Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrophysiological correlates of attention in the locus coeruleus–prelimbic cortex circuit during the rodent continuous performance test

Abstract

Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and prelimbic cortex (PrL), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-PrL projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and PrL for local field potential (LFP) recordings during rCPT training, and identified an increase in PrL delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the PrL in theta frequencies during correct responses while the PrL leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: rCPT training recruits PrL-projecting LC neurons.
Fig. 2: LFP recording sessions within rCPT training stages.
Fig. 3: Correct responses (hits) during Stage 3 of rCPT training increase delta and theta power within the PrL.
Fig. 4: Correct responses during Stage 3-late of rCPT training increase delta power within the LC.
Fig. 5: LC leads PrL in theta and beta frequencies during hits in Stage 3-late.

Similar content being viewed by others

References

  1. Hooks K, Milich R, Pugzles Lorch E. Sustained and selective attention in boys with attention deficit hyperactivity disorder. J Clin Child Psychol. 1994;23:69–77.

    Article  Google Scholar 

  2. Brodeur DA, Pond M. The development of selective attention in children with attention deficit hyperactivity disorder. J Abnorm Child Psychol. 2001;29:229–39.

    Article  PubMed  CAS  Google Scholar 

  3. Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry. 2006;60:1071–80.

    Article  PubMed  Google Scholar 

  4. Paelecke-Habermann Y, Pohl J, Leplow B. Attention and executive functions in remitted major depression patients. J Affect Disord. 2005;89:125–35.

    Article  PubMed  Google Scholar 

  5. van der Meere J, Börger N, van Os T. Sustained attention in major unipolar depression. Percept Mot Skills. 2007;104:1350–4.

    Article  PubMed  Google Scholar 

  6. Neuchterlein KH, Dawson ME, Ventura J, Miklowitz D, Konishi G. Information-processing anomalies in the early course of schizophrenia and bipolar disorder. Schizophr Res. 1991;5:195–6.

    Article  PubMed  CAS  Google Scholar 

  7. Hain C, Maier W, Klingler T, Franke P. Positive/negative symptomatology and experimental measures of attention in schizophrenic patients. Psychopathology. 1993;26:62–68.

    Article  PubMed  CAS  Google Scholar 

  8. Young JW, Bismark AW, Sun Y, Zhang W, McIlwain M, Grootendorst I, et al. Neurophysiological characterization of attentional performance dysfunction in schizophrenia patients in a reverse-translated task. Neuropsychopharmacology. 2017;42:1338–48.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rutschmann J, Cornblatt B, Erlenmeyer-Kimling L. Sustained attention in children at risk for schizophrenia. Report on a continuous performance test. Arch Gen Psychiatry. 1977;34:571–5.

    Article  PubMed  CAS  Google Scholar 

  10. Rosvold HE, Mirsky AF, Sarason I, Bransome ED, Beck LH. A continuous performance test of brain damage. J Consult Psychol. 1956;20:343–50.

    Article  PubMed  Google Scholar 

  11. Sanford JA, Turner A. The integrated visual and auditory continuous performance test. Interpretive manual. Richmond, VA: BrainTrain; 2004.

  12. Halperin JM, Wolf LE, Pascualvaca DM, Newcorn JH, Healey JM, O’Brien JD, et al. Differential assessment of attention and impulsivity in children. J Am Acad Child Adolesc Psychiatry. 1988;27:326–9.

    Article  PubMed  CAS  Google Scholar 

  13. Halperin JM, Sharma V, Greenblatt E, Schwartz ST. Assessment of the continuous performance test: reliability and validity in a nonreferred sample. Psychol Assess. 1991;3:603–8.

    Article  Google Scholar 

  14. Berger I, Slobodin O, Cassuto H. Usefulness and validity of continuous performance tests in the diagnosis of attention-deficit hyperactivity disorder children. Arch Clin Neuropsychol. 2017;32:81–93.

