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Accelerated TMS is an emerging application of Transcranial Magnetic Stimulation (TMS) aimed to reduce treatment length and
improve response time. Extant literature generally shows similar efficacy and safety profiles compared to the FDA-cleared protocols
for TMS to treat major depressive disorder (MDD), yet accelerated TMS research remains at a very early stage in development. The
few applied protocols have not been standardized and vary significantly across a set of core elements. In this review, we consider
nine elements that include treatment parameters (i.e., frequency and inter-stimulation interval), cumulative exposure (i.e., number
of treatment days, sessions per day, and pulses per session), individualized parameters (i.e., treatment target and dose), and brain
state (i.e., context and concurrent treatments). Precisely which of these elements is critical and what parameters are most optimal
for the treatment of MDD remains unclear. Other important considerations for accelerated TMS include durability of effect, safety
profiles as doses increase over time, the possibility and advantage of individualized functional neuronavigation, use of biological
readouts, and accessibility for patients most in need of the treatment. Overall, accelerated TMS appears to hold promise to reduce
treatment time and achieve rapid reduction in depressive symptoms, but at this time significant work remains to be done. Rigorous
clinical trials combining clinical outcomes and neuroscientific measures such as electroencephalogram, magnetic resonance
imaging and e-field modeling are needed to define the future of accelerated TMS for MDD.
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INTRODUCTION
One of the most challenging clinical problems in the acute
management of mood disorders has been the delay in treatment
response. While much of the focus has been on increasing the
efficacy of antidepressant treatments, another critical problem is
that first-line treatments such as pharmacotherapy and psy-
chotherapy typically do not produce significant symptom
improvements for weeks at a time. Neuromodulation strategies
which target neural circuits directly may provide a more direct and
faster effect on depressive symptoms. Therapeutic Transcranial
Magnetic Stimulation (rTMS, hereafter referred to as TMS for
simplicity across acronyms) has been FDA-cleared for pharma-
coresistant major depressive disorder (MDD) for over a decade
and is routinely used in clinical practice [1, 2]. TMS is typically
delivered using 10 Hz over the left dorsolateral prefrontal cortex (l-
DLPFC) once a day initially for 37.5 min over a 6-week period,
although recent adjustment to the interstimulus interval can
reduce a single session to ~20min [3]. In its current iteration, TMS
is limited by a slow response time and may pose additional
challenges for patients working full time or with transportation or
childcare concerns, given the need for daily administrations. Slow
treatment response time is especially concerning in patients with
acute, debilitating symptoms including suicidal thoughts and can
decrease treatment compliance and increase morbidity. Thus, the
field has identified a clear need to accelerate treatment response.

Accelerated TMS, defined as a protocol delivering more than one
daily TMS session, is one emerging delivery schedule of TMS aimed
to reduce treatment duration and improve response time, with the
goal of achieving similar (or superior) levels of efficacy. Recently, the
FDA cleared an accelerated TMS protocol for depression, i.e., the
Stanford Neuromodulation Therapy (SNT; formerly Stanford Accel-
erated Intelligent Neuromodulation Therapy, SAINT) protocol which
consists of five days of 10 sessions of intermittent theta burst
stimulation (iTBS) per day. The focus of this review will be to
examine the evidence of accelerated TMS, including the SNT
protocol, in the treatment of MDD. MDDwas selected because it has
the most extant data, and the insights gained from this research
may inform research related to other neuropsychiatric disorders.
In this piece, we first review lessons learned from attempts to

accelerate other treatments for depression and make the case for
accelerated TMS. Then we discuss the evidence for accelerated
TMS as well as critical components to consider for accelerating the
treatment response: treatment parameters, i.e., stimulation
frequency and inter-stimulation interval, cumulative exposure,
i.e., number of treatment days, sessions per day and pulses
per session, individualized parameters, i.e., treatment dose and
target, and brain state, i.e., context and concurrent treatments. The
promise and pitfalls of accelerated TMS is reviewed, and the
review ends with synthesis and highlights several key areas
needed to move the field forward in this area.
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LESSONS LEARNED FROM ACCELERATING OTHER
TREATMENTS
The concept of accelerating antidepressant treatments long
preceded the discussion of accelerating TMS. As early as 1969,
Arthur Prange recognized the importance of “enhancing” the
efficacy of imipramine by adding thyroid hormone (L-triiodothyr-
onine or T3) which was hypothesized to increase receptor
sensitivity due to the interaction of the neuroendocrine system
with depression [4]. In a pivotal study, Prange’s group demon-
strated both a decrease in morbidity and duration of hospitaliza-
tion in patients on imipramine augmented with T3. Subsequent
studies have supported strategies to improve the antidepressant
response using sleep deprivation or the addition of L-triiodothyr-
onine, lithium, atypical antipsychotics, or pindolol to antidepres-
sant monotherapy [5]. However, Altschuler et al. [5] pointed out
that these studies were limited by small sample sizes as well as
failures to provide an a priori definition of a shorter or accelerated
response time. In fact, most of these early studies focused on an
improved antidepressant response, often in patients who had
failed monotherapy, rather than a shortened time to response.
For the most commonly used antidepressant medications (e.g.,

