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Sex- and suicide-specific alterations in the kynurenine pathway
in the anterior cingulate cortex in major depression
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Major depressive disorder (MDD) is a serious psychiatric disorder that in extreme cases can lead to suicide. Evidence suggests that
alterations in the kynurenine pathway (KP) contribute to the pathology of MDD. Activation of the KP leads to the formation of
neuroactive metabolites, including kynurenic acid (KYNA) and quinolinic acid (QUIN). To test for changes in the KP, postmortem
anterior cingulate cortex (ACC) was obtained from the National Institute of Health NeuroBioBank. Gene expression of KP enzymes
and relevant neuroinflammatory markers were investigated via RT-qPCR (Fluidigm) and KP metabolites were measured using liquid
chromatography-mass spectrometry in tissue from individuals with MDD (n= 44) and matched nonpsychiatric controls (n= 36). We
report increased IL6 and IL1B mRNA in MDD. Subgroup analysis found that female MDD subjects had significantly decreased KYNA
and a trend decrease in the KYNA/QUIN ratio compared to female controls. In addition, MDD subjects that died by suicide had
significantly decreased KYNA in comparison to controls and MDD subjects that did not die by suicide, while subjects that did not
die by suicide had increased KYAT2 mRNA, which we hypothesise may protect against a decrease in KYNA. Overall, we found sex-
and suicide-specific alterations in the KP in the ACC in MDD. This is the first molecular evidence in the brain of subgroup specific
changes in the KP in MDD, which not only suggests that treatments aimed at upregulation of the KYNA arm in the brain may be
favourable for female MDD sufferers but also might assist managing suicidal behaviour.
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INTRODUCTION
Major depressive disorder (MDD) is a common, complex
psychiatric disorder that, in some cases, can lead to suicide. Most
suicides worldwide are related to psychiatric disorders, with MDD
being one of the most relevant risk factors [1]. The underlying
neurobiology of MDD and suicide are unknown but are thought to
be outcomes of a complex interaction of molecular changes,
environmental stimuli, genetic, and developmental factors. Under-
standing the complex neurobiology underlying MDD is further
complicated as there are sex differences in terms of prevalence
and severity [2, 3]. Thus, both sex and manner of death need to be
considered in neurobiological studies for MDD.
One of the most consistent findings of MDD is the difference in

prevalence rates according to sex, with females on average having
double the rates of MDD compared to males [4–6]. In addition,
symptom presentation is generally more severe in females [7, 8].
Females with MDD typically experience prolonged or recurrent
depression more than males, with a younger onset age and lower
quality of life. Notably, therapeutic outcomes also vary between
males and females [9, 10]. Although the incidence of sex
differences in MDD has been known for over half a century, most
molecular studies are not designed to investigate sex-specific

changes in MDD. More recently, studies have begun exploring sex
differences in MDD, showing that transcriptional abnormalities in
cortico-limbic brain regions associated with MDD differ greatly
between the sexes [11–14]. It is necessary to build on the limited
research aimed at understanding the mechanisms underlying sex-
related differences in MDD.
Dysregulation of the kynurenine pathway (KP), involving

changes in the concentration of key metabolites and enzymes
has been implicated in MDD [15], with evidence of sex differences
in non-psychiatric controls [16–18]. The KP is the main catabolic
route of tryptophan. Proinflammatory cytokines, including
interleukin-1β (IL-1β) and IL-6, activate the first, rate-limiting
enzymes of the KP, indoleamine 2,3-dioxygenase 1 (IDO1), IDO2,
or tryptophan 2,3 dioxygenase (TDO). Activation of these enzymes,
stimulate the metabolism of tryptophan into kynurenine [19]. In
the brain, kynurenine is processed by astrocytes or microglia to
produce distinct neuroactive compounds, including quinolinic
acid (QUIN), kynurenic acid (KYNA), picolinic acid (PIC), and
3-hydroxykynurenine (3-HK) (Fig. 4) [20]. In microglia, kynurenine
is metabolised by kynurenine 3-monooxygenase (KMO) into the
neuroactive intermediate 3-HK and further metabolised by
kynureninase (KYNU) to 3-hydroxyanthanilic acid (3-HAA), which
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is converted by 3-hydroxyanthranilate 3, 4-dioxygenase (3-HAO) to
produce the N-methyl-D-aspartate receptor (NMDAR) agonist,
QUIN. In astrocytes, kynurenine is metabolised by kynurenine
aminotransferase (KAT) 1-4, producing the NMDAR antagonist,
KYNA. Changes in the levels of these neuroactive KP metabolites
are likely important in psychiatric symptom generation as both
QUIN and KYNA affect glutamatergic neurotransmission, which
has been implicated as a potential biological mechanism in MDD
[21]. Increased QUIN is considered neurotoxic due to its potential
to enhance glutamatergic signalling, whilst increased KYNA is
proposed to be neuroprotective by antagonising the NMDAR and
reducing glutamatergic signalling. As QUIN and KYNA have
opposing effects on the NMDAR, the relative ratio of these
metabolites, in addition to their absolute levels, is of particular
interest in determining their potential to impact glutamatergic
signalling.
Meta-analyses of peripheral KP metabolites have reported that

levels of tryptophan, kynurenine and KYNA are decreased in MDD
compared to controls [22–25]. Collectively, this suggests a
decrease in the activity of the KYNA branch and a subsequent
increase in potential activity of QUIN [23, 26]. Meta-regression
comparing sex, irrespective of diagnosis, did not identify any
specific sex differences in the periphery [23, 24]. However, females
with current or lifetime depression have lower levels of
tryptophan in both serum and cerebrospinal fluid (CSF) compared
to males [17], and the serum kynurenine/tryptophan ratio was
shown to predict depressive symptoms in females [27]. Although
several studies have examined peripheral levels of the KP
metabolites, brain levels have rarely been studied and there is
limited investigation of sex-specific alterations of the KP in MDD.
In the brain, studies show increased KYAT1 and KYAT2 mRNAs

[28], along with increased density of TDO-positive glial cells in the
anterior cingulate cortex (ACC) of MDD subjects compared to
controls, but no change in tryptophan or kynurenine levels
[29, 30]. Furthermore, MDD subjects who died by suicide show
increased QUIN-positive cells in the subgenual ACC and anterior-
mid cingulate cortex [31]. Evidence has shown that structural and
functional damage to the ACC is core to the features of MDD
[32, 33]. Abnormal connectivity of the ACC in MDD has also been
linked with the peripheral kynurenine pathway [34]. Collectively,
these studies highlight the importance of the ACC and provide
evidence of an altered KP in MDD and suicide. However, without
investigating suicide-specific differences and adequately power-
ing studies to detect sex-specific alterations in the KP in the brain,
the understanding of how suicide differs from non-suicide cases
and the potential presence of sex-specific changes in the KP
remains unclear.
In the present study, we examined postmortem ACC brain

tissue from a large cohort of MDD subjects and non-psychiatric
controls. Specifically, we measured brain KP metabolites and
enzyme gene expression with a specific focus on sex differences.
In addition, the activity of the different KP enzymes was assessed
by determining various KP metabolite ratios (e.g., KYN/TRP ratio
estimating IDO and/or tryptophan 2,3-dioxygenase (TDO) enzyme
activity; the KYNA/KYN ratio estimating KAT enzyme activity; the 3-
HK/KYN ratio estimating KMO enzyme activity). In parallel, we
examined cytokine and glial gene expression, in the same tissues
to better understand the relationship between the KP and
relevant neuroinflammation markers.

METHODS
Subject demographics
Postmortem human grey matter from the ACC (Brodmann’s area 24) was
obtained from the NIH NeuroBioBank. Specimens were obtained across six
biorepositories: University of Miami Brain Endowment Bank, University of
Maryland Brain and Tissue Bank, Harvard Brain Tissue Resource Centre, The
Human Brain and Spinal Fluid Resource Centre, Mt. Sinai Brain Bank and

the Brain Tissue Donation Programme at the University of Pittsburgh. The
cohort consisted of 44 individuals with MDD and 36 unaffected
comparison subjects (herein referred to as controls). All demographic
information and medical data were provided by the NIH NeuroBioBank.
This study was approved by the University of Wollongong Human
Research Ethics Committee (HE13/069). All groups were matched for the
demographic variables, age, postmortem interval (PMI), RNA integrity
number (RIN), hemisphere, and sex (all p > 0.05) (Table 1). For information
on cause of death, see Supplementary Table 1.

