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There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute
administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most
pronounced 24 h after administration. Studies attempting to characterize ketamine’s mechanism of action by using blood oxygen
level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This
may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a
single physiological marker more directly related to neural activity. As effects of acute ketamine challenge are sensitive to
modulation by pretreatment with lamotrigine, which inhibits glutamate release, a combination of these approaches should be
particularly suited to offer novel insights. In total, 75 healthy participants were investigated in a double blind, placebo-controlled,
randomized, parallel-group study and underwent two scanning sessions (acute/post 24 h.). Acute ketamine administration was
associated with higher perfusion in interior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC), but no other investigated
brain region. Inhibition of glutamate release by pretreatment with lamotrigine abolished ketamine’s effect on perfusion. At the
delayed time point, pretreatment with lamotrigine was associated with lower perfusion in IFG. These findings underscore the idea
that regionally selective patterns of CBF changes reflect proximate effects of modulated glutamate release on neuronal activity.
Furthermore, region- specific sustained effects indicate both a swift restoration of disturbed homeostasis in DLPFC as well changes
occurring beyond the immediate effects on glutamate signaling in IFG.

Neuropsychopharmacology (2023) 48:1735–1741; https://doi.org/10.1038/s41386-023-01605-4

INTRODUCTION
The NMDA receptor antagonist ketamine not only transiently
induces schizophrenia-like positive and cognitive symptoms, but
also rapidly reduces depressive symptoms in otherwise treatment-
resistant patients [1]. Interestingly, positive symptoms of schizo-
phrenia appear before antidepressant effects emerge, thereby
indicating distinct acute and delayed neurofunctional effects of
ketamine. Imaging studies attempting to characterize ketamine’s
mechanism of action by using blood oxygen level dependent
(BOLD) imaging during resting state conditions or during
emotional and cognitive tasks have yielded inconsistent results
regarding implicated brain regions and direction of effects [2].
Discrepancies regarding ketamine’s effects on the brain may at
least in part be due to intrinsic properties of the BOLD contrast,
which measures a complex signal indirectly related to neural
activity [3, 4]. In contrast, regional cerebral blood flow, as
measured with positron emission tomography (PET) or arterial
spin labeling (ASL), is a single physiological marker reflecting
metabolic activity, which is more directly related to neuronal
activity within a given region [5]. ASL-derived perfusion has mainly
been used to investigate cerebrovascular diseases, dementia, and

neuro-oncological disorders, but it is gaining traction in psychiatry
and other fields of neuroscience as a research tool [6]. ASL uses a
magnetic pulse to label blood as it perfuses through the brain to
provide oxygen and nutrients to tissue [7]. As it exhibits a
temporally stable and relatively straightforward signal to interpret
and has been demonstrated as sensitive for detecting drug effects
[8–10], ASL may offer novel insights into ketamine’s mechanism of
action.
During acute administration, ketamine was shown to have an

immediate effect on CBF with increases in prefrontal and cingulate
cortices, as well as in subcortical regions such as thalamus [11–15],
but a decrease in the hippocampus [8, 14, 16]. Perfusion increases
measured with ASL are consistent with the reported increases in
fluorodeoxyglucose uptake in similar areas, which suggests that
changes in CBF reflect proximate effects of ketamine-induced
changes in neuronal activity and thus in glucose metabolism
[17–19]. Few studies investigated the prolonged impact of
ketamine administration and reported that CBF changes dimin-
ished after 4 h in healthy participants [8, 11]. In depressive
patients, findings indicate delayed effects of ketamine by
demonstrating an increase in thalamus and cingulate perfusion
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24 h after ketamine administration, while serial infusion therapy
was associated with CBF decreases in hippocampus and right
insula [20–22].
Complementary insights into ketamine’s mechanism of action