  15. Gordon M, Mettelman BB. The assessment of attention: I. Standardization and reliability of a behavior-based measure. J Clin Psychol. 1988;44:682–90.

    Article  PubMed  CAS  Google Scholar 

  16. Earle-Boyer EA, Serper MR, Davidson M, Harvey PD. Continuous performance tests in schizophrenic patients: stimulus and medication effects on performance. Psychiatry Res. 1991;37:47–56.

    Article  PubMed  CAS  Google Scholar 

  17. Fitzpatrick PA, Klorman R, Brumaghim JT, Borgstedt AD. Effects of sustained-release and standard preparations of methylphenidate on attention deficit disorder. J Am Acad Child Adolesc Psychiatry. 1992;31:226–34.

    Article  PubMed  CAS  Google Scholar 

  18. Sanford JA, Turner A. Manual for the integrated visual and auditory continuous performance test. Richmond, VA: BrainTrain; 1995.

  19. Young JW, Light GA, Marston HM, Sharp R, Geyer MA. The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS ONE. 2009;4:e4227.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim CH, Hvoslef-Eide M, Nilsson SRO, Johnson MR, Herbert BR, Robbins TW, et al. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology. 2015;232:3947–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KAL, Nithianantharajah J, et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology. 2012;62:1191–203.

    Article  PubMed  CAS  Google Scholar 

  22. Parasuraman R. Memory load and event rate control sensitivity decrements in sustained attention. Science. 1979;205:924–7.

    Article  PubMed  CAS  Google Scholar 

  23. Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, et al. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology. 2017;234:2837–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nilsson SRO, Heath CJ, Takillah S, Didienne S, Fejgin K, Nielsen V, et al. Continuous performance test impairment in a 22q11.2 microdeletion mouse model: improvement by amphetamine. Transl Psychiatry. 2018;8:247.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 1998;280:747–9.

    Article  PubMed  CAS  Google Scholar 

  26. Fallgatter AJ, Bartsch AJ, Herrmann MJ. Electrophysiological measurements of anterior cingulate function. J Neural Transm. 2002;109:977–88.

    Article  PubMed  CAS  Google Scholar 

  27. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004;303:1023–6.

    Article  PubMed  CAS  Google Scholar 

  28. Weissman DH, Gopalakrishnan A, Hazlett CJ, Woldorff MG. Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb Cortex. 2005;15:229–37.

    Article  PubMed  CAS  Google Scholar 

  29. Fallgatter AJ, Ehlis A-C, Seifert J, Strik WK, Scheuerpflug P, Zillessen KE, et al. Altered response control and anterior cingulate function in attention-deficit/hyperactivity disorder boys. Clin Neurophysiol. 2004;115:973–81.

    Article  PubMed  Google Scholar 

  30. Salgado-Pineda P, Junqué C, Vendrell P, Baeza I, Bargalló N, Falcón C, et al. Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage. 2004;21:840–7.

    Article  PubMed  Google Scholar 

  31. Honey GD, Pomarol-Clotet E, Corlett PR, Honey RAE, McKenna PJ, Bullmore ET, et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain. 2005;128:2597–611.

    Article  PubMed  Google Scholar 

  32. Laubach M, Amarante LM, Swanson K, White SR. What, if anything, is rodent prefrontal cortex? ENeuro. 2018;5:ENEURO.0315-18.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Heukelum S, Mars RB, Guthrie M, Buitelaar JK, Beckmann CF, Tiesinga PHE, et al. Where is cingulate cortex? A cross-species view. Trends Neurosci. 2020;43:285–99.

    Article  PubMed  Google Scholar 

  34. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA. 2002;99:523–8.

    Article  PubMed  CAS  Google Scholar 

  35. Totah NKB, Kim YB, Homayoun H, Moghaddam B. Anterior cingulate neurons represent errors and preparatory attention within the same behavioral sequence. J Neurosci. 2009;29:6418–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wu D, Deng H, Xiao X, Zuo Y, Sun J, Wang Z. Persistent neuronal activity in anterior cingulate cortex correlates with sustained attention in rats regardless of sensory modality. Sci Rep. 2017;7:43101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim H, Ährlund-Richter S, Wang X, Deisseroth K, Carlén M. Prefrontal parvalbumin neurons in control of attention. Cell. 2016;164:208–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sara SJ. Locus coeruleus reports changes in environmental contingencies. Behav Brain Sci. 2016;39:e223.

    Article  PubMed  Google Scholar 

  39. Barbas H, Henion TH, Dermon CR. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1991;313:65–94.

    Article  PubMed  CAS  Google Scholar 

  40. Goldman-Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242:535–60.

    Article  PubMed  CAS  Google Scholar 

  41. Chudasama Y, Muir JL. Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav Neurosci. 2001;115:417–28.

    Article  PubMed  CAS  Google Scholar 

  42. Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. Thalamic amplification of cortical connectivity sustains attentional control. Nature. 2017;545:219–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. McGarrity S, Mason R, Fone KC, Pezze M, Bast T. Hippocampal neural disinhibition causes attentional and memory deficits. Cereb Cortex. 2017;27:4447–62.

    PubMed  Google Scholar 

  44. DeBrosse AC, Li Y, Wiseman R, Ross R, Garrison S, Hallock HL, et al. Stimulus degradation impairs performance in a rodent continuous performance test. BioRxiv. 2021. https://doi.org/10.1101/2021.08.31.458320.

    Article  Google Scholar 

  45. Jarvis MR, Mitra PP. Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 2001;13:717–49.

    Article  PubMed  CAS  Google Scholar 

  46. Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 2010;104:1195–210.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Szczepanski SM, Crone NE, Kuperman RA, Auguste KI, Parvizi J, Knight RT. Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol. 2014;12:e1001936.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Howe WM, Gritton HJ, Lusk NA, Roberts EA, Hetrick VL, Berke JD, et al. Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling during cue detection. J Neurosci. 2017;37:3215–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chacko RV, Kim B, Jung SW, Daitch AL, Roland JL, Metcalf NV, et al. Distinct phase-amplitude couplings distinguish cognitive processes in human attention. Neuroimage. 2018;175:111–21.

    Article  PubMed  Google Scholar 

  50. Foote SL, Aston-Jones G, Bloom FE. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA. 1980;77:3033–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 1983;63:844–914.

    Article  PubMed  CAS  Google Scholar 

  52. Aston-Jones G, Bloom FE. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci. 1981;1:887–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.

    Article  PubMed  CAS  Google Scholar 

  54. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science. 1975;189:55–8.

    Article  PubMed  CAS  Google Scholar 

  55. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Grant SJ, Aston-Jones G, Redmond DE. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res Bull. 1988;21:401–10.

    Article  PubMed  CAS  Google Scholar 

  57. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.

    Article  PubMed  Google Scholar 

  58. Chandler DJ, Gao W-J, Waterhouse BD. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci USA. 2014;111:6816–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, et al. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci. 2010;30:14543–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Joshi S, Gold JI. Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex. ELife. 2022;11:e63490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

    Article  PubMed  CAS  Google Scholar 

  62. Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76:130–41.

    Article  PubMed  CAS  Google Scholar 

  63. McGaughy J, Ross RS, Eichenbaum H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience. 2008;153:63–71.

    Article  PubMed  CAS  Google Scholar 

  64. Newman LA, Darling J, McGaughy J. Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. Psychopharmacology. 2008;200:39–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Arnsten AF, Goldman-Rakic PS. Catecholamines and cognitive decline in aged nonhuman primates. Ann N Y Acad Sci. 1985;444:218–34.

    Article  PubMed  CAS  Google Scholar 

  66. Robbins TW. Arousal systems and attentional processes. Biol Psychol. 1997;45:57–71.

    Article  PubMed  CAS  Google Scholar 

  67. Mair RD, Zhang Y, Bailey KR, Toupin MM, Mair RG. Effects of clonidine in the locus coeruleus on prefrontal- and hippocampal-dependent measures of attention and memory in the rat. Psychopharmacology. 2005;181:280–8.

    Article  PubMed  CAS  Google Scholar 

  68. Ramos BP, Arnsten AFT. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharm Ther. 2007;113:523–36.

    Article  CAS  Google Scholar 

  69. Ding Z, Brown JW, Rueter LE, Mohler EG. Profiling attention and cognition enhancing drugs in a rat touchscreen-based continuous performance test. Psychopharmacology. 2018;235:1093–105.

    Article  PubMed  CAS  Google Scholar 

  70. Caballero-Puntiverio M, Lerdrup LS, Arvastson L, Aznar S, Andreasen JT. ADHD medication and the inverted U-shaped curve: a pharmacological study in female mice performing the rodent continuous performance test (rCPT). Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109823.

    Article  PubMed  CAS  Google Scholar 

  71. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    Article  PubMed  Google Scholar 

  72. Condé F, Maire-Lepoivre E, Audinat E, Crépel F. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol. 1995;352:567–93.

    Article  PubMed  Google Scholar 

  73. Payzan-LeNestour E, Dunne S, Bossaerts P, O’Doherty JP. The neural representation of unexpected uncertainty during value-based decision making. Neuron. 2013;79:191–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci. 2010;10:252–69.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jepma M, Nieuwenhuis S. Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J Cogn Neurosci. 2011;23:1587–96.

    Article  PubMed  Google Scholar 

  76. Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron. 2005;46:681–92.

    Article  PubMed  CAS  Google Scholar 

  77. Glennon E, Carcea I, Martins ARO, Multani J, Shehu I, Svirsky MA, et al. Locus coeruleus activation accelerates perceptual learning. Brain Res. 2019;1709:39–49.

    Article  PubMed  CAS  Google Scholar 

  78. Cope ZA, Vazey EM, Floresco SB, Aston Jones GS. DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. Neurobiol Learn Mem. 2019;161:1–11.

    Article  PubMed  Google Scholar 

  79. McClure SM, Gilzenrat MS, Cohen JD. An exploration-exploitation model based on norepinepherine and dopamine activity. In: Advances in Neural Information Processing Systems. Vancouver, BC, Canada: 2005.

  80. Kane MJ, Gross GM, Chun CA, Smeekens BA, Meier ME, Silvia PJ, et al. For whom the mind wanders, and when, varies across laboratory and daily-life settings. Psychol Sci. 2017;28:1271–89.

    Article  PubMed  PubMed Central  Google Scholar 

  81. DeBrosse AC, Wheeler AM, Barrow JC, Carr GV. Inhibition of catechol-O-methyltransferase does not alter effort-related choice behavior in a fixed ratio/concurrent chow task in male mice. Front Behav Neurosci. 2020;14:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Crottaz-Herbette S, Menon V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci. 2006;18:766–80.

    Article  PubMed  CAS  Google Scholar 

  83. Hickey C, Chelazzi L, Theeuwes J. Reward changes salience in human vision via the anterior cingulate. J Neurosci. 2010;30:11096–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kennerley SW, Walton ME, Behrens TEJ, Buckley MJ, Rushworth MFS. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9:940–7.

    Article  PubMed  CAS  Google Scholar 

  85. Luttrell A, Stillman PE, Hasinski AE, Cunningham WA. Neural dissociations in attitude strength: distinct regions of cingulate cortex track ambivalence and certainty. J Exp Psychol Gen. 2016;145:419–33.

    Article  PubMed  Google Scholar 

  86. Mento G, Astle DE, Scerif G. Cross-frequency phase-amplitude coupling as a mechanism for temporal orienting of attention in childhood. J Cogn Neurosci. 2018;30:594–602.

    Article  PubMed  Google Scholar 

  87. Jones BE, Halaris AE, McIlhany M, Moore RY. Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Brain Res. 1977;127:1–21.

    Article  PubMed  CAS  Google Scholar 

  88. Jones BE, Moore RY. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 1977;127:25–53.

    Article  PubMed  CAS  Google Scholar 

  89. Foote SL, Morrison JH. Extrathalamic modulation of cortical function. Annu Rev Neurosci. 1987;10:67–95.

    Article  PubMed  CAS  Google Scholar 

  90. Koga K, Yamada A, Song Q, Li X-H, Chen Q-Y, Liu R-H, et al. Ascending noradrenergic excitation from the locus coeruleus to the anterior cingulate cortex. Mol Brain. 2020;13:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Buchanan SL, Thompson RH, Maxwell BL, Powell DA. Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res. 1994;100:469–83.

    Article  PubMed  CAS  Google Scholar 

  92. Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290:213–42.

    Article  PubMed  CAS  Google Scholar 

  93. Totah NK, Logothetis NK, Eschenko O. Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus. J Neurophysiol. 2021;125:1191–201.

    Article  PubMed  CAS  Google Scholar 

  94. Sales AC, Friston KJ, Jones MW, Pickering AE, Moran RJ. Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: an active inference model. PLoS Comput Biol. 2019;15:e1006267.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cavanagh JF, Gregg D, Light GA, Olguin SL, Sharp RF, Bismark AW, et al. Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl Psychiatry. 2021;11:482.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The locus coeruleus is a complex and differentiated neuromodulatory system. Neuron. 2018;99:1055–68.e6.

    Article  PubMed  CAS  Google Scholar 

  97. Noei S, Zouridis IS, Logothetis NK, Panzeri S, Totah NK. Distinct ensembles in the noradrenergic locus coeruleus are associated with diverse cortical states. Proc Natl Acad Sci USA. 2022;119:e2116507119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Del Cerro I, Martínez-Zalacaín I, Guinea-Izquierdo A, Gascón-Bayarri J, Viñas-Diez V, Urretavizcaya M, et al. Locus coeruleus connectivity alterations in late-life major depressive disorder during a visual oddball task. Neuroimage Clin. 2020;28:102482.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, et al. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry. 2018;83:254–62.

    Article  PubMed  Google Scholar 

  100. Craven RM, Priddle TH, Crow TJ, Esiri MM. The locus coeruleus in schizophrenia: a postmortem study of noradrenergic neurones. Neuropathol Appl Neurobiol. 2005;31:115–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Martinowich and Carr laboratories for helpful comments and suggestions. We also thank Aimee Ormond and Deveren Manley for assistance with animal care.

Funding

This work was supported by internal funding from the Lieber Institute for Brain Development, and the National Institute of Mental Health (R01MH105592 to KM; R56MH126233 to GVC and KM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HLH, GVC, and KM. Methodology: HLH, JMM, JMB, SSA, ACD, and YL. Validation: JMB and SO. Formal analysis: HLH and SSA. Investigation: HLH, SSA, JMB, JMM, and SO. Data curation: HLH, SA, and JMB. Writing—original draft: HLH, SSA, JMB, GVC, and KM. Writing—review and editing: HLH, SSA, JMB, GVC, and KM. Visualization: HLH, SSA, and JMB. Supervision: HLH, JMB, and KM. Project administration: JMB, KM, and GVC. Funding acquisition: GVC and KM.

Corresponding authors

Correspondence to Gregory V. Carr or Keri Martinowich.

Ethics declarations

Competing interests

KM is the Social Media Editor for Neuropsychopharmacology. GVC is a scientific advisor for LongTermGevity, Inc. and owns stock options in the company. LongTermGevity, Inc. was not involved in the funding, design, or execution of these studies. No other authors have financial relationships with commercial interests, and the authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallock, H.L., Adiraju, S.S., Miranda-Barrientos, J. et al. Electrophysiological correlates of attention in the locus coeruleus–prelimbic cortex circuit during the rodent continuous performance test. Neuropsychopharmacol. 49, 521–531 (2024). https://doi.org/10.1038/s41386-023-01692-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01692-3

Search

Quick links