, we injected
CNO i.p. at doses from 0.25 to 5mg/kg in adult male and female
DREADD+mice and measured plasma corticosterone levels. Males
showed increased corticosterone in response to a 5mg/kg dose
compared to a 0.25mg/kg dose (Fig. 1A) at 60 min and 120min
following CNO injection. Area under the curve analysis (Fig. 1B)
showed a trend of increasing corticosterone release with
increasing CNO dose that did not rise to the level of statistical
significance, likely due to the small N’s and blunted HPA axis
response of C57BL/6 J mice. We did not find a significant effect of
CNO dose on the HPA response recovery timepoint in males
(Fig. 1C). In females, a 5 mg/kg CNO dose induced higher
corticosterone release at 120- and 180-mins post-injection
(Fig. 1D). Area under the curve analysis (Fig. 1E) showed a
significant effect of CNO dose on the total amount of
corticosterone released and a significantly prolonged HPA
response at the 5mg/kg dose (Fig. 1F). We additionally confirmed
that 1 mg/kg of CNO did not induce a corticosterone response in
DREADD- males (Fig. S1A) or DREADD- females (Fig. S1B).

Repeated high-dose CNO administration induces significant
stress-like physiological changes in DREADD+ male mice
After confirming that CNO effectively induced acute stress-like
corticosterone release in DREADD+ mice, we next wanted to
determine if repeated CNO administration would replicate known
stress-relevant physiological phenotypes. To minimize both
experimenter time and handling stress to control animals, we
used highly palatable cookie dough treats containing a measured
dose of CNO. We administered a single 5 mg/kg CNO treat daily,
and remarkably, by day 5, all male DREADD+mice partially or fully
stopped consuming CNO treats compared to 25% of female
DREADD+ mice (Fig. 2A). To complete this initial study, we
transitioned to 1mg/kg CNO alternating day i.p. injections. Body
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weight loss and thymus atrophy are physiological hallmarks of
severe stress, and we found that male DREADD+ mice showed a
trend of decreasing body weight across 4 weeks (Fig. 2B) and lost
significantly more weight (Fig. 2C) and had significantly smaller
thymuses at the end of 4 weeks (Fig. 2D). Interestingly, female
DREADD+ mice did not show body weight changes (Fig. 2E) or
have significantly different body weights (Fig. 2F) or thymus
weights (Fig. 2G) at the end of 4 weeks.
To determine whether these sex-specific effects were due to sex

differences in CRF neuron activation, we measured c-Fos
immunoreactivity in both the PVN and central amygdala (CeA)
in response to CNO, two regions with high CRF neuron densities
(Fig. 2H, I). In the PVN, DREADD+ males had a significantly higher
proportion of c-Fos immunoreactivity while DREADD+ females
were not significantly different from controls (Fig. 2J). In the CeA,
DREADD+ males again had a significantly higher proportion of
c-Fos immunoreactivity while there were no significant differences
in c-Fos immunoreactivity between DREADD+ females and

controls (Fig. 2K). To confirm that the DREADD receptor is
expressed similarly in CRF neurons between males and females,
we performed immunohistochemistry using the HA-tag on
hM3Dq. Based on visual inspection of expression patterns, no
apparent differences were observed in either the PVN (Fig. 2L) or
CeA (Fig. 2M).

9 weeks of variable lower-dose CNO does not induce a severe
stress phenotype in DREADD+ mice
Our pilot study produced a more severe stress phenotype than we
sought to model, so to avoid inducing this phenotype and to
prevent DREADD+ animals from developing treat avoidance, we
instead used a randomized lower-dose CNO treat paradigm
consisting of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg and 3 separate
dough flavors to examine the effects of chronic CRF neuron
activation (Table S1). Under this modified regimen, all DREADD+
mice of both sexes continued consuming the treats across 9 weeks
of daily administration (Fig. 3A). In DREADD+ males, we found no