might be provided by direct modulatory approaches. Accordingly,
several studies have demonstrated that effects of acute ketamine
challenge are sensitive to modulation by pretreatment with
lamotrigine, a broad-spectrum anticonvulsant that inhibits
voltage-gated ion channels, with downstream effects resulting in
inhibition of glutamate release [23]. In a recent systematic review,
Veraart et al. [24] reported that until now seven studies were
conducted on the effects of lamotrigine prior to ketamine
administration and that one of these also measured CBF. Some
of the results are conflicting, with reports of a significant
attenuation of ketamine-induced psychotomimetic effects and
cognitive impairments by pretreatment with lamotrigine [25, 26]
as well as of no effect [27] on these measures. However, regarding
resting-state blood oxygenation level-dependent (BOLD)
responses and global brain connectivity during acute ketamine
administration, studies consistently show an attenuation by
lamotrigine pretreatment [26–28]. Since lamotrigine pretreatment
had no effect on resting brain perfusion [15], it was proposed that
the attenuation of ketamine’s acute effects by lamotrigine might
not be due to changes in neurovascular responsivity but rather to
reduced glutamate release.
However, previous studies investigating the impact of lamo-

trigine pretreatment were conducted during the acute adminis-
tration of ketamine and it is not yet known whether the inhibition
of glutamate release via lamotrigine has longer term conse-
quences. Along that line, previous studies investigating the impact
of ketamine on perfusion were conducted either during or after its
administration, but no study has yet investigated both acute and
delayed effects in the same participants. Longitudinal assessments
of participants would however provide additional insights, given
that psychotomimetic effects appear during the administration
and quickly diminish, while antidepressant effects of ketamine are
most pronounced 24 h after administration, thereby indicating
sustained adaptive changes in brain dynamics [29].
Consequently, the aim of the present study was to investigate

acute and delayed (24 h) effects of a single dose of ketamine on
resting brain perfusion in predefined brain regions. To determine
whether these are modulated by inhibited glutamate release, we
also investigated the impact of lamotrigine prior to ketamine
administration.

METHODS
Participants
Healthy, right-handed male and female participants (18–45 years) were
recruited in a double blind, placebo-controlled, randomized, single dose,
parallel-group study with three treatment conditions (placebo-placebo,
placebo-ketamine, lamotrigine-ketamine). Exclusion criteria were a history
of or current psychiatric conditions, as determined by the SCID-5-CV at
screening, a positive drug screen, alcohol or substance dependence within
the last 12 months, prescribed psychotropic medication within 28 days
prior to screening and non-prescription medication within 48 h prior to
treatment visit. Further exclusion criteria were a history of relevant
neurological diseases, migraine headaches, relevant medical condition,
MRI exclusion criteria, and pregnancy. All participants gave written consent
to participate in the study, which was approved by the local ethics
committee and registered at ClinicalTrials.gov (NCT04156035).

Experimental design & procedure
All eligible participants were randomly assigned to one of three treatment
groups in a 1:1:1 ratio. Participants in the first group were pretreated with
placebo and received a placebo infusion (placebo-placebo group, PP).
Participants in the second group were pretreated with placebo and
received a ketamine infusion (placebo-ketamine group, PK), and partici-
pants in the third group were pretreated with lamotrigine and received

ketamine (lamotrigine-ketamine group, LK). All participants underwent two
scanning sessions on two consecutive days. Before the first scanning
session, participants were pretreated with an oral dose of 300mg
lamotrigine (LK) or matching placebo (PP, PK) 2 hours before the scanning
procedures. During the first scanning session (acute), participants were
intravenously administered ketamine or placebo (ketamine dosage:
0.12 ± 0.003mg/kg during the first minute followed by a continuous
infusion of approximately 0.31mg/kg/h). Blood samples were taken
55minutes after commencing ketamine infusion to determine ketamine
plasma levels. Before the infusion started, all participants underwent a
short resting state fMRI scan, that was repeated after the start of the
infusion. Next, participants performed a picture viewing and an emotional
working memory task (reported elsewhere; [30]). The scanning session
ended with the ASL sequence reported here. Total scanning time was
approximately 1 h. To investigate the possible delayed effects of a single
dose of ketamine on perfusion, participants underwent the same scanning
procedure without the drug treatment and without the baseline resting
state scan 24 h later. A more detailed description of the experimental
design and procedures is provided in a previous publication [30], and in
the Supplementary Methods.