RNA extraction and qRT-PCR
Total RNA was extracted from samples using TRIzol according to
manufacturer guidelines (Invitrogen, Mulgrave, VIC, AUS) (see supplemen-
tary methods). RNA was quantified by nanodrop using a ND-1000
Spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). The
RIN was measured for each sample using Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA). Complementary DNA was synthesised
from 2 μg total RNA using Superscript IV First-Strand Synthesis Kit and
random hexamers (Life Technologies, 18091200). TaqMan gene expression
assays (Invitrogen) were used to run high-throughput qPCR (Fluidigm;
Ramaciotti Centre for Genomics, UNSW, Sydney) to measure KP enzymes,
cytokine and glial mRNAs (Supplementary Table 2). Gene expression was
quantified using a seven-point standard curve and was normalised to the
geometric mean of three housekeeping genes: GAPDH, GUSB and TBP,
which did not differ between MDD and controls (t(67)= 0.413, p= 0.681)
or across the sex*diagnosis groups (F(1,65)= 0.580, p= 0.449). The no
template control and reverse transcriptase control did not produce a signal
in any assay.

LCMS measurement of metabolites
Tryptophan, kynurenine, 3-HK, 3-HAA, xanthurenic acid (XA), QUIN, KYNA,
and formic acid were obtained from Sigma-Merck, while methanol (100%
MeOH; Honeywell, LC–MS grade) was sourced from ChemSupply, Australia.
Ultra-pure water was obtained from a Milli-Q Direct 9 system (Sigma-
Aldrich). The following deuterated internal standards were used: d.AA,
d.KYN and d.TRP (CDN Isotopes, Canada).
Fresh frozen brain tissues (~100mg) were homogenised in a master mix

consisting of; 100 µL of ice cold 0.1% formic acid in water, 400 µL ice-cold
methanol, and 10 µM of the deuterated internal standards mix. Brain
homogenates were stored at −20 °C for 1 h to allow complete protein
precipitation. Cellular debris was removed by centrifugation at 12,000 g for
10min at 4 °C. The tissue lysates (~300 µL) were then dried under vacuum
(ThermoFisher, SpeedVac) and resuspended in 100 µL of 0.1% formic acid
in water. Detection and quantification of tryptophan, kynurenine, 3-HK, 3-
HAA, XA, QUIN, and KYNA were performed using LC-MS (See Supplemen-
tary Figs. 1–2). The LCMS-8040 (Shimazdu, Kyoto, Japan) was equipped
with a LC-20AD pump, DGU-20A3R degasser, SIL-20A autosampler, and
CTO-20AC column oven, coupled with a triple-quadruple mass spectro-
meter (LCMS-8040) fitted with an ESI interface. 5 μl of each sample was
injected into a Luna® PFP(2) 100 Å, (100 × 2mm, 3 μm) reversed phase
analytical column. Samples were eluted at a column temperature of 40 oC
and flow rate of 0.5 mL/min, with binary solvents of 0.1% formic acid in
water (A) and 100% methanol (B). Positive ion species were detected by
mass spectrometry via multiple reaction monitoring (MRM) mode. The
mass spectrometry parameters for LCMS-8040 were as follows: nebulizing
gas flow at 3 L/min, drying gas flow at 15 L/min, DL temperature at 250°C,
heat block temperature at 400 °C, and CID gas at 230 kPa. Overall, the
LLOQ was determined based on the linearity and accuracy data. All
metabolites were detected at the 20 nM range. Results were normalised to
brain tissue mass and expressed as nM/mg tissue weight.

Antidepressant drug impacts
To examine if chronic antidepressant drug treatment could have impacted
gene expression of the key kynurenine pathway enzymes, female Sprague-
Dawley rats were treated for 5 weeks with fluoxetine (10 mg/kg) or
imipramine (10 mg/kg). Gene expression of Kyat2 and Kmo was analysed
using qPCR (for full details see supplementary methods).

Statistical analysis
SPSS was used for all statistical analysis (Version 28, IBM, Armonk, NY, USA).
Extreme outliers were identified in diagnostic and sub-diagnostic groups
via boxplot (defined as three times the interquartile range) and excluded.
Data for each gene or metabolite was tested for normality using
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Shapiro–Wilk test and Q-Q plot assessment. When data was not normally
distributed, data was natural log transformed to achieve relatively normal
distribution. If normal distribution was not achieved, non-parametric
analyses were used. To examine sex-diagnosis interactions, in addition to
any main diagnosis or sex effects, two-way ANOVAs or two-way ANCOVAs
were used. Covariates were identified via Spearman’s correlations between
relevant genes/metabolites and PMI, RIN or age in MDD and controls
separately. Covariates were subsequently included if they were found to
significantly contribute to the two-way ANOVA model. Where a significant
interaction was identified, Bonferroni simple main effects were used to
determine specific changes. One-way ANOVAs or ANCOVAs with a
Bonferroni post-hoc were used to examine suicide subgroup differences
(controls, MDD-suicide, and MDD-non-suicide) for gene expression and
metabolite levels. Metabolites and genes of interest were investigated for
significant correlations using Pearson or Spearman’s correlations where
appropriate. Significance was set at p < 0.05. All data are presented as
means ± SEM.

RESULTS
Evidence of sex-specific differences in MDD
There were significant interactions between sex and diagnosis on
KYNA (F(1,74)= 4.350, p= 0.040) and the KYNA/QUIN ratio
(F(1,74)= 4.546, p= 0.036) (Fig. 1A, B). Mean KYNA levels were
significantly lower in females with MDD (−36.7%) compared to
female control subjects (p= 0.036). In MDD, females had a trend
decrease of the KYNA/QUIN ratio (−35.9%; p= 0.056) compared to
female controls. In controls, female subjects had higher KYNA
(+125.6%) and KYNA/QUIN ratio (+117.5%) levels compared to
male controls (p= 0.012, p= 0.017, respectively).
We identified a significant main effect of sex on 3-HK levels

(F(1,72)= 4.141, p= 0.046, controlling for PMI) and XA levels
(F(1,73)= 4.159, p= 0.045), with females having significantly
higher levels compared to males for both measures (3-HK:
+30.3%; XA: +65.1%) (Supplementary Fig. 3). There was no
change in any metabolite levels specifically in males with MDD
compared to male controls. In addition, no main effect of sex, or
interaction between sex and diagnosis on tryptophan, kynurenine,
3-HAA, QUIN, KYN/TRP, KYNA/KYN or the 3HK/KYN ratio was
observed (all p > 0.05). There was no main effect of diagnosis on
all metabolites measured (p > 0.05, see Supplementary Tables 3–4
for full statistics and inclusion of covariates). Sensitivity analyses
showed controlling for age and PMI had little effect on results;
however, we did see an additional significant effect of sex on
kynurenine (Supplementary Table 5 and Supplementary Fig. 4).
There was a significant main effect of sex on KMO mRNA

(F(1,64)= 5.321, p= 0.024, controlling for RIN), and a significant
interaction between sex and diagnosis on KMO mRNA
(F(1,64)= 4.899, p= 0.030, controlling for RIN). KMO mRNA was
significantly higher in male control subjects (+92.1%) compared
with female control subjects (p= 0.004). In MDD, females showed
a trend increase in KMO mRNA compared to female controls
(p= 0.067) (Fig. 1C). There was a main effect of diagnosis on KYAT2
mRNA (F(1,63)= 5.283, p= 0.025, controlling for RIN), with MDD
subjects having significantly higher KYAT2 mRNA (+16.2%)
compared to controls (Fig. 1D). No main effect of sex, diagnosis,
or interaction between sex and diagnosis on KYAT1, KYNU, HAAO
or QPRT mRNAs were observed (all p > 0.05) (See Supplementary
Table 6 for full statistics and inclusion of covariates). In the female
Sprague-Dawley rats, treatment with fluoxetine or imipramine did
not alter Kyat2 or Kmo mRNAs (Supplementary Fig. 5).
Investigation of the inflammatory cytokines revealed IL1B and

IL6 mRNAs were significantly increased in MDD compared to
control subjects (IL1B: +87.6%, F(1,59)= 6.052, p= 0.017, control-
ling for age; IL6: +162.8%, F(1,60)= 4.475, p= 0.039) (Fig. 1E, F).
There were no main effects of sex or interactions between sex and
diagnosis on IL1B or IL6 mRNAs (p > 0.05). We identified no
interaction between sex and diagnosis on gene expression of the
astroglial markers GFAP and AQP4 (F(1,64-65) < 0.233, p > 0.631) orTa
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microglial markers AIF1 and CX3CR1 (F(1,63-65) < 0.885, p > 0.350).
No main effect of sex or diagnosis were observed for GFAP, AQP4,
AIF1 or CX3CR1 mRNAs (all p > 0.05). Sensitivity analyses showed
controlling for age, PMI and RIN had little effect on results,
however, an additional significant effect of diagnosis on AIF1 was
observed (Supplementary Table 7 and Supplementary Fig. 6).

Suicide-specific changes in the KP
When analysing the cohort by suicide subgroups (control, MDD-
suicide, MDD-non-suicide), KYNA levels were significantly different
(F(2,68)= 3.434, p= 0.038, controlling for PMI), with MDD subjects
that died by suicide showing significantly lower (−60.6%) KYNA
levels compared to controls (p= 0.011) and MDD subjects that did

not die by suicide (−48.3%; p= 0.045) (Fig. 2A). KYAT2 mRNA was
significantly different across the suicide subgroups
(F(2,61)= 4.522, p= 0.015, controlling for RIN) (Fig. 2B). MDD
subjects that did not die by suicide had elevated KYAT2 mRNA
(+16.8%) compared to controls (p= 0.004). No other KP genes
or metabolites were significantly different between groups
(F(2,48-69) < 1.461, p > 0.240). There was a relatively equal spread
of males and females across each subgroup and there was no
significant difference in the proportion of females across each
group (χ2= 1.691, p= 0.429, Supplementary Table 8). Sensitivity
analyses showed that controlling for age, PMI and RIN had little
effect on results with the exception that group differences in
KYNA were not significant when both age and PMI were included

Fig. 1 Sex-specific alterations in the kynurenine pathway are present in major depressive disorder. A Kynurenic acid (KYNA) was
significantly decreased in females with major depressive disorder (MDD) compared to controls (p= 0.036). KYNA was significantly higher in
female controls compared to male controls (p= 0.012). B The KYNA/QUIN ratio was significantly higher in female controls compared to male
controls (p= 0.017). There was a trend decrease in the KYNA/QUIN ratio in females with MDD compared to female controls (p= 0.056). C KMO
mRNA was significantly higher in male controls compared to female controls (p= 0.004). In females, MDD subjects had a trend increase in
KMO mRNA compared to female controls (p= 0.067). D There was a main diagnostic effect for KYAT2 mRNA. KYAT2 mRNA was significantly
increased in MDD compared to controls (p= 0.025). E IL1B and (F) IL6 mRNAs were significantly increased in MDD compared to controls
(p= 0.017, p= 0.039, respectively). Controls are represented by circles and MDD subjects are represented by squares. Outlined shapes
represent male subjects. Bars indicate mean ± SEM. *p < 0.05, **p < 0.01.
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in the model. However, when either age or PMI was included
individually the group difference remained significant (Supple-
mentary Tables 9–10).

GFAP mRNA correlates with KYAT1 mRNA in the ACC of MDD
subjects
To determine how the KP is related to central measures of
inflammation in controls and MDD, we ran correlations between
metabolites and gene expression. A significant, positive correla-
tion was identified between the astrocyte marker, GFAP and KYAT1
mRNAs in MDD subjects (rs= 0.537, p < 0.001, Supplementary
Fig. 7B); in controls, we saw a similar patten of correlation,
however, this was not significant (rs= 0.314, p= 0.091). No
significant correlations were found between GFAP and KYAT2
mRNAs in MDD or controls (p > 0.05). Furthermore, no significant
correlations were found between the microglial marker, AIF1 (IBA1)
and KMO mRNAs in either MDD or controls (all p > 0.05). In
controls, IL6mRNA was positively correlated with KYNA (rs= 0.576,
p= 0.001) and kynurenine (rs= 0.757, p < 0.001). In MDD IL1B
mRNA was positively correlated with kynurenine (rs= 0.382,
p= 0.018). For metabolite-metabolite correlations and correlations
between representative enzyme activity ratios (metabolite ratios)
and relevant gene expression data, see Supplementary
Tables 11–12.

QUIN positively correlates with age in MDD
To explore the impact of ageing on the metabolites and gene
expression, we ran Spearman’s correlations in controls and MDD
subjects separately (See Supplementary Table 13). There was a
significant positive correlation between QUIN and age in MDD
subjects (rs= 0.575, p < 0.001) but not in controls (rs=−0.078,
p= 0.664) nor between KYNA and age (p > 0.05) (Fig. 3). There was
a significant positive correlation between KYAT1 mRNA and age in
both MDD (rs= 0.452, p= 0.012) and controls (rs= 0.424,
p= 0.008). Furthermore, there was a significant positive correla-
tion between GFAP mRNA and age in both MDD (rs= 0.542,
p= 0.002) and controls (rs= 0.525, p < 0.001) (Supplementary
Fig. 8).

DISCUSSION
This is the first study to comprehensively examine both arms of
the KP in MDD, with a specific focus on subgroups, in a large
postmortem human brain cohort. In the ACC, female MDD
subjects had significantly decreased KYNA and a trend decrease
in the KYNA/QUIN ratio compared to female controls. In addition,
we report MDD subjects that died by suicide had significantly
decreased KYNA levels in comparison to controls and MDD
subjects that did not die by suicide. Furthermore, there was a
significant increase in KYAT2 mRNA in MDD, specifically in those

that did not die by suicide. In MDD overall, there was a significant
increase in IL6 and IL1B mRNAs in the ACC. Collectively, our
findings suggest the KP is implicated in female MDD subjects and
MDD-suicide in the ACC (Fig. 4).

Sex-specific changes in MDD and controls
Our data shows evidence of sex-specific changes to the KP in
MDD. Specifically, we found that females with MDD have
significantly lower KYNA levels compared to female controls.
Furthermore, we identified a trend decrease in the KYNA/QUIN
ratio in female MDD subjects. This data may indicate a dysfunction
of the KP in the ACC that is specific to females with MDD, whereby
there is a significant decrease in KP activity. The decreased KYNA
and the KYNA/QUIN ratio in female MDD subjects could indicate
greater potential of QUIN to modulate glutamatergic signalling
towards a hyperglutamatergic environment in the ACC. Further-
more, both KYNA and the KYNA/QUIN ratio are associated with
distinct connectivity patterns related to the default mode network
[34]. Thus, our findings could suggest impacted functional
connectivity may be present in females with MDD. Decreased
plasma KYNA has previously been identified as a diagnostic
predictor of depression [35, 36] and meta-analyses report that
peripheral KYNA levels and the KYNA/QUIN ratio are decreased in
MDD [23–25]. Additionally, the serum KYNA/QUIN ratio is
negatively associated with symptom severity [37, 38]. Importantly,
this evidence is predominantly from peripheral measures and
whilst sex is commonly used as a covariate, direct investigation of
the interaction between sex and diagnosis is largely lacking.
However, one study identified that a decrease in the KYNA/QUIN
ratio in MDD was driven by changes specifically in the male cohort
[37], in contrast to our present findings.
In addition to the female-specific changes in MDD, we report

significant sex differences in controls. We identified that female
controls had significantly higher KYNA and KYNA/QUIN ratio
compared to male controls. Furthermore, females in this study
overall (combined MDD and controls) had higher levels of XA and
3-HK, accompanied by higher gene expression of KMO in control
males compared to control females. This finding was interesting as
we would expect a subsequent increase of 3-HK in males rather
than in females. However, this could indicate altered activity levels
of the KMO enzyme or possible rapid degradation of the enzyme,
contributing to the decreased metabolite levels in males. In
addition, the opposite pattern of results between KMO mRNA and
3-HK levels between males and females is interesting and
potentially highlights a discordance between mRNA and protein
expression of the KP enzymes in this study. Collectively, our
findings suggest under physiological conditions, that females
show greater metabolism of kynurenine in the ACC into both
branches of the KP compared to males. Considering women in
general have a higher incidence of depression, these changes may

Fig. 2 Suicide-specific alterations in the kynurenine pathway. A Kynurenic acid (KYNA) was significantly decreased in major depressive
disorder subjects that died by suicide (MDD-S) compared to controls (p= 0.011) and decreased compared to MDD subjects that did not die by
suicide (MDD-NS) (p= 0.045). B KYAT2 mRNA was significantly increased in MDD-NS compared to controls (p= 0.004). Female subjects are
represented by darker colour. Bars indicate mean ± SEM. *p < 0.05, **p < 0.01.
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be of importance with some parts of the development of MDD
[17]. In contrast with our brain findings, plasma and serum
kynurenine and KYNA are significantly decreased in healthy
females compared to males [16–18, 39]. The discordance between
results could be due to the inability of KYNA to cross the blood
brain barrier [40].

Suicide-specific changes in the KP
Previously, dysregulation of the KP has been linked to suicidal
behaviour and pathology [31, 41, 42]. Therefore, we explored
neurobiological changes specific to MDD-suicide. We identified
that those that died by suicide had significantly decreased KYNA
in comparison to both controls and MDD subjects that died by
other causes. Consistent with our findings in the brain, decreased
KYNA has also been reported in the CSF of those that attempted
suicide, and low levels correlated with more severe depressive and
suicidal symptoms [43]. The observed decrease in KYNA specific to
suicide and females with MDD in this cohort is interesting given
we identified significant increases in KYAT2 mRNA in MDD overall,
which may suggest the opposite i.e., increased KYNA. Further
subgroup analysis identified the increased KYAT2 mRNA was only
significant in MDD subjects that did not die by suicide. Whilst this
may be related to a power issue with the small sample size in our
MDD suicide cohort, we have previously shown in an independent
MDD cohort, that KYAT2 mRNA was increased to a greater degree
in MDD-non-suicide [28]. Similarly, to 3-HK and KMOmRNA we see
an opposite pattern of results for KYAT2 mRNA and KYNA. We
hypothesised that an increase in KYAT2 mRNA would result in
increased KYNA, as is observed in schizophrenia [44]. However, we
did not detect increased KYNA in the current study. KAT 2, the
corresponding enzyme of KYAT2 mRNA, is the major enzyme
responsible for KYNA production. Collectively, these results
suggest that KAT2 could be dysfunctional and/or working at a
reduced rate in MDD or that KYNA is not stable in MDD. One
possible explanation for putative blunted KAT2 enzyme activity
may be due to alterations in the binding sites resulting in less
efficient conversion of kynurenine into KYNA. This may explain

why we see a decrease in KYNA specifically in MDD-suicide as
these subjects do not have the increased KYAT2 mRNA
(hypothesised to lead to increased enzyme levels) to compensate
for a possible reduced efficiency. Furthermore, the discordance in
results may be related to the intricate interplay of KP signalling,
where additional stimuli could modulate the activity and synthesis
of KAT2. Further analysis of enzyme activity or protein expression
is warranted to interrogate potential alterations at the protein
activity level in MDD, particularly in subjects that died by suicide.

Increased cytokine gene expression in MDD is not associated
with increased downstream KP metabolites
In this study, we found increased gene expression of IL6 and IL1B,
which can activate the rate-limiting enzymes of the KP, in MDD.
This finding was surprising, as we would have expected to see
subsequent increases in kynurenine or some of its downstream
metabolites. In contrast to our results, reduced KP activity was
associated with decreased cytokine expression in the VLPFC [45].
Our data suggests a disconnect in the relationship between KP
activity and cytokines in the ACC in MDD. Furthermore, increased
cytokines can shift KP metabolism down the QUIN arm, via
activation of KMO [46]. This would explain our decrease in KYNA;
however, not our lack of change/increase to QUIN. Despite
showing no change in QUIN levels in the ACC in MDD, our findings
support the hypothesis of greater QUIN potential in the ACC, as
decreased KYNA may favour greater QUIN activity at the NMDAR.
Increased QUIN-positive microglial cells have previously been
reported in the ACC but decreased in the hippocampus in
postmortem brains of MDD subjects who died by suicide [31, 47].
Our null QUIN findings could be due to the short half-life of QUIN
as it gets rapidly broken down by the QPRT enzyme [20] or QUIN
levels in the ACC may be stable but be spread across different
cellular compartments (i.e., microglia, synaptic space, lysosomes)
as we measured KP metabolites in homogenous brain samples.
While we saw no changes in QUIN levels per se in depression, we
saw a positive correlation between age and QUIN only in MDD.
This could suggest that the KP is differentially regulated in ageing

Fig. 3 Quinolinic acid is positively correlated with age in major depressive disorder. A There was no significant correlation between
quinolinic acid (QUIN) and age in controls (p= 0.664). B In major depressive disorder (MDD) there was a strong positive correlation between
QUIN and age (rs= 0.575 p < 0.001). C There was no correlation between age and kynurenic acid (KYNA) in controls or (D) in MDD. Males are
represented by the outlined shapes.
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between the diagnoses, where we see an increase in QUIN in
ageing in MDD, which could be related to the progression of
depression in later life. As expected, GFAP mRNA was positively
correlated with age in both MDD and controls [48]. Furthermore,
KYAT1 mRNA was also positively correlated with age, which may
suggest increased KYAT1 mRNA may go hand in hand with
increased astrocyte reactivity in the ageing human cerebral cortex.

LIMITATIONS
One limitation of this study is that we did not have sufficient
information on antidepressant medication to consider the impact
of treatment. However, when we examined chronic antidepres-
sant treatment in female Sprague-Dawley rats, Kyat2 and Kmo
mRNAs were unchanged. Furthermore, preclinical evidence shows
that antidepressant drugs reduce QUIN and increase KYNA
[49, 50]. As our findings showed decreased KYNA in MDD
subgroups, it is unlikely that these findings are the result of
premortem antidepressant treatment. Furthermore, whether these
findings are generalisable to other brain regions requires further
examination. BA24 was used for this study, however, a subset of
control (n= 8) and MDD (n= 8) cases also contained the
neighbouring ACC region, BA32. Other limitations include our

current inability to rule out the possibility that comorbid
diagnoses or cause of death may be impacting our measures
due to a lack of statistical power. However, our diagnostic groups
were matched for cause of death. In addition, oral contraceptive
use, exercise, and diet have been shown to impact the KP
peripherally [51–53]. Therefore, as with all postmortem human
brain studies, there is potential for these factors to influence our
results. Lastly, our investigation of the enzymes of the KP was
limited to gene expression and it is unclear if these changes would
be reflected at the protein level.

CONCLUSIONS
This is the first molecular evidence in the brain of subgroup
specific alterations in the KP in the brain in MDD. In the ACC, we
identified that KYNA and the KYNA/QUIN ratio were decreased in
female MDD subjects, and that KYNA was decreased in those that
died by suicide, collectively suggesting that KP activity in the ACC
is reduced. This was surprising given we saw an increase in KYAT2
mRNA and cytokine mRNAs in the same tissue. These opposing
results suggest discordance between mRNA and protein levels
may exist, or that additional factors may be contributing to the
metabolite levels of the KP. Our subgroup findings not only

Fig. 4 Overview of the kynurenine pathway in the brain and key findings in MDD. In the brain, tryptophan can be metabolised in glial cells
via the kynurenine pathway. Dependent on the cell type different neuroactive metabolites will be produced. Predominantly in microglia,
kynurenine is metabolised into quinolinic acid whereas kynurenic acid is primarily produced in astrocytes. In the anterior cingulate cortex, IL6,
IL1B and KYAT2 mRNAs were increased in major depressive disorder (MDD) overall. KYAT2 mRNA was increased in MDD subjects that did not
die by suicide in comparison to controls. Kynurenic acid was decreased in females with MDD in comparison to female controls and was
decreased in MDD subjects that died by suicide in comparison to MDD-non-suicide and controls. Abbreviations: 3-HAO 3-hydroxyanthranilate
3,4-dioxygenase, ACMSD α-amino-β-carboxymuconate-ε-semialdehyde, IDO1 indoleamine 2, 3-dioxygenase, IL interleukin, KAT kynurenine
aminotransferase, KMO kynurenine 3-monoxygenase, KYNU kynurinase, MDD major depressive disorder, NAD+ nicotinamide adenine
dinucleotide, TDO tryptophan 2,3-dioxygenase, QPRT quinolinic acid phosphoribosyltransferase.
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suggest that treatments aimed at upregulation of the KYNA arm in
the brain may be favourable for female MDD sufferers but also
might assist managing suicidal behaviour. Drugs that increase
cerebral KYNA and show rapid antidepressant effects in preclinical
models [54, 55] have recently moved to clinical trials but did not
show favourable outcomes [56]. However, future trials need to
consider the importance of subgroups when selecting the most
suitable cohorts. Together our findings show increased inflamma-
tion is present in the ACC in MDD coupled with sex- and suicide-
specific alterations in the KP. These findings could inform future
novel treatment approaches in MDD.
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