tricyclics (TCA’s), serotonin selective reuptake inhibitors (SSRI’s)),
patients typically do not show a significant decrease in depressive
symptoms for 3–6 weeks. This delay in the antidepressant
response occurs in spite of the fact that the neurophysiological
effect associated with antidepressant potency, the blockade of the
membrane neurotransmitters transporters, happens almost imme-
diately after starting the medication [6]. The delay is hypothesized
to be related to the time it takes for the neuroplastic down-
regulation of post-synaptic serotonin (5-HT) and noradrenergic
receptors and desensitization of autoreceptors located on 5-HT
and noradrenergic cell bodies [6]. Other theories have cited
evidence that the neurochemicals in the neurotropic signaling
cascade (e.g., cyclic adenosine monophosphate, brain-derived
neurotrophic factor, bcl-2, and mitogen activated protein kinases)
are critical to the antidepressant response and again there is a
delay in neurophysiologic changes in synaptic connections that
restore critical brain circuits [7]. The addition of psychotherapy to
antidepressant medication has been shown to improve remission
rates in treatment-resistant depression (TRD) and decrease relapse
and recurrence [8–10]. However, psychotherapy has not been
shown to accelerate the time to response in MDD either as a
monotherapy or in combination with somatic treatment.
Intravenous ketamine has a very different mechanism of action

from the traditional antidepressants which exert their antidepres-
sant effect through the monoamine system. Ketamine, an N-
methyl-D-aspartate (NMDA) receptor antagonist, acts through
amino acid neurotransmitters (i.e., ƴ-aminobutyric acid (GABA)
and glutamate) [11]. As a glutamate receptor modulator, ketamine
acts as a non-competitive channel blocker of the NMDA receptors
on inhibitory GABA neurons. This blockade results in a glutamate
surge which activates 2-amino-3- (5-methyl-3-oxo-1,2-oxazol-4yl)
propanoic acid (AMPA) receptors leading to elevated levels of
brain-derived neurotrophic factor (BDNF) and phosphorylation of
tropomyosin receptor kinase B (TrkB) as well as potential
downstream effects on the mammalian target of rapamycin
(mTOR) pathway [12]. The mechanism of action of ketamine likely
involves the opioid system, as demonstrated by a study where an
opiate receptor antagonist was able to block antidepressant
effects of ketamine [13]. This increase in neuroplasticity may have
a more immediate effect than the action of SSRIs and TCAs on
depressive symptoms. The evidence from a recent Cochrane
analysis is that both ketamine and its s-enantiomer, esketamine,
demonstrate efficacy in treating depressive symptoms over
placebo within 24 h [12]. However, there are significant concerns
about the durability of the ketamine response with patients often
requiring extended maintenance sessions to sustain the anti-
depressant effect. There are also the potential long term side

effects of maintenance treatment with ketamine including
tolerance, dependence, and cognitive side effects [9, 14].
Psychedelics (e.g., psilocybin assisted psychotherapy), have

evidence for efficacy in depression after only one or two sessions
and this antidepressant efficacy is durable in many patients [15].
Putative mechanisms involving activation of 5-HT2A receptors are
thought to underlie this antidepressant effect [16, 17]. The initial
evidence for efficacy led to the FDA designating psilocybin as a
“breakthrough therapy” for TRD. While psilocybin assisted
psychotherapy holds promise for continued investigation, the
use of psilocybin in depression more broadly has only begun to be
examined [18].
The gold-standard non-pharmacological treatment for depres-

sion is electroconvulsive therapy (ECT), which has been shown to
have a significant and relatively immediate effect on depressive
symptoms and suicidal ideation via a generalized seizure, albeit in
a minority of TRD patients [19, 20]. However, the majority of
patients treated with ECT do not respond for 6–8 treatments given
over 3-4 weeks. Attempts to accelerate the ECT response using
multiple treatments in one day have resulted in unacceptable side
effects primarily to detrimental effects on cognition [21, 22].
With the advent of advanced neuromodulation techniques,

neural circuits may potentially be more precisely targeted to effect
change earlier in the treatment course. Unfortunately, more
precise targeting has not always been associated with an
accelerated treatment response. The most precise neuromodula-
tion technique, deep brain stimulation (DBS) [23], which targets a
few millimeters of subcortical tissue, is associated with a response
time of months which is similar to less precise neuromodulation
methods such as vagal nerve stimulation (VNS) [24]. Notably,
ventral tegmental area (VTA) stimulation has been associated with
rapid effects in MDD [25], though it should be noted that ECT, DBS
and VNS typically are only used in TRD patients and symptom
severity, and treatment resistance status may also affect the time
to response in this patient population.
Overall, none of the treatments discussed above have achