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The parabrachial to central amygdala pathway is critical to
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The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the
brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PBN) to central amygdala (CeA) pathway has
been reported in rodent models of persistent pain. However, the functional significance of this pathway in the modulation of the
somatosensory component of pain was recently challenged by studies showing that spinal nociceptive neurons do not target CeA-
projecting PBN cells and that manipulations of this pathway have no effect on reflexive-defensive somatosensory responses to
peripheral noxious stimulation. Here, we showed that activation of CeA-projecting PBN neurons is critical to increase both stimulus-
evoked and spontaneous nociceptive responses following an injury in male and female mice. Using optogenetic-assisted circuit
mapping, we confirmed a functional excitatory projection from PBN→CeA that is independent of the genetic or firing identity of
CeA cells. We then showed that peripheral noxious stimulation increased the expression of the neuronal activity marker Fos in CeA-
projecting PBN neurons and that chemogenetic inactivation of these cells decreased behavioral hypersensitivity in models of
neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we showed that chemogenetic activation of CeA-
projecting PBN neurons is sufficient to induced bilateral hypersensitivity without injury. Together, our results indicate that the
PBN→CeA pathway is a key modulator of pain-related behaviors that can increase reflexive-defensive and affective-motivational
responses to somatosensory stimulation in injured states without affecting nociception under normal physiological conditions.

Neuropsychopharmacology (2024) 49:508–520; https://doi.org/10.1038/s41386-023-01673-6

INTRODUCTION
Chronic pain is a multidimensional experience that encompasses
reflexive-defensive somatosensory and affective-motivational com-
ponents. In the United States alone, more than 1 in 5 Americans
suffer from chronic pain [1], with similar statistics observed across
52 countries [2]. Despite this, diagnostic tools and currently
available treatments are limited and can lead to opioid addiction in
some people [3]. This state-of-affairs underscore the importance of
identifying mechanisms involved in pain processing to potentially
improve diagnosis and develop prospective treatments.
The spino-ponto-amygdaloid pathway is a major ascending

pathway involved in the relay of nociceptive information from
the spinal cord to the brain [4–7]. In this pathway, peripheral
nociceptors receive and relay nociceptive inputs to second order
neurons in lamina I of the spinal cord, which then send projections
to the pontine parabrachial nucleus (PBN) [8–11]. Several studies
have shown that PBN neurons respond to noxious stimuli
[8, 12–14] and function as a hub for the relay of nociceptive
information to multiple brain regions, including the periaqueduc-
tal gray, hypothalamic and thalamic nuclei, and extended
amygdala nuclei [12, 15–17].
Among these brain areas, the central amygdala (CeA) is

anatomically well-positioned to integrate somatosensory and

affective signals within the brain. It receives somatosensory
signals via the spino-ponto-amygdaloid pain pathway and
polymodal information, including those related to affective and
cognitive states, via inputs from the basolateral and lateral
amygdala nuclei, which in turn receive inputs from cortical and
thalamic regions [18]. In-vivo and ex-vivo studies have shown that
CeA neurons respond to peripheral noxious stimuli and are
sensitized following injury in several rodent models of pain
[19–21]. At the behavioral level, manipulations of CeA neurons
have been shown to modulate reflexive-defensive and affective-
motivational components of pain in response to injury and to
contribute to different types of analgesia [22–26].
The proposed function of the PBN→CeA pathway in pain

processing is supported by ex-vivo electrophysiological studies
that have shown potentiation of glutamatergic synaptic transmis-
sion in response to injury [20, 21, 27–30]. Consistently, behavioral
studies showed that CeA-projecting PBN neurons modulate
escape behaviors, affective-motivational responses to painful
stimuli, aversion, and threat memory [12, 31, 32]. A notable
finding from these studies is that reflexive-defensive responses to
noxious stimuli are unaltered by manipulations of this pathway
[12, 31–33, 35]. These combined results suggest that the
PBN→CeA pathway contributes to the affective-motivational but
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not the somatosensory component of pain. This notion was
further supported by studies showing that spinal nociceptive
neurons do not target CeA-projecting PBN neurons [34–36]. In the
present study, we determined the function of the PBN→CeA
pathway in baseline nociception and injury-induced peripheral
hypersensitivity using mouse models of inflammatory and
neuropathic pain coupled with viral-mediated anatomical tracers,
optogenetic-assisted circuit mapping, and intersectional chemo-
genetic methods. Our results indicate that the PBN→CeA pathway
is critical to increase both stimulus-evoked and spontaneous
nociceptive responses in injured states, without altering baseline
nociception.

MATERIALS AND METHODS
Subjects
Experiments were approved by the Animal Care and Use Committee of
the National Institute of Neurological Disorders and Stroke and the
National Institute on Deafness and other Communication Disorders with
the guidance from the National Institutes of Health (NIH). In-house bred
or purchased (Jackson Laboratory) C57BL/6J or Swiss Webster mice aged
8–17 weeks were used for all behavioral and histological experiments.
Electrophysiological experiments were performed using heterozygous
Prkcd-cre mice (GENSAT – founder line 011559-UCD) or heterozygous
Sst-cre (Jackson Laboratory – founder line 018973) crossed with
homozygous Ai9 mice (Jackson Laboratories – founder line 007909).
The expression and fidelity of Cre in Som+ and PKCδ+ neurons have
been previously described [23, 37]. Details about genotyping, housing
conditions and handling are described in Supplementary information.
Behavioral tests were conducted under red light during the dark period
(10 a.m. to 6 p.m.). The sex of the mice used for each experiment is
described in the Supplementary information and figure legends.
Animals were randomly assigned to experimental groups and all
experiments and analyses were performed blinded to experimental
treatment.

Stereotaxic injections
Stereotaxic surgeries for acute injections into the CeA and PBN were
performed using standard procedures as described previously [23].
Detailed description of viruses, coordinates and procedures for injection
site verification used for each experiment are described in Supplementary
information.

Sciatic cuff implantation and nociceptive testing
Surgeries for cuff implantation were performed as described previously
[23, 38, 39]. Nociceptive testing on males and females was performed
separately. Experimenter was blind to treatment for all behavioral testing
and every cohort was counterbalanced to include mice from all
experimental groups. von Frey, acetone, Hargreaves, and Randall-Selitto
were used to measure sensitivity to tactile, cold, heat and deep tissue
pressure, respectively, using standard procedures described previously
[22, 40–42]. The formalin test was used as model inflammatory pain as
described previously [43–45]. Detailed description for cuff surgeries and
behavioral testing, including timelines for each experiment, are included
in Supplementary information.

Immunohistochemistry, image acquisition and analysis
Standard procedures were used for all histological experiments as
described previously [23]. A detailed description of experimental timelines,
antibodies, anatomical definitions of individual brain regions, imaging,
quantification, and analyses parameters are included in the Supplementary
information.

Ex-vivo electrophysiology
Preparation of acute brain slices for electrophysiological experiments,
whole-cell, patch-clamp recordings in CeA and PBN neurons,
optogenetic-assisted circuit mapping and validation of chemogenetic
experiments were performed using standard procedures as previously
described [23, 46, 47]. Details for experimental procedures, timelines,
and analyses of individual experiments are included in Supplementary
information.

Statistical analysis
Data are presented as mean ± SEM. Statistical analysis was performed
using unpaired or paired two tailed t test, or two-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparison tests using Graph Pad
Prism version 9.0. The significance level was set at p < 0.05. Sample sizes
and p values are described in each figure legend. Detailed information on
each statistical test performed are shown in Table S1.

RESULTS
Excitatory projection from PBN→CeA is independent of the
genetic or firing identity of CeA cells
To validate the functional circuitry between the PBN and CeA, we
used optogenetic-assisted circuit mapping in acute brain slices
from Sst-cre::Ai9 or Prkcd-cre::Ai9 mice injected with AAV-hChR2-
EYFP into the PBN (Fig. 1A–C). Consistent with previous
reports [4, 27] fluorescent terminals were readily observed
within the laterocapsular subdivision of the CeA (CeLC) when
the Channelrhodopsin-2 (ChR2)-expressing virus was injected into
the PBN (Fig. 1B). Additionally, firing phenotypes in PKCδ+ and
Som+ CeA neurons were heterogeneous [46, 48, 49] (Fig. 1D). Blue
light stimulation of PBN terminals in the CeA evoked excitatory
postsynaptic currents (oEPSCs) in the majority of PKCδ+ (80%)
and Som+ neurons (90%) recorded (Fig. 1E, F). These results were
obtained regardless of firing phenotype (Fig. 1E). Together, these
findings confirm that CeLC neurons receive excitatory efferent
projections originating from the PBN independently of the genetic
or firing identity of CeA neurons.

Peripheral noxious stimulation induced Fos expression in CeA-
projecting PBN neurons without affecting intrinsic excitability
after nerve injury
Previous studies have claimed that CeA-projecting PBN neurons
do not receive direct nociceptive inputs from the spinal cord
[32, 35, 36]. However, separate studies have shown that the PBN is
activated in response to peripheral noxious stimulation
[12, 13, 50, 51] and that injury potentiates the PBN→CeA pathway
in several mouse models of persistent pain. Neurons expressing
the calcitonin gene-related peptide (CGRP) are among the PBN
neurons activated by noxious stimulation [52]. CGRP-expressing
PBN neurons have also been shown to project to the CeA and to
be anatomically associated with presynaptic terminals of spino-
parabrachial neurons [31, 53]. Whether CeA-projecting PBN
neurons are activated by peripheral noxious stimulation has not
been directly tested.
We addressed this question by measuring Fos in response to

pinch stimulation of the hind paw. Fos is a marker of neuronal
activity previously shown to peak in the PBN 60–90 min after
noxious stimulation that returns to baseline after 8 h [12, 13].
We used an intersectional genetic approach for the identifica-
tion of CeA-projecting PBN neurons. C57BL/6J mice were
injected with a cre-expressing retrograde Adeno-associated
virus (AAV) (pENN.AAV.hSyn.HI.eGFP-Cre.WPRE.SV40) into the
CeA and a cre-dependent AAV encoding the red fluorescent
protein mCherry (AAV8-hSyn-DIO-mcherry) into the PBN
(Fig. S1). A pAAV.CMV encoding LacZ was co-injected with the
cre-expressing retrograde AAV to identify the injection site in
the CeA. As illustrated in Figure S1B–D, LacZ expression was
restricted to the CeA, and robust transduction efficacy was
observed at all CeA rostro-caudal levels. Evaluation of mCherry
expression in the PBN showed robust transduction throughout
the rostro-caudal PBN that was mostly restricted to the external
lateral PBN (Fig. S1E–G). These results confirm that we can
selectively visualize CeA-projecting PBN neurons using this
intersectional genetic strategy.
Consistent with previous studies [12, 13], evaluation of Fos

expression in the PBN of male and female mice showed significant
(p < 0.001) increases in Fos+ neurons in response to pinch
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stimulation of the hind paw, when compared to control mice that
did not receive pinch stimulation (Fig. 2A–C). Quantification of
mCherry+ CeA-projecting PBN neurons co-expressing Fos further
showed that approximately 10% of pinch-induced Fos was
localized to CeA-projecting PBN neurons (Fig. 2D) and approxi-
mately 20% of CeA-projecting PBN neurons expressed Fos after
pinching (Fig. 2E).
In contrast, significantly (p < 0.05) lower co-expression of Fos

was seen in CeA-projecting PBN neurons in control no-pinch
conditions (Fig. 2D, E). No significant sex differences in number of
positive cells were observed in any of the groups evaluated
(Table S1).

Follow-up patch-clamp electrophysiological experiments in
acute brain slices showed that CeA-projecting PBN neurons have
heterogeneous firing types, including spontaneous, regular
spiking, late firing, reluctant firing, and low-threshold bursting
neurons (Fig. 2F–H). Evaluation of intrinsic membrane and firing
properties following nerve injury further revealed that CeA-
projecting PBN neurons are unaltered by sciatic nerve cuff
implantation, compared to cells from sham conditions (Fig. 2I–L).
Together with the histological data, these results show that

CeA-projecting PBN neurons are activated by peripheral noxious
stimulation, but that injury does not lead to plasticity of intrinsic
excitability in these PBN cells.
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Fig. 1 Validation of functional projection from PBN to CeA. A Male Som-Cre::Ai9 and PKCδ::Ai9 mice were stereotaxically injected with
rAAV1-hSyn-hChR2(H134R)-EYFP into the PBN. Whole-cell patch-clamp recordings were performed on mice at least 4 weeks following the
injection. B Representative images of the PBN (top) and CeA (bottom). Left panel depicts differential interference contrast images. Right panel
depicts fluorescent images of transduced cells within the PBN and fluorescent PBN terminals within the CeA. C Schematic depicting
optogenetic-assisted circuit mapping experiments. Whole-cell patch-clamp recordings of optically evoked excitatory postsynaptic current
(oEPSC) in response to blue light (470 nm) stimulation of PBN terminals in CeA-Som+ or CeA-PKCδ+ neurons. D Representative voltage traces
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depolarizing current injection. E Representative current traces of oEPSCs in CeA-PKCδ+ and CeA-Som+ neurons in response to a 10 ms pulse
of blue light stimulation. The proportion of CeA-PKCδ+ LF and RS neurons displaying oEPSCs was comparable to the proportion of CeA-Som+
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Chemogenetic inhibition of CeA-projecting PBN neurons
decreased cuff-induced hypersensitivity without affecting
baseline nociception
To test for a causal relationship between the activity of CeA-
projecting PBN neurons and injury-induced hypersensitivity, we
used an intersectional chemogenetic approach where we stereo-
taxically co-injected a cre-expressing retrograde AAV into the CeA
and an AAV encoding the cre-dependent inhibitory designer
receptor exclusively activated by designer drugs (DREADD) hM4Di
into the PBN (Fig. S2A–E). To validate our intersectional
chemogenetic approach, we prepared acute brain slices and
performed whole-cell current-clamp recordings in hMD4i-
transduced PBN neurons before and after bath-administered
clozapine-N-oxide (CNO; 10 μM) or saline control (Fig. S2B). As
expected, bath-administered CNO, but not saline, significantly
(p < 0.001) decreased neuronal firing in hM4Di-transduced cells
(Fig. S2C), confirming CNO-mediated inhibition of CeA-projecting
PBN neurons.
To assess sensitivity to cold, heat, tactile, and deep tissue

pressure stimulation, we used the cuff model of neuropathic pain
[39] coupled with acetone, Hargreaves, von Frey filaments, and
Randall-Selitto tests, respectively (Fig. S2G–J). Sham sciatic nerve
surgeries were used as a control to rule out potential surgery-
related non-neuropathic effects. Consistent with previous studies
[39], sciatic cuff implantation induced robust hypersensitivity in
the ipsilateral paw in all four modalities tested (Fig. S2G–J). Thus,
compared to sham mice, cuff mice exhibited significantly
(p < 0.0001) lower withdrawal thresholds to tactile and deep
tissue pressure stimulation, higher response scores to cold
stimulation, and lower withdrawal latencies to heat stimulation
of the hind paw ipsilateral to nerve treatment. Notably, in all
modalities tested, bilateral responses to peripheral stimulation in
sham animals were comparable to responses of the uninjured paw
contralateral to cuff implantation. It is also important to note that
in the Randall-Selitto test all mice responded below the cutoff of
200 g (Fig. S2H). Coupled with the small inter-individual variability
seen in this test (SEM < 1.8 g), these results indicate consistent
levels of anesthesia between mice in this test. Together, these
results demonstrate that the sciatic nerve surgical procedure does
not affect behavioral responses and that hypersensitivity is
restricted to the ipsilateral paw of cuff mice.
Using the cuff neuropathic pain model, we next evaluated the