Materials
Psychometric assessments. Psychometric assessments were conducted
after both scanning sessions. Dissociative symptoms were assessed using
the Dissociation-Tension-Scale (DSS; Stiglmayr et al. [31]), which assess
dissociative phenomena on a psychological, somatoform and global scale.
Altered states of consciousness were assessed using the 5D Altered States
of Consciousness Scale (5D-ASC; Dittrich, [32]). The 5D-ASC assesses altered
states of consciousness on 5 main dimensions: oceanic boundlessness
(OBN), dread of ego dissolution (DED), visionary restructuralization (VRS),
auditory alterations (AUA), and vigilance reduction (VIR). Participants use a
visual analog scale to report the extent to which the experiences during
the infusion differ from their normal waking state. Further, the mood state
was assessed prior and after each scanning session using the German
version of the Positive and Negative Affect Schedule (PANAS; Breyer &
Bluemke, [33]; Krohne et al. [34]; Watson et al. [35]). The questionnaire
consists of 20 adjectives that describe different sensations and feelings. 10
adjectives each capture the dimensions positive affect (PA) and negative
affect (NA).

Data acquisition and analysis
Acquisition of brain images was conducted using a 3 Tesla MRI scanner
(PRISMA, Siemens Medical Systems, Erlangen, Germany) with a 64-channel
head coil at the Berlin Center for Advanced Neuroimaging (BCAN). An
anatomical brain image was acquired with a 3D T1-weighted scan
(Magnetization Prepared Rapid Acquisition Gradient Echo sequence,
TE= 3.03ms, TR= 2.3 s, 192 slices and FOV= 256 × 256 × 192mm). ASL
data was acquired using a multi-post labeling delay pseudo continuous [36]
ASL sequence (labeling duration = 1800 ms, post labeling delays=
400,700,1000,1300,1600,1900,2200 and 2500ms, labeling plane positioned
90mm below the center of the imaging region, background suppression
using pre-saturation and two inversion pulses timed as per Günther et al. [37]
with T1opt= 700ms, with nulling occurring 100ms prior to excitation) with a
segmented 3D-GRASE readout (4 segments, Resolution=3.4 × 3.4 × 3.3mm,
38 slices, TR= 5 s, TE= 35ms, 120° refocusing flip angle, left-right phase-
encoding, 6/8 slice partial Fourier, 1 label/control pair per post labeling
delay). Two separate calibration (M0) scans were also acquired with no ASL
labeling or background suppression pulses using identical readout
parameters: one with left-right and one with right-left phase-encoding to
allow for B0-induced distortion correction. Total ASL scan time was 6min 8 s.
The ASL data were preprocessed using FSL tools, correcting for motion [38],
B0-distortion [39] and coil sensitivity non-uniformity (by comparing the
calibration images with and without pre-scan normalize corrections) before
taking the control-label difference at each post labeling delay. Kinetic model
fitting [40], accounting for a macrovascular component [41], was performed
using a spatial Bayesian prior to stabilize the fitting process [42, 43]. Finally,
relative perfusion (rCBF) was calculated relative to global CBF, with the added
constraint that global CBF was restricted to a gray matter mask. Analysis of
rCBF allows to further isolate regional changes in CBF from global CBF
changes.
From the preprocessed ASL images, mean CBF scores were extracted

from the following three prespecified bilateral regions of interest (ROIs):
inferior frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC), and
anterior cingulate cortex (ACC). See Fig. 1 and Supplementary Table 2 for a
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detailed ROI description. The ROIs were derived from activation maps
obtained in an independent sample of 15 healthy controls. Activation
maps were intersected with substructures of the Harvard-Oxford atlas
implemented in FSL to obtain anatomical specificity (see Supplementary
Methods for details). This ROI definition ensured focus on those subregions
within the larger atlas structures that exhibit the strongest task-induced
activations during the fMRI tasks that were part of the study and are
reported elsewhere [30]. The reason for using these ROIs also for the ASL
data was to ensure comparability of results between the different MRI
modalities collected in our studies.
Exploratively, three additional bilateral ROIs were investigated: amyg-

dala, hippocampus, and thalamus. These ROIs were defined separately for
each participant using the outcome of an automated subcortical
segmentation via FSL FIRST.