Fig. 1 CNO induces dose-responsive corticosterone release in CRF-Cre+ /DREADD+ mice. A Corticosterone levels were measured in
response to 4 CNO doses in DREADD+ males (2-way RM ANOVA; Ftime(1.698,15.28)= 15.91, p < 0.001; Fdose(3,9)= 2.933, p = 0.092;
Ftime*dose(9,27)= 1.278, p = 0.293; n= 3–4). Corticosterone was elevated in response to 5mg/kg CNO compared to 0.25 mg/kg CNO at 60 mins
(p = 0.020) and 180mins (p = 0.041) post-injection. B Area under the curve analysis of total corticosterone release did not show a significant
effect of CNO dose (1-way ANOVA; Fdose(3,9)= 2.998, p = 0.088; n= 3–4). C CNO dose did not significantly affect corticosterone levels at the
HPA axis recovery timepoint in DREADD+males (1-way ANOVA; Fdose(3,9)= 2.403; p = 0.135; n= 3–4). D Corticosterone responses in DREADD
+ females were significantly affected by CNO dose (2-way RM ANOVA; Fdose(3,13)= 18.28, p < 0.0001; Ftime(2.066,26.86)= 55.10, p < 0.0001;
Ftime*dose(9,39)= 6.684, p < 0.0001; 120mins post-injection: 5 mg/kg vs 0.5 mg/kg p = 0.009; 5 mg/kg vs 0.25 mg/kg p = 0.005; 180mins post-
injection: 5 mg/kg vs 1mg/kg, p = 0.007; 5 mg/kg vs. 0.5 mg/kg p = 0.013; 5 mg/kg vs 0.25 mg/kg p = 0.0008; n= 3–6). E CNO dosing
significantly affected the total amount of corticosterone released in DREADD+ females (1-way ANOVA; Fdose(3,13)= 17.04, p < 0.0001;
0.25 mg/kg vs. 1.0 mg/kg p = 0.021; 0.25 mg/kg vs. 5.0 mg/kg p = 0.0001; 0.5 mg/kg vs. 5.0 mg/kg p = 0.0006, 1.0 mg/kg vs. 5.0 mg/kg p
= 0.013; n= 3–6). F 5mg/kg CNO significantly elevated corticosterone at the HPA axis recovery timepoint in DREADD+ females (1-way
ANOVA; Fdose(3,13)= 13.51, p = 0.0003; 5 mg/kg vs 1.0 mg/kg p = 0.001; 5 mg/kg vs. 0.5 mg/kg p = 0.005; 5 mg/kg vs 0.25 mg/kg p = 0.0005;
n= 3–6). (**** p < 0.0001, ***p < 0.001, **p < 0.01, ##p < 0.01, *p < 0.05, ^p < 0.05, #p < 0.05, @ main effect of genotype). *An example week
of the variable-dose CNO treat paradigm is shown in Table S1.
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significant changes in body weight across 9 weeks (Fig. 3B) and no
overall body weight change after 9 weeks (Fig. 3C). Likewise,
chronic CNO did not affect body weight in female DREADD+ mice
(Fig. 3D) or induce overall body weight change after 9 weeks
(Fig. 3E).

We next measured plasma corticosterone levels following a
single 1 mg/kg CNO injection after 9 weeks of chronic CNO to
determine whether repeated activation of hM3Dq in CRF neurons
induced CNO habituation. Male DREADD+ animals showed no
change in their HPA axis response to a CNO injection compared to
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CNO-naïve animals that received a 1mg/kg injection in our initial
validation experiment (Figs. 1A and 3F) and no differences in total
corticosterone released (Figs. 1B and 3G). Female DREADD+
animals also showed no change in their HPA axis response
following chronic CNO compared to CNO-naïve animals (Figs. 1D
and 3H) and showed no differences in total corticosterone
released (Figs. 1E and 3I). Both CNO-naïve and chronically treated
female DREADD+ mice had faster HPA axis recovery rates than
CNO-naïve and chronically treated DREADD+ males (Fig. 3J).
Many studies using classical chronic stress models report