effects of chemogenetic inhibition of CeA-projecting PBN neurons
on hypersensitivity to tactile, deep tissue pressure, cold and heat
stimulation (Fig. 3A). We found that cuff-induced hypersensitivity
to all modalities was reversed by chemogenetic inhibition of CeA-
projecting PBN neurons (Fig. 3B–E). Thus, significantly (p < 0.001)

higher paw withdrawal thresholds to tactile and deep tissue
pressure stimulation, lower response scores to acetone, and
higher withdrawal latencies to heat stimulation were observed
after CNO-mediated chemogenetic inhibition of PBN→CeA
neurons, compared to before CNO treatment or control saline-
treated mice. No measurable effect was seen after CNO treatment
in mice stereotaxically injected in the PBN with the control virus
expressing the fluorophore mCherry, indicating that CNO by itself
does not alter the nociceptive behaviors evaluated. Responses in
the hind paw contralateral to sciatic cuff implantation were also
unaltered by chemogenetic inhibition of the PBN→CeA pathway
demonstrating that modulation of behavioral responses to
noxious stimuli is restricted to injured states.
In contrast, and consistent with previous reports [12, 31, 33],

evaluation of control (sham) mice showed that responses to
peripheral stimulation were comparable before and after chemo-
genetic inhibition of CeA-projecting PBN neurons independently
of the modality or the hind paw tested (Fig. 3F–I).
Together, these results indicate that activity of CeA-projecting

PBN neurons is necessary for hypersensitivity in a model of
neuropathic pain but does not modulate baseline responses to
cold, heat, tactile and deep tissue pressure stimulation in
uninjured states.

Chemogenetic inhibition of CeA-projecting PBN neurons
decreased spontaneous and stimulus-evoked pain-related
behaviors after intraplantar formalin injection
Spontaneous pain is among the main complaints in chronic pain
patients, and it is reported at higher frequencies than stimulus-
evoked pain [54]. In the next experiments we assessed the
function of the PBN→CeA pathway in spontaneous nociceptive
responses using the formalin model of inflammatory pain. We
measured spontaneous nociceptive responses to 2–3% formalin
injection into the hind paw of mice following inhibition of CeA-
projecting PBN neurons using the intersectional chemogenetic
strategy described in the section above (Fig. 4A). Evaluation of the
time spent in nociceptive behaviors as a function of time after
formalin injection showed a stereotypical biphasic response to
formalin in all mice tested [43] (Fig. 4B). However, the time spent
in spontaneous nociceptive behaviors during the second phase,
was significantly (p < 0.05) lower after CNO-mediated chemoge-
netic inhibition of CeA-projecting PBN neurons than in control
saline-treated mice that also received stereotaxic injection of an
AAV encoding the hM4Di inhibitory DREADD (Fig. 4B).
Spontaneous nociceptive responses to formalin are defined as

lifting, licking, or shaking of the injected hind paw [44, 45]. Recent
studies suggested that modulation of distinct behavioral

Fig. 2 Peripheral noxious stimulation induces Fos expression but intrinsic excitability is unaltered by nerve injury in CeA-projecting PBN
neurons. A Timeline of experiments. Male and female C57BL/6J mice were stereotaxically injected with AAV8-hSyn-DIO-mCherry into the right
PBN and AAV.hSyn.HI.eGFP-Cre into the right CeA. Four weeks after viral injections, we performed bilateral pinch stimulation on the hind paws
for 30 min followed by transcardial perfusion for histology. B Representative images of right PBN slices immunostained for mCherry and Fos
(cyan). No-pinch (left) and pinch (right) panels show low magnification images of Fos (top) and mCherry (middle). High magnification images
of merged signals in area delineated by white box are shown in the right panel. Scale bars represent 200 µm for low magnification and 25 µm
for high magnification images. Solid arrows represent cells co-labeled with mCherry and Fos while open arrows show Fos only positive cells.
Rostro-caudal level relative to bregma (RC) \for both animals is −4.96. C Fos+ cells of control (no pinch) vs experimental (pinch) mice in the
PBN. n= 7 no-pinch mice (3 female and 4 male) and n= 9 pinch mice (4 female and 5 male); number of Fos positive cells represents the sum
of positive cells in a total of 4 slices from the right PBN (RC levels: −4.96, −5.02, −5.20, −5.34 relative to bregma) per mouse. D Percentage of
mCherry cells co-labeled with Fos in the PBN of pinch vs no-pinch mice. E Percentage of Fos+ cells co-labeled with mCherry in the PBN of
pinch vs no-pinch mice. n= 7 mice for no-pinch (3 female and 4 male) and n= 8 mice for pinch (4 female and 4 male). Unpaired two tailed
t test; **p < 0.01; ***p < 0.001. Individual mice are represented by scatter points and open symbols represent female mice. All data is presented
as means ± SEM. F Experimental timeline. Male C57BL/6J mice were concurrently stereotaxically injected with retrobeads into the CeA
and implanted with a sciatic nerve cuff. Slice electrophysiology experiments were done 7–10 days after surgery. G Relative proportion of firing
types was not different between pain groups. Digits inside bars represent the number of cells per firing type. Scale bars represent 10mV and
50ms for vertical and horizontal scales, respectively. H Firing types of CeA-projecting PBN neurons include: spontaneously-firing (spont),
regular spiking (RS), late firing (LF), reluctant (rel) and low-threshold bursting (LTB) neurons. Spontaneous firing frequencies (I) Capacitance (J),
input resistance (K), and evoked repetitive firing (L) are not significantly different between neurons from sham (n= 36 cells from 14 mice) and
cuff (n= 19–20 cells from 12 mice) mice. Unpaired t test (I–K) and mixed-effects model (REML) with matching (L).
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responses to noxious stimuli are circuit specific [55–57]. To
determine if modulation of spontaneous nociceptive responses to
formalin by CeA-projecting PBN neurons is behavior specific, we
analyzed the time spent licking, lifting, or shaking separately in