Statistical analyses
Univariate ANOVAs with the main factor group (PK, LK, PP) were performed
for the psychometric measures and the acute rCBF data. The data from the
left and right hemispheres was averaged for each ROI. To correct for
multiple testing, a Bonferroni adjusted alpha level of α= 0.0167 (α= 0.05/
3) was applied to the analysis of the three ROIs of main interest. In case of a
significant main effect of group, Tukey’s post hoc tests were performed,
and for the rCBF data the following additional analyses were conducted: 1.
To investigate prolonged effects, a univariate ANOVA at the delayed time
point was conducted. 2. To investigate effects of laterality, univariate
ANOVAs for left and right ROIs were conducted separately. 3. To
investigate differences between the two time points within groups, paired
t tests were conducted. Correlation analyses were conducted using
Pearson’s correlation coefficient. All statistical analyses were conducted
using SPSS version 27 (IBM, USA).

RESULTS
75 male and female participants (age: M= 28.96, SD= 6.58)
complete the study and were randomly assigned to one of the
three treatment conditions in a 1:1:1 ratio: placebo-placebo (PP,
n= 25), placebo-ketamine (PK, n= 25), placebo-lamotrigine (LK,
n= 25). The final sample for the analysis of the CBF data consisted
of 68 male and female participants (age: M= 28.57, SD= 6.27).
Seven participants had to be excluded due to insufficient data
quality. One participant was excluded due to motion. The others
were excluded due to large changes in slice prescriptions between

the different ASL sub-scans, this renders the data unanalyzable.
The final group sizes for the three treatment groups were as
follows: placebo-ketamine (PK, n= 23), placebo-lamotrigine (LK,
n= 23), and placebo-placebo (PP, n= 22).
No difference in ketamine plasma concentration was found

between the PK and LK group (T(44)= 1.62, p= 0.11). Univariate
ANOVAs calculated for PANAS change scores (post-pre) showed
no significant between-group differences for Δ-positive affect
score (F(2, 65)= 1.6, p= 0.21) and Δ-negative affect score (F(2,
65)= 0.18, p= 0.83) at day 1. On a descriptive level Δ-positive
affect scores increased slightly after the infusion in the PK group
(ΔM 0.65 SD 2.5) and LK group (ΔM 0.57 SD 3.45) and decreased in
the PP group (ΔM −0.64 SD 1.84). On the DSS and the ASC scales
the PP group had lower scores compared to the PK and LK groups
(all p < 0.001), and no differences were observed between the PK
and LK groups. No between-group differences were observed at
day 2 (all p > 0.9). A more detailed description of the demographic
data and the psychometric results is provided in a previous
publication [30] and in Supplementary Table 3.
The univariate ANOVAs conducted for rCBF data at the acute

time point showed a significant effect of group for the bilateral IFG
(F(2, 65)= 6.59, p= 0.002, η² = 0.17), and bilateral DLPFC (F(2,
65)= 4.73, p= 0.012, η² = 0.13). No significant effect of group was
observed for the bilateral ACC (F(2, 65)= 0.75, p= 0.48).
Furthermore, the three additionally investigated bilateral ROIs
(amygdala, hippocampus, and thalamus) showed no significant
effect of group (all p > 0.05).
Post hoc tests conducted for the bilateral IFG showed that rCBF

was stronger in the PK group compared to LK (MPK= 113.17,
SDPK= 11.47, MLK= 103.58, SDLK= 8.50, p= 0.003, 95% CI [2.94,
16.24]) and compared to PP (MPP= 105.68, SDPP= 7.76, p= 0.025,
95% CI [0.77, 14.22]). Post hoc tests conducted for the bilateral
DLPFC showed that rCBF was stronger in the PK group compared
to LK (MPK= 103.61, SDPK= 6.79, MLK= 97.11, SDLK= 7.96,
p= 0.016, 95% CI [1.03, 11.96]) and compared to PP (MPP= 98.05,
SDPP= 8.38, p= 0.048, 95% CI [0.03, 11.07]).
At the delayed time point, a significant effect of group was

observed for the bilateral IFG (F(2, 65)= 6.01, p= 0.004, η² = 0.16),
but not for the bilateral DLPFC (F(2, 65)= 2.40, p= 0.099). Post hoc
comparisons conducted for the bilateral IFG showed that rCBF was