locomotive changes which led us to perform an open-field test.
We found no differences between DREADD+ males and controls
in distance traveled (Fig. S2A), center time (Fig. S2B), total
movement time (Fig. S2C), or average velocity (Fig. S2D). Likewise,
we found no differences between DREADD+ females and controls
in distance traveled (Fig. S2E), center time (Fig. S2F), total
movement time (Fig. S2G), or average velocity (Fig. S2H).

Chronic CRF neuron activation increases stress reactivity in
DREADD+ males, heightens fear responses in DREADD+
females, and increases tactile sensitivity in both sexes
To determine whether chronic CRF activation altered HPA axis
reactivity to an acute stressor, we measured plasma corticosterone
levels in response to restraint stress. Male DREADD+ mice had an
elevated HPA axis response to 15 min of restraint stress (Fig. 4A)
following 9 weeks of CNO with a significant elevation in
corticosterone levels 15 min and 30min after restraint onset;
however, we did not find a significant effect of chronic CNO on
total corticosterone release (Fig. 4B). 9 weeks of CNO did not alter
the HPA response to acute restraint stress in DREADD+ females
(Fig. 4C) or affect total corticosterone released (Fig. 4D).
Altered sensory processing is associated with chronic stress

states so we next used the Von Frey filament test to measure
changes in tactile sensitivity. Male DREADD+ mice showed
increased sensitivity compared to controls (Fig. 4E) and had lower
force required for 50% paw withdrawal (VF50) (Fig. 4F). Likewise,
DREADD+ females displayed increased sensitivity (Fig. 4G) and
decreased VF50 compared to controls (Fig. 4H). These results
replicate our findings that 2 weeks of chronic multimodal stress
shifted the frequency of withdrawal curve leftward in both male
and female mice (Fig. S3A, C) and decreased the VF50 in males
and females (Fig. S3B, D) with females showing a greater percent
decrease in the VF50 from baseline than males (Fig. S3E).
Chronic stress influences the acquisition and extinction of fear

memories and given the key role of CeA CRF neurons in these
processes, we performed auditory fear conditioning to determine
whether chronic CNO affected fear memory acquisition and

extinction in DREADD+ animals. Male DREADD+ mice showed no
differences in freezing behavior during conditioning or extinction
(Fig. 4I) following 9 weeks of CNO. In contrast, we found a
significant effect of chronic CNO on freezing with DREADD+
females freezing more at baseline and conditioning trials 1 and 3,
and extinction trials 1 and 4 (Fig. 4J).

DISCUSSION
While utilization of animal models to study the lasting effects of
chronic stress has provided important insight into mechanisms
underlying disease risk, variability in outcomes between and
within labs, as well as the high labor effort required for such
studies, can often be an obstacle for the utilization and
interpretation of these models [37, 39–45, 56–61]. We developed
a model using transgenic mice expressing the Gq-coupled
Designer Receptors Exclusively Activated by Designer Receptors
(DREADD) hM3Dq in corticotropin-releasing factor (CRF) neurons,
allowing us to activate the CRF system with the DREADD ligand
clozapine-N-oxide (CNO) in a timing-selective and high-
throughput manner [51, 52]. The goal of this approach was to
administer ‘stress’ in a precisely controlled manner while reducing
the inter-animal variability often found in chronic stress para-
digms. Therefore, our studies used a chemogenetic approach
designed to validate expected outcomes aligned findings from
decades of stress research [12, 23, 25, 32, 37, 56–74].
We first utilized the HPA stress axis to validate CNO activation of

hM3Dq-expressing CRF neurons. As predicted, CNO activated the
HPA axis in DREADD+ mice, increasing corticosterone levels with
a time course similar to an acute stressor [53, 75, 76]. The CNO
activation of CRF neurons appeared dose-dependent. Interest-
ingly, dose-dependent glucocorticoid production following mod-
ulation of CRF neuron activity has not been previously shown
[77, 78]. Our results demonstrate that directly modulating CRF
neuron activity is sufficient to alter the degree of HPA axis
activation and ultimately direct corticosterone levels, highlighting
a unique aspect of this model whereby the severity of ‘stress’ can
be controlled by CNO dose. We also reproduced sex differences in
peak corticosterone production that mirrored known sex differ-
ences in adult rodent HPA reactivity [79–84]. Interestingly, females
had faster recovery rates than males at all doses tested except the
highest.
Our ultimate goal was to model chronic stress with this

chemogenetic approach. CNO is typically administered via
intraperitoneal (i.p.) injection; however, this method produces
animal stress and pain, including to control animals, and is not
high throughput. Therefore, we developed CNO-containing cookie

Fig. 2 DREADD+ males display physiological stress features and have increased c-Fos expression in the PVN and central amygdala
following repeated high-dose CNO. A 4 days after beginning CNO treat consumption, 62.5% of DREADD+ males (n= 7) partially or fully
stopped consuming CNO treats compared to 12.5% of female DREADD+ mice (n= 9). 100% of DREADD+ males partially or fully stopped
consuming the treats after 5 days compared to 25% of DREADD+ females. B Weekly body weight measurements across 4 weeks of CNO in
male mice (2-way RM ANOVA; FTime(1.345,16.14)= 4.716, p = 0.039; Fgenotype(1,12)= 3.201, p = 0. 099; Ftime*genotype(4,48)= 2.480, p = 0.056;
n= 7 per group). C 4 weeks of CNO significantly reduced body weight (unpaired t-test, t(11)= 2.638, p = 0.023; n= 6–7) and D thymus weights
(unpaired t-test; t(11)= 2.638, p = 0.023, n= 4–5) in DREADD+ males compared to controls. E Weekly body weight measurements across
4 weeks of CNO in female mice (2-way RM ANOVA; Ftime(2.478,34.70)= 4.938, p = 0.009; Fgenotype(1,14)= 0.751, p = 0.401;
Ftime*genotype(4,56)= 0.964, p = 0.435; n= 7–9). F 4 weeks of CNO did not induce overall body weight change (unpaired t-test, t(14)= 0.952,
p = 0.357, n= 7–9) or (G) affect thymus weights (unpaired t-test; t(8)=0.721, p = 0.492; n= 3–7) in female DREADD+ mice compared to
controls. H Representative images of c-Fos immunostaining in the PVN and (I) central amygdala. Dashed lines indicate region of interest used
for quantification. J Quantification of c-Fos immunoreactivity in the PVN (2-way ANOVA; Fsex(1,10)= 22.77, p = 0.0008; Fgenotype(1,10)= 20.68,
p = 0.001, Fsex*genotype(1,10)= 14.15, p = 0.004; n= 3–4). DREADD+ males had a significantly higher proportion of c-Fos immunoreactivity
compared to controls (p = 0.0007) and DREADD+ females (p = 0.0003) while there were no significant differences in DREADD+ females
compared to controls (p = 0.943). K Quantification of c-Fos immunoreactivity in the CeA (2-way ANOVA; Fsex(1,12)= 7.037, p = 0.021;
Fgenotype(1,12)= 34.16, p < 0.0001; Fsex*genotype(1,12)= 3.831, p = 0.074). DREADD+ males had a significantly higher proportion of c-Fos
immunoreactivity (p = 0.0007) compared to controls and DREADD+ females (p = 0.03) while there were no significant differences in c-Fos
immunoreactivity between DREADD+ females and controls (p = 0.073). L Representative images of HA immunostaining in the PVN and (M)
CeA in male and female DREADD+ mice. By visual inspection of expression patterns, no apparent differences were noted. (***p < 0.001, *p
< 0.05, @ main effect of genotype).
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dough treats that could be administered efficiently, consumed
within a defined timeframe, and be easily replicated across labs.
As the bioavailability and metabolism of oral CNO was not clear,
we began this pilot study with a daily dose of 5 mg/kg [85–87].
Interestingly, within the first 5 days of daily CNO treat consump-
tion, all DREADD+ male mice, but only 25% of DREADD+ female
mice, partially or fully stopped consuming the treats. To determine
if this behavior reflected an anhedonic state resulting from the
effects of repeated CRF activation, we administered palatable fruit-
flavored sucrose pellets to the mice and found that all mice readily