both phase 1 and phase 2 of the formalin test. We found that
chemogenetic inhibition of CeA-projecting PBN neurons had no
effect in any of the nociceptive responses during phase 1 of the
formalin test (Fig. 4C). In contrast, during phase 2, inhibition of
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CeA-projecting PBN neurons significantly (p < 0.01) decreased
licking behaviors but not lifting and shaking behaviors (Fig. 4D).
We next determined if the PBN→CeA pathway contributes to
stimulus-evoked reflexive-defensive responses in the formalin
model of inflammatory pain using the von Frey filament test 1d
after the paw injection. These experiments showed that CNO-
mediated inhibition of these cells significantly (p < 0.0001)
decreased formalin-induced hypersensitivity to tactile stimulation
(Fig. 4E, F). Thus, CNO-treated mice displayed higher paw
withdrawal thresholds compared to saline-treated control mice.
Together, our results indicate that activity of CeA-projecting

PBN neurons is necessary for formalin-induced spontaneous
licking behavioral responses and tactile stimulus-evoked hyper-
sensitivity but that lifting and shaking responses to formalin are
not dependent on the PBN→CeA pathway.

Chemogenetic activation of CeA-projecting PBN neurons
induced bilateral hypersensitivity in a modality-specific way
To test whether activation of CeA-projecting PBN neurons is
sufficient to induce hypersensitivity to tactile, deep tissue
pressure, cold, and heat stimulation, we used an intersectional
chemogenetic approach in which we co-injected a cre-expressing
retrograde AAV into the CeA and an AAV encoding the cre-
dependent excitatory DREADD hM3Dq into the PBN (Fig. S3A). As
illustrated in Fig. S3B, the number of transduced CeA-projecting
PBN neurons co-expressing the neuronal activity marker. Fos was
significantly (p < 0.01) higher in brain slices from mice following
CNO-induced activation of the hM3Dq DREADD, compared to the
number of Fos+ cells in slices from control saline-treated mice.
These results confirmed that we can selectively activate CeA-
projecting PBN neurons using this intersectional chemogenetic
strategy.
We then evaluated the effects of chemogenetic activation of

CeA-projecting PBN neurons on sensitivity to tactile, deep tissue
pressure, cold, and heat stimulation of the hind paw using the von
Frey, Randall-Selitto, acetone, and Hargreaves tests, respectively
(Fig. 5A). We found that CNO-induced activation of CeA-projecting
PBN neurons induced bilateral tactile, deep tissue pressure,
and cold hypersensitivity in uninjured mice (Fig. 5B–E). Thus,
significantly (p < 0.01) lower paw withdrawal thresholds to tactile
and deep tissue pressure stimulation and higher acetone response
scores were observed following CNO treatment, compared to
pretreatment responses and responses in control saline-treated
mice. In contrast, paw withdrawal latencies in response to heat
stimulation were unaltered by CNO-mediated activation of CeA-
projecting PBN neurons (Fig. 5E).
Similar results were observed in the paw contralateral to sciatic

nerve cuff implantation, with CNO-treated cuff mice showing
significant (p < 0.01) hypersensitivity to tactile, deep tissue
pressure, and cold, but not heat stimulation, compared to
pretreatment responses and responses in control saline-
treatment (Fig. 5F–I). No measurable effects were observed in
the paw ipsilateral to the cuff implantation after CNO treatment,
possibly due to a hypersensitivity ceiling effect. Collectively, our

results indicate that activation of CeA-projecting PBN neurons is
sufficient to induce bilateral hypersensitivity in the absence of
injury in a modality-specific way.

DISCUSSION
The PBN→CeA is one of the major ascending pain pathways
characterized [5–7, 30]. Previous studies have shown that
manipulations of PBN neurons in this pathway modulate
affective-motivational aspects of pain but not baseline somato-
sensory responses to peripheral noxious stimulation [12, 31–33].
However, the functionality of this pathway in injury-induced pain
sensitization, remains unknown. We showed that CeA-projecting
PBN neurons are activated after peripheral noxious stimulation
and activity of this pathway is necessary for injury-induced
behavioral hypersensitivity, but not baseline nociception. We
further showed that chemogenetic activation of this pathway is
sufficient to drive hypersensitivity in the absence of injury. These
results are consistent with the growing body of evidence
supporting the function of the PBN→CeA pathway in pain
processing and further demonstrate that this pathway contributes
to the amplification of pain-like responses in pathological pain
states.

Activation of CeA-projecting PBN neurons by peripheral
noxious stimulation
Our histological experiments showed that a small (~10%)
subpopulation of noxious-activated PBN neurons project to the
CeA (Fig. 2D, E). Collateral projections to the BNST that modulate
aversion have been previously described in CeA-projecting PBN
neurons [58]. It is therefore possible that noxious-activated CeA-
projecting PBN neurons also project to the BNST and contribute to
pain-related aversion. Other studies have further shown that
efferent projections from the PBN to the ventromedial nucleus of
the hypothalamus, periaqueductal gray, intralaminar thalamic
nuclei and the reticular formation modulate escape responses to
noxious stimuli [32, 33, 58]. Based on these findings, we predict
that Fos+ PBN neurons that do not target the CeA, project to
these brain regions and contribute to pain processing.
It is important to note that quantification of pinch-induced Fos

was performed in the right PBN following bilateral peripheral
stimulation in mice injected with viruses into the right PBN and
the right CeA. However, Fos expression in response to noxious
stimulation is always bilateral [29]. Despite this, pain-related
potentiation of synaptic transmission in the PBN-CeA pathway
only occurs in the right hemisphere (right PBN and right CeA)
independently of the side of injury [13]. Whether pinch-induced
Fos in CeA-projecting PBN neurons is also lateralized, remains
unknown.
The results from our Fos experiments were initially surprising

given previous reports claiming that spinal nociceptive inputs do
not target PBN neurons that project to the CeA [32, 35, 36].
However, classical studies have shown, that injection of a
transneuronal retrograde tracer into the CeA results in progressive

Fig. 3 Chemogenetic inhibition of CeA-projecting PBN neurons reverses nerve injury-induced hypersensitivity without affecting baseline
nociception. A Experimental timeline. Male and female C57BL/6J mice were stereotaxically co-injected with AAV8-hSyn-DIO-hMD4i or AAV8-
hSyn-DIO into the right PBN and a mix (1:1) of AAV.hSyn.HI.eGFP-Cre and pAAV.CMV.LacZ.bGH into the right CeA. Sciatic nerve surgery was
performed 3 weeks after viral injections. Following 1 week of recovery, von Frey, Randall-Selitto, Acetone and Hargreaves tests were used to
address sensitivity to tactile, deep tissue pressure, cold and heat stimulation, respectively, in the hind paws ipsilateral and contralateral to cuff
and sham treatment. Mice were intraperitoneally (i.p.) injected with CNO or saline prior to behavior testing in a counterbalanced way. Paw
withdrawal threshold in response to tactile (B, F) or deep tissue pressure (C, G) stimulation, acetone response score (D, H) and paw withdrawal
latency after heat stimulation (E, I) of the hind paw ipsilateral or contralateral to cuff (B–E) and sham(F–I) treatment before and 30min after i.p.
injection of CNO (blue bar) or saline (gray bar). n= 10 mice for cuff-hM4Di and sham-hM4di (2 females and 8 males), n= 9 mice for cuff-
mCherry for both, ipsilateral and contralateral paws in all tests. Two-way repeated measures ANOVA followed by Tukey’s multiple comparisons
test; ***p < 0.001 for before and after CNO in the ipsilateral paw of cuff-hMd4i mice; Individual mice are represented by scatter points and
female mice are identified in purple. All data are presented as means ± SEM.
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infection of a multi-synaptic circuit that includes neurons in the
parabrachial nucleus, medulla, and dorsal horn [7]. These results
show that the dorsal horn of the spinal cord is anatomically linked
to PBN neurons that project to the CeA. Consistently, early

electron microscopy experiments showed that spinal afferents
are synaptically in contact with dendrites of CeA-projecting PBN
neurons [5]. CGRP-expressing PBN neurons, known to project to
the CeA, have also been shown to be anatomically associated with
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presynaptic spinal cord terminals [53]. Recent experiments further
revealed the existence of a functional microcircuit within the PBN
that connects dynorphin-expressing neurons that receive spinal
nociceptive inputs with neurons that project to the CeA [12]. The
results from our Fos experiments showing activation of the
PBN→CeA pathway by peripheral noxious stimulation, coupled
with the anatomical and electrophysiological studies described
above, suggest that pain-induced activation of the PBN→CeA
pathway occurs via excitatory inputs from the dorsal horn of the
spinal cord to PBN neurons that project to the CeA.
Our ex-vivo electrophysiological experiments further show that

PBN inputs target neurons in the CeLC independently of their
genetic or firing identity (Fig. 1). These results are consistent with
previous reports showing that most CeLC neurons receive inputs
from the PBN [4, 27]. A caveat of these electrophysiological
experiments is that Td-tomato expression in the Sst-cre::Ai9 and
Prkcd-cre::Ai9 does not necessarily represent Som and PKCδ
expression in the adult tissue used for recordings. Thus, the
genetic identity of some of the cells recorded might not be
accurate. This concern is mitigated by previous studies confirming
that fidelity of expression is high in both lines [23, 37].
Studies have consistently shown injury-induced potentiation of

glutamatergic synaptic transmission in the PBN→CeA pathway in
multiple rodent models of persistent pain [4, 20, 21, 26, 27]. Our
ex-vivo slice electrophysiology experiments further showed that
intrinsic membrane and firing properties are unaltered in CeA-
projecting PBN neurons following nerve injury (Fig. 2F–L),
suggesting that plasticity of intrinsic excitability in these cells
does not contribute to injury-induced hypersensitivity. Whether
this lack of effect in intrinsic excitability is model-specific remains
to be determined.

CeA-projecting PBN neurons are major contributors to injury-
induced pain sensitization but not baseline nociception
In-vivo and ex-vivo electrophysiological studies have shown
injury-induced sensitization and potentiation of synaptic transmis-
sion in the PBN→CeA pathway in several models of persistent pain
[4, 20, 21, 26, 27]. Our findings that chemogenetic inhibition of
CeA-projecting PBN neurons reversed injury-induced hypersensi-
tivity (Fig. 3B–E) and that chemogenetic activation induced
hypersensitivity in the absence of injury (Fig. 5) in both male
and female mice provide a causal link for the function of this
pathway in pain processing following peripheral inflammation or
nerve injury.
The analgesic effects we see after chemogenetic inhibition of

the PBN→CeA pathway are specific to injured states. Thus,
chemogenetic inhibition of CeA-projecting PBN neurons had no
effect on withdrawal responses in sham-treated mice (Fig. 3F–I) or
in the paw contralateral to nerve injury (Fig. 3B–E). These results
are consistent with previous studies in naïve rodents that report
no measurable effects on reflexive withdrawal responses to
somatosensory stimuli after manipulations of PBN neurons that
project to the CeA and express CGRP, tachykinin receptor 1, or
mu-opioid receptors [12, 31–33]. The lack of modulation of

reflexive responses to somatosensory stimuli by the PBN→CeA
pathway in naïve mice, coupled with the reported function of this
pathway in the modulation of aversion, fear memory, and pain-
related affective-motivational responses [12, 31, 32] led to the
suggestion that CeA-projecting PBN neurons contribute to the
affective-motivational but not reflexive-defensive somatosensory
component of pain. Our results indicate that CeA-projecting
PBN neurons are critical to reflexive-defensive somatosensory
responses but only in the context of injury. These results
underscore the importance of including uninjured and injured
states in studies investigating pain-related mechanisms.
Our formalin experiments further show that inhibition of the

PBN→CeA pathway does not affect the first phase of the formalin
test, which reflects direct activation of peripheral nociceptors [59],
but selectively decreases the second phase, known to be
mediated by peripheral and central sensitization [43, 45]. These
results support the proposed function of the PBN→CeA pathway
in injury-induced persistent pain, but not acute nociception. Our
findings have potentially important clinical implications, providing
insights towards the development of chronic pain treatment
options that selectively target injured states.

Modality-specific effects following activation of the PBN→CeA
pathway
We show that chemogenetic inhibition of the PBN→CeA
pathway reversed injury-induced hypersensitivity to tactile,
deep tissue pressure, cold, and heat stimuli (Fig. 3B–E). In
contrast, chemogenetic activation of this pathway induced
hypersensitivity to tactile, deep tissue pressure, and cold
stimulation (Fig. 5B–D) but not heat stimulation (Fig. 5E). These
combined results suggest that spinal nociceptive inputs to
the PBN are required for modulation of heat hypersensitivity by
the PBN→CeA pathway but are not needed for modulation
of tactile, cold and deep tissue pressure hypersensitivity.
Pain modality-specific effects are often observed in studies

that manipulate pain circuits [22, 23, 47, 60, 61]. In addition,
lamina I spinoparabrachial neurons have been shown to display
modality selective responses in an ex-vivo semi-intact somato-
sensory preparation, with only a subpopulation of these
neurons responding to peripheral heat stimulation [62].
Modality-specific function might be due to anatomical differ-
ences in the spinal inputs conveying heat vs tactile, cold and
deep tissue pressure signals to the PBN. A possible scenario is
that CeA-projecting PBN neurons receive direct inputs from
spinal neurons that respond to tactile, cold and deep tissue
pressure but not from spinal neurons that respond to heat
stimuli. Experimental activation of the CeA-projecting PBN
neurons would, therefore, mimic the activation normally driven
by spinal inputs in response to cold, tactile and deep tissue
pressure stimulation. In contrast, experimental activation of this
pathway would not be sufficient to mimic the activation
normally driven by spinal inputs in response to heat stimulation.
Together, these findings support the idea that distinct circuits
underlie modulation of specific sensory modalities.

Fig. 5 Chemogenetic activation of CeA-projecting PBN neurons induces bilateral hypersensitivity in a modality-specific manner.
A Experimental timeline of behavioral experiments. Male and female C57BL/6J mice were stereotaxically injected with AAV8-hSyn-DIO-hM3Dq
into the right PBN and rAAV-hSyn-cre into the right CeA. Sciatic nerve surgery was performed 3 weeks after viral injections. Following 1 week
of recovery, von Frey, Randall-Selitto, Acetone and Hargreaves tests were used to address sensitivity to tactile, deep tissue pressure, cold and
heat stimulation, respectively. Mice were intraperitoneally (i.p.) injected with CNO and saline prior to behavior testing in a counterbalanced
way. Paw withdrawal threshold after tactile (B, F) and pinch (C, G) stimulation, acetone response score (D, H) and withdrawal latency after heat
stimulation (E, I) of the hind paw ipsilateral or contralateral to sham (B–E) and cuff (F–I) treatment before and 30min after i.p. injection of CNO
(green bar) or saline (gray bar). n= 7 mice per treatment for sham experiments (2 females and 5 males) and n= 6 mice per treatment for cuff
experiments (1 female and 5 males). Two-way repeated measures ANOVA followed by Tukey’s multiple comparison test; ####p < 0.0001 for
before and after CNO in contralateral and ipsilateral paws to sham; ****p < 0.0001; **p < 0.01 for before and after CNO in contralateral paw to
cuff. Blue (B–E) and red (F–I) symbols represent female mice and individual mice are represented by scatter points. All data are presented as
means ± SEM.

J.M. Torres-Rodriguez et al.

517

Neuropsychopharmacology (2024) 49:508 – 520



The PBN→CeA pathway contributes to both, stimulus-evoked
reflexive-defensive responses and affective-motivational
spontaneous responses to painful stimuli
Several pain-related responses to cutaneous noxious stimulation
have been described [55–57, 63]. These behavioral responses have
been further categorized as reflexive-defensive reactions (paw
withdrawal) or affective-motivational responses (licking, biting,
extended lifting, or guarding of the stimulated paw and escape
responses such as jumping, hyperlocomotion or rearing)
[55, 57, 59, 64]. A notable discovery from these prior studies is
that distinct anatomical circuits modulate reflexive-defensive
reactions vs affective-motivational responses to peripheral nox-
ious stimuli [55, 63]. Our findings show that inhibition of the
PBN→CeA pathway affects licking responses to formalin (Fig. 4D)
suggesting this pathway modulates affective-motivational spon-
taneous responses to peripheral inflammation. These findings,
combined with our results that chemogenetic manipulations of
CeA-projecting PBN neurons also affects stimulus-evoked reflexive
paw withdrawal responses after inflammation or nerve injury
(Fig. 4E), suggest that the PBN→CeA pathway contributes to both
reflexive-defensive reactions (stimulus-evoked paw withdrawal)
and affective-motivational responses (spontaneous licking) in the
context of injury.
We have shown that the CeA functions as a pain rheostat that

bidirectionally modulates pain responses in a cell-type specific
manner, with decreases driven by CeA-Som neurons and increases
by CeA-PKCδ neurons [23]. In the present study we show that the
PBN non-selectively targets both CeA-Som and CeA-PKCδ
neurons. Whether subpopulations of PBN neurons send collaterals
to both CeA-Som or CeA-PKCδ neurons or selectively target
specific cell types in the CeA is unknown. Selective outputs from
the PBN to CeA-Som or CeA-PKCδ neurons may have divergent
functions in modulating pain-related behaviors as previously
described for anatomically distinct outputs from the PBN to
distinct brain regions [12]. This functional divergence might
include projection-specific modulation of distinct pain modalities
(i.e., heat, cold, deep tissue pressure, tactile), affective-motivational
vs. reflexive-defensive responses and/or stimulus-evoked vs.
spontaneous pain.

Protective and maladaptive functions of the PBN→CeA in
response to injury
The PBN has been described as a general alarm system to
potential threats that orchestrates behavioral and physiological
responses essential for survival [65]. Consistent with this notion,
studies have shown PBN neurons are activated by several danger
signals and this activation contributes to behavioral responses to
threat in a cell-type and circuit-specific manner [14, 31, 66–74].
PBN neurons that express CGRP and project to the CeA, for
example, have been shown to modulate escape responses to
noxious heat and to contribute to fear memory [31]. Separate
studies have also shown that manipulations of CeA-projecting
PBN neurons modulate aversion and affective- motivational
aspects of pain [12, 31, 32, 75, 76].
Maladaptive plasticity in the PBN→CeA pathway has also

been proposed to contribute to persistent hypersensitivity in
pathological conditions [18, 26], no longer serving a protective
function. Consistent with this idea, recent work show that CGRP
signaling in the right PBN→CeA pathway contributes to bladder
pain-like behaviors but not pain-related aversion in a mouse
model of cystitis [77]. Our results expand on these previous
findings to show that the PBN→CeA pathway is also a major
contributor of hypersensitivity to peripheral stimulation in
response to inflammation or nerve injury. Based on these
combined findings, we propose that this circuit functions as a
biological alarm system that protects against further injury and
promotes healing under physiological conditions. In pathologi-
cal conditions, however, maladaptive changes in the PBN→CeA

pathway might contribute to persistent hypersensitivity that is
no longer protective.
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