Inferior Frontal Gyrus 
(IFG)

Fig. 1 Regions of interest (ROIs). The three bilateral ROIs used in the main data analysis are shown on axial brain slices in the
respective plane.
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lower in the LK group compared to PK (MLK= 99.33, SDLK= 8.30,
MPK= 107.03, SDPK= 9.84, p= 0.013, 95% CI [1.38, 14.03]) and
compared to PP (MPP= 107.49, SDPP= 8.59, p= 0.009, 95% CI
[1.77, 14.56]). Acute and delayed effects for the IFG and DLPFC are
shown in Figs. 2 and 3.
At the acute time point, a significant effect of group was

observed for the right IFG (F(2, 65)= 9.38, p < 0.001, η² = 0.22), but
not for the left IFG (F(2, 65)= 1.99, p= 0.15), suggesting that the
effect observed for the bilateral IFG was driven by the right IFG.
Similarly, a significant effect of group was observed for the right
DLPFC (F(2, 65)= 3.89, p= 0.025, η² = 0.11), but not for the left
DLPFC (F(2, 65)= 2.54, p= 0.094), again suggesting that the effect
observed for the bilateral DLPFC was driven by the right DLPFC. At
the delayed time point, a significant effect of group was observed
for the left IFG (F(2, 65)= 3.59, p= 0.033, η² = 0.10), and for the
right IFG (F(2, 65)= 5.45, p= 0.006, η² = 0.14).
Exploratory comparison of the two time points within groups

showed that rCBF in the IFG decreased from the acute to the
delayed time point in the PK (p= 0.007), and in the LK (p= 0.002)
group, but not in the PP (p= 0.28) group. In the DLPFC, a decrease
of rCBF from the acute to the delayed time point was observed in

the PK group (p= 0.017), while an increase was observed in the PP
group (p= 0.022). In the LK group no difference between time
points was observed (p= 0.21).
Exploratory correlation analyses conducted in the PK group

between rCBF and subjective measures as well as plasma
concentration showed the following results: At both time points
significant correlations were only found between rCBF and
subjective mood ratings. At the acute time point, a positive
correlation was found between rCBF in the left DLPFC and positive
affect after the ketamine infusion (r= 0.54, p= 0.008). Further-
more, a positive correlation was found between rCBF in the right
DLPFC and negative affect before the ketamine infusion (r= 0.49,
p= 0.018). At the delayed time point, a negative correlation was
found between rCBF in the left DLPFC and negative affect prior to
the scanning session (r=−0.47, p= 0.036). Interestingly, there
was also a positive correlation between rCBF in the right DLPFC at
the acute timepoint with negative affect both prior (r= 0.55,
p= 0.006) and after (r= 0.49, p= 0.016) the scanning session at
the delayed timepoint. Changes in perfusion were neither
associated with dissociative and psychotomimetic effects nor
with plasma concentration of ketamine.

*
**

Inferior frontal gyrus

* *

acute delayed

Fig. 2 Relative perfusion in the inferior frontal gyrus. Perfusion shown for the acute time point (left) and the delayed time point (right). * =
significant at p < 0.05; ** = significant at p < 0.01.

Dorsolateral prefrontal cortex

acute delayed

*
*

Fig. 3 Relative perfusion in the dorsolateral prefrontal cortex. Perfusion shown for the acute time point (left) and the delayed time point
(right). * = significant at p < 0.05.
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DISCUSSION
To our knowledge, this is the first study to investigate not only
acute and delayed effects of a single dose of ketamine on CBF, but
also consequences of modulated glutamate release via lamo-
trigine pretreatment. Our findings demonstrate region- and time-
specific effects of ketamine administration per se as well as of
lamotrigine pretreatment. Compared to placebo, acute ketamine
administration was associated with a higher perfusion in IFG and
DLPFC, but not in ACC, amygdala, hippocampus, and thalamus.
Inhibition of glutamate release by pretreatment with lamotrigine
abolished ketamine’s effect on perfusion. Perfusion increases both
in IFG and DLPFC occurred in the right, but not in the left
hemisphere. At the delayed time point, there was no longer an
effect of ketamine administration per se on IFG perfusion, while
pretreatment with lamotrigine was associated with lower perfu-
sion. Ketamine-induced CBF changes in the investigated regions
were associated with mood, but not with dissociative and
psychotomimetic phenomena nor with plasma concentration of
ketamine.
Our findings regarding increased perfusion during ketamine

administration are partly consistent with results of prior studies.
However, while previous reports included widespread increases in
CBF in prefrontal and cingulate cortices as well as in subcortical
regions such as thalamus [8, 11–15], our findings point to more
region- specific effects with increases in DLPFC and IFG, but not in
ACC and thalamus. Also, we could not replicate the finding of CBF
decrease in hippocampus or in adjoining amygdala. Perfusion
increases measured in DLPFC and IFG are consistent with results of
several PET studies reporting increased glucose metabolism and
perfusion in frontal and insula areas in healthy volunteers
[17–19, 44, 45]. In preclinical studies, glutamatergic neurotrans-
mission plays a key role in the regulation of CBF by activating
NMDA receptors on neurons and metabotropic glutamate
receptors on astrocytes, with the subsequent rise in intracellular
Ca2+ leading to the release of intracellular-vasodilating messen-
gers [46]. Our findings thereby underscore the idea that regionally
selective patterns of CBF changes reflect proximate effects of
modulated glutamate release on neuronal activity.
Results indicated large effects of acute ketamine administration

on IFG perfusion. IFG and adjacent anterior insula (AI) are part of
the salience network and have been proposed as a hub that
ensures dynamic switching between external and internal control
modalities [47–49]. Activity particularly in right IFG/ AI has also
been associated with attention to interoceptive states and
emotional processing [50, 51]. It has been proposed that based
on interoceptive, emotional, and sensory inputs to these regions,
an integrated representation of an emotional experience, i.e.
awareness of the immediate moment, is formed [52, 53]. Increased
CBF during ketamine administration might therefore reflect
increased interoceptive and/ or emotional awareness. A recent
study reported increased activity in inferior frontal cortex,
comprising AI and IFG (pars triangularis and pars opercularis),
during perceptual conflicts caused by ambiguous sensory
information [54]. However, it seems unlikely that the here
observed CBF changes merely reflect perceptual distortions or
other psychotomimetic phenomena during ketamine, since none
of the measures assessing their subjective experience was
associated with CBF.
Ketamine administration also led to CBF increases in the DLPFC,

a part of the cognitive control network and crucially involved in
executive functions and emotion regulation [55, 56]. Prior BOLD
imaging studies in healthy participants reported significant effects
of ketamine on resting state activity in DLPFC [26, 57] and it has
been proposed that the antidepressant effects of ketamine
administration are mediated by targeting regions that subserve
cognitive processing relevant to executive function and cognitive-
emotional interaction [58, 59]. Again, CBF increases occurred only
in the right DLPFC, which might be considered in light of the

valence hypothesis, which states that right and left prefrontal
cortex are dominant in the processing of negative and positive
emotions, respectively [60]. Accordingly, higher perfusion in left
DLPFC was correlated with more positive affect, while higher
perfusion in right DLPFC was associated with more negative affect.
Effects of ketamine on frontal brain functions have also been
linked to its psychotomimetic effects [26, 61]. However, as for the
IFG, there was no association between subjective experience
and CBF.
Administration of ketamine results in a surge of glutamate