consumed these treats. This suggested that males learned the
negative association faster or were more sensitive to the negative
effects of CRF activation. Interestingly, this mirrors findings from
conditioned taste aversion studies where male rodents developed
an aversion to lithium chloride-containing saccharin faster than
females and were slower to extinguish this aversion [88–92].
To continue this pilot study, we transitioned from oral CNO

treats to alternate-day i.p. injections. After 4 weeks, males, but not
females, lost body weight, a classic physiological sign of severe
stress [70, 93–95]. Similarly, males, but not females, showed the
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classic stress phenotype of decreased thymus weight, consistent
with known stress-induced thymus atrophy produced by elevated
glucocorticoids [58, 96–98]. It was notable that despite having a
lower corticosterone response to CNO than females, males
developed CNO treat avoidance faster and displayed physiological
features of severe stress. Glucocorticoids are primary mediators of
stress effects, and many rodent studies model stress through
direct corticosterone administration [99–106]. Our results, how-
ever, suggest an interesting sex-specific dissociation between
glucocorticoid production and physiological outcomes, support-
ing possible cellular- and tissue-specific processes controlled by
glucocorticoids.
Next, to examine possible sex differences in CRF neuron

activation, we measured c-Fos immunoreactivity as a proxy for
neuronal activity in 2 brain regions with significant CRF neuron
populations, the PVN and central amygdala (CeA). 3 h following a
CNO injection, male DREADD+ mice showed significantly more
c-Fos immunoreactivity in both brain regions compared to
DREADD+ females. Neuronal depolarization rapidly induces
c-Fos expression, and persistent c-Fos immunoreactivity 3 h after
CNO administration suggests either prolonged or increased
neuronal activity in males in the PVN and CeA [107–109].
DREADD+ females appear to shut down CRF neuron activity
more rapidly than males, though we cannot draw definitive
conclusions without electrophysiological confirmation. This possi-
bility is supported, however, by our results that females also
recover faster from chemogenetic HPA axis activation at this same
CNO dose. As we directly activated CRF neurons with CNO, it is not
clear if these findings translate to all types of stress experiences.
Chronic stress is a critical underlying risk factor for future

neuropsychiatric disease [31, 67, 70–72, 110, 111]. Our goal for
developing this model was to titrate CRF activation to mimic
chronic environmental stress without producing severe stress, and
our 4-week pilot CNO data suggested that daily 5 mg/kg treats
and even 1mg/kg dosing every other day produced a more
severe phenotype than we wanted to model. Therefore, we
modified our CNO treat paradigm for a chronic study to include
multiple flavors and 3 alternating CNO doses. Over 9 weeks of
daily treatment, we found no changes in body weight, and all
mice continued to consume daily CNO treats, supporting that we
had identified a paradigm that was effective in both sexes and did
not induce severe physiological stress phenotypes. Using an acute
i.p. injection following 9 weeks of treatment, we validated that
both male and female DREADD+ mice continued to respond to
CNO in a nearly identical manner to CNO-naïve animals, indicating
that DREADD-expressing CRF neurons remained responsive to
CNO. Taken together with the more severe stress phenotypes
induced by higher dose CNO in our pilot study, these results again

highlight an advantage of this model where CNO dosing can
induce a wide range of desired stress phenotypes.
Many neuropsychiatric diseases are characterized by altered

HPA stress responses, and preclinical studies have repeatedly
demonstrated that chronic stress alters HPA axis reactivity to acute
stressors [112–122]. Our approach allowed us to ask whether
these changes were encoded at the level of the CRF neurons
themselves or by changes in afferent drive. In response to acute
restraint stress following 9 weeks of chronic CRF activation,
DREADD+ males showed a significant elevation in their HPA axis
response compared to DREADD- males, but no difference was
observed in females. These data suggest that the effects of
chronic stress may be encoded upstream of CRF neurons. Indeed,
chronic stress decreases PVN CRF neuron inhibition through both
reduced GABAergic signaling and decreases endocannabinoid-
mediated negative feedback, and increases glutamatergic and
noradrenergic excitation [69, 73, 123–126].
Stress-mediated changes in sensory sensitivity are a common

and translatable measure [127–129]. Therefore, we used the von
Frey filament test to measure tactile sensitivity. We found that
both male and female DREADD+ mice showed a leftward shift of
the withdrawal curve and decreased VF50 following 9 weeks of
CNO, indicating elevated tactile sensitivity. These results replicate
our findings that both male and female mice showed leftward
withdrawal curve shifts and decreased VF50 after 2 weeks of
conventional multimodal stress. Chronic stress and enhanced
sensory sensitivity have a bidirectional relationship, and the
heightened tactile perception highlights a vulnerability of the
somatosensory system to chronic stress.
We next utilized auditory fear conditioning to determine

whether chronic CRF activation altered fear memory acquisition
and extinction. Limbic CRF neurons, including in the CeA, have an
important role in the formation and extinction of fear memories.
[13, 15, 35, 36, 64, 65, 130–139]. Following 9 weeks of CNO, female
DREADD+ mice froze significantly more than controls at baseline
and across all conditioning and extinction trials, while male
DREADD+ mice showed no differences in freezing compared to
controls. Inbred mouse strains often do not show robust fear
extinction using this paradigm of extinction trials, making it
difficult to evaluate between groups [140–144]. However, the
female-specific heightened freezing, even prior to foot shock,
suggests that chronic CRF activation uniquely sensitizes fear
responses in females and may reflect underlying female-specific
vulnerability. Certainly, in humans, females are more than twice as
likely as males to develop PTSD following traumatic events
[145–151]. Interestingly, the sex differences in fear conditioning
mirrored those seen in corticosterone production, i.e., females
produced higher levels of corticosterone and showed heightened

Fig. 3 Lower variable-dose chronic CNO does not induce a severe stress physiological phenotype or lead to CNO habituation. *An
example week of the variable-dose CNO treat paradigm is shown in Table S1. A 100% of male (n= 7) and female (n= 8) DREADD+ mice
continued consuming daily CNO treats across 9 weeks. B Weekly body weight measurements across 9 weeks in DREADD- (n= 10) and
DREADD+ (n= 7) males (2-way RM ANOVA; Ftime(1.091,16.36)= 5.050, p = 0.036, Fgenotype(1,15)= 0.043, p = .838; Ftime*genotype(9,135)= 0.162,
p = 0.997). C Lower, variable dose CNO treats did not induce a greater overall body weight change in DREADD+ males compared to controls
(unpaired t-test; t(15)=0.434, p = 0.670). D Weekly body weight measurements across 9 weeks in DREADD- (n= 8) and DREADD+ (n= 8)
females (2-way RM ANOVA; Ftime(1.230,17.22)= 2.238, p = 0.15; Fgenotype(1,14)= 0.039, p = 0.847; Ftime*genotype(9,126)= 0.151, p = 0.998).
E There were no differences in overall body weight change at the end of 9 weeks in DREADD+ females compared to controls (unpaired t-test;
t(14)=0.684, p = 0.505; n= 8 per group). F 9 weeks of CNO did not affect HPA axis reactivity to an acute CNO injection (2-way RM ANOVA; FCNO
chronicity(1,9)= 0.112, p = 0.746; Ftime (1.564, 14.08)= 13.09, p = 0.001; Ftime*CNO chronicity(3, 27)= 0.494, p = 0.690) or (G) total amount of
corticosterone released following an acute CNO injection in DREADD+ males (n= 7) compared to CNO-naïve males (n= 3) (unpaired t-test;
t(8)= 0.0467, p = 0.964). H 9 weeks of chronic CNO did not affect HPA axis reactivity to an acute CNO injection (2-way RM ANOVA; FCNO
chronicity(1,10)= 0.002, p = 0.967; Ftime(1.686, 16.86)= 40.77, p < 0.0001; Ftime*CNO chronicity(3, 30)= 0.379, p = 0.769) or (I) total amount of
corticosterone released in female DREADD+ mice (n= 6) compared to CNO-naïve females (n= 6) (unpaired t-test; t(10)= 0.221, p = 0.829).
J Slope analysis of HPA axis corticosterone response from 60- to 120- mins post-injection. Female DREADD+ mice recovered faster from peak
corticosterone levels than DREADD+ males when CNO-naïve (p = 0.014) and after 9 weeks of chronic CNO administration (p = 0.003) (2-way
ANOVA; Fsex(1,18)= 18.49, p = 0.0004; FCNO chronicity(1,18)= 1.231, p = 0.282; Fsex*CNO chronicity(1,18) < 0.0001, p = 0.999). (*p < 0.05, @ main
effect of sex).
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Fig. 4 Male DREADD+ mice have heightened HPA axis reactivity while female DREADD+ mice have heightened fear responses following
chronic CNO. A Male DREADD+ mice (n= 5) had an elevated HPA axis response to 15min of restraint stress following 9 weeks of CNO (2-way
RM ANOVA; Fgenotype(1,14)= 3.904, p = 0.068, Ftime(1.671,23.39)= 77.76, p < 0.0001; Ftime*genotype(3,42)= 5.130, p = 0.004) with a significant
elevation in corticosterone levels 15mins (p = 0.009) and 30mins (p = 0.020) after restraint onset compared to controls (n= 11). B Area under
the curve analysis did not show a significant difference in total corticosterone released in DREADD+ males following 9 weeks of chronic CNO
(unpaired t-test; t(14)= 1.921, p = 0.075). C 9 weeks of chronic CNO did not alter the HPA axis response to acute restraint stress in DREADD+
females (n= 8) compared to controls (n= 7) (2-way RM ANOVA; Fgenotype(1,13)= 0.529, p = 0.480; Ftime(2.096,27.27)= 78.92, p < 0.0001;
Ftime*genotype(3,39)= 0.167, p = 0.918) and (D) did not affect total corticosterone released (unpaired t-test; t(g13)=0.729, p = 0.479). E Using the
von Frey filament test to measure tactile sensitivity, DREADD+males (n= 7) showed a leftward shift of the paw withdrawal curve compared to
controls (n= 11) (2-way RM ANOVA; Fgenotype(1,16)= 4.034, p = 0.062; Fforce(14,224)= 169.8, p < 0.0001; Fgenotype*force(14, 224)= 2.658, p
= 0.001) with DREADD+males having significantly more paw withdrawals at 1.0 g (p = 0.021), 1.4 g (p = 0.006), and 2.0 g (p = 0.001) of force.
F DREADD+ males had a lower average force required for 50% paw withdrawal (VF50) compared to controls (unpaired t-test; t(16)= 2.489, p
= 0.024). G DREADD+ females (n= 8) also showed a leftward shift of the paw withdrawal curve compared to controls (n= 8) (2-way RM
ANOVA; Fgenotype(1,14)= 14.93, p = 0.002; Fforce(4.396,61.55)= 371.2, p < 0.0001; Fgenotype*force(14,196)= 5.182, p < 0.0001) with significantly
more paw withdrawals at 1.4 g of force (p = 0.014), and (H) had lower VF50 (unpaired t-test; t(14)= 4.235, p = 0.0008) compared to controls.
I Freezing behavior during auditory fear conditioning. Male DREADD+ mice (n= 7) showed no differences in freezing behavior during
conditioning (2-way RM ANOVA; Fgenotype(1,16)= 0.287, p = 0.600; Ftrial(2.114,33.82)= 12.26, p < 0.0001; Fgenotype*trial(3,48)= 0.085, p = 0.968)
or extinction (2-way RM ANOVA; Fgenotype(1,16)= 0.129, p = 0.725; Ftrial(2.441,39.05)= 5.210, p = 0.007; Ftrial*genotype(4,64)= 1.073, p = 0.377)
compared to controls (n= 11) following 9 weeks of CNO. J Chronic CNO significantly elevated freezing behavior in female DREADD+ mice
during conditioning (n= 8 per group; 2-way RM ANOVA; Fgenotype(1,14)= 23.36, p = 0.0003, Ftrial(2.170, 30.38)= 25.24, p < 0.0001;
Fgenotype*trial(3,42)= 4.20, p = 0.011), with DREADD+ females freezing more at baseline (p = 0.003) and conditioning trials 1 (p = 0.002) and 3
(p = 0.0004). Chronic CNO also increased female DREADD+ freezing behavior (n= 6 per group) during the extinction trials (2-way RM ANOVA;
Fgenotype(1,10)= 16.23, p = 0.002; Ftrial(2.092, 20.92)= 2.324, p = 0.121; Fgenotype*trial(4,40)= 0.780, p = 0.545), with significantly higher levels of
freezing compared to controls during extinction trials 1 (p = 0.022) and 4 (p = 0.034). (***p < 0.001, **p < 0.01, *p < 0.05, @ main effect of
genotype).
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freezing. While glucocorticoids feedback negatively on PVN CRF
neurons, they have a positive relationship with CeA CRF neurons
[23, 152, 153]. Further studies are needed to dissect the
mechanisms underlying the potential sex-specific sensitivities of
CRF populations, including the PVN and CeA.
There are several limitations to this work that could be