[62, 63] and the few existing previous studies on the prolonged
impact of ketamine administration on CBF reported diminished
effects after 4 h in healthy participants [8, 11]. Consistently, our
investigation of both acute and delayed effects showed that
perfusion in IFG as well as in DLPFC decreased 24 h later
compared to during ketamine administration. Interestingly, at
the delayed time point, pretreatment with lamotrigine was
associated with even lower perfusion in IFG. In the DLPFC,
perfusion did not differ between groups at the delayed time point.
Notably, previous imaging studies in depressive patients demon-
strated delayed effects of ketamine in AI, that were associated
with symptom improvement [64, 65]. In a recent study [22],
reported CBF decreases in right AI after serial ketamine infusions
in depressive patients. In light of our findings, one might therefore
assume a temporal gradient of functional neuroplasticity after
ketamine administration. Our results showed that lamotrigine
pretreatment selectively abolished CBF increases in IFG and DLPFC
during ketamine administration and thereby contradict findings of
a prior ASL study [15]. Here, no effect on resting brain perfusion
was found, which was seen as an indicator that the attenuation of
ketamine’s acute effects by lamotrigine was not due to changes in
neurovascular responsivity but rather to reduced glutamate
release. However, as preclinical studies demonstrated that
glutamatergic neurotransmission plays a key role in the regulation
of CBF [46], one might assume that region- specific changes found
here mirror the effect of modulated glutamate release on
neuronal activity in these areas. Correspondingly, previous studies
demonstrated an attenuation of ketamine’s acute effects on
region- specific BOLD responses and connectivity by lamotrigine
[26–28].
Results of our previous study in depressive patients also

demonstrated an increase in thalamus perfusion 24 h after
ketamine administration, that was associated with greater
improvement of depressive symptoms [20]. Based on these
results we also investigated CBF in the thalamus but found no
acute or delayed effects of ketamine in healthy participants. It has
been hypothesized, that decreased thalamic perfusion might
reflect a disease- specific dysfunction of thalamico- cortical circuits
in depression [66], while an increase mirrors a restoration of
“normal” perfusion and is associated with symptom improvement
[20–22]. Our results indicate that the effects of ketamine on
thalamic perfusion might be specific to MDD patients. Similarly,
CBF in ACC and amygdalo-hippocampal complex was not affected
by ketamine administration, even though several prior studies
reported CBF increases and decreases, respectively, in these
regions [8, 11, 15]. The amygdalo- hippocampal complex and its
projection to the ACC form an important affective neurocircuitry
for mood regulation and show aberrant activation and connectiv-
ity in depressive patients [67]. Therefore, one might assume that
previously reported CBF changes after ketamine in these regions
are either specific to depressive patients or due to different
analysis approaches, i.e., voxel-based and region of interest (ROI)
analyses.
There are several limitations to this study. Previous reports

described strongest effects of ketamine soon after beginning of
the infusion [26, 68], while here imaging occurred approximately
after 30min of continuing ketamine infusion. This, however,
reflects the steady state of the brain well after the intense
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immediate action of ketamine and our data clearly demonstrate
profound effects of ketamine on rCBF as well as on subjective
measures. Our results revealed no association of perfusion with
psychotomimetic effects, while region specific changes in CBF
could be linked positive and negative mood, respectively.
Thereby, this finding rather argues against changes in perfusion
reflecting neurophysiological changes associated with psychoto-
mimetic phenomena.
To conclude, we here provide first evidence of region- and time-

specific effects of modulated glutamate release on perfusion. The
increase of perfusion in IFG and DLPFC during acute ketamine
administration was abolished by inhibition of glutamate release
via pretreatment with lamotrigine, which furthermore led to
decreased IFG perfusion 24 h later. These findings underscore the
idea that regionally selective patterns of CBF changes reflect
proximate effects of modulated glutamate release on neuronal
activity. Furthermore, region- specific sustained effects indicate
both a swift restoration of disturbed homeostasis in DLPFC as well
changes occurring beyond the immediate effects on glutamate
signaling in IFG.
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