examined in future studies. First, the simultaneous activation of
CRF-neurons in the brain for an extended period may not
completely recapitulate the time course of circuit activity under
a natural stress exposure [74, 109, 152, 154, 155]. While the
majority of parvocellular PVN AVP neurons co-express CRF and
therefore would be activated in our model, we did not examine
AVP contributions or ACTH levels in these studies [156–158]. These
studies largely focused on outcomes directly attributed to the PVN
and CeA, however, additional CRF neuronal populations have
important roles in orchestrating the stress response, including the
bed nucleus of the stria terminalis (BNST) and the basolateral
amygdala (BLA) [17–20, 138, 159]. Future work should examine the
roles of these additional populations in the development of
chronic stress-relevant phenotypes. Lastly, for several reasons
outside our control (e.g., pandemic, vivarium parasite infestation),
our experimental mouse numbers for some of the early pilot
experiments were lower than a power calculation would
recommend for detecting statistically significant sex differences.
Direct examination of sex differences will be critical for future
mechanistic studies. Our findings also highlight a need to re-
examine the methods used for measuring stress-induced pheno-
types. The robust differences we found in freezing and increased
tactile sensitivity suggest that the addition of sensory tests to
behavioral measures may enhance our ability to detect more
nuanced and sex-specific phenotypes. Collectively, these results
demonstrate the potential advantages of this model utilizing CNO
to acutely or chronically activate hm3Dq-expressing CRF neurons
to examine sex-specific stress-relevant phenotypes related to
neuropsychiatric disorders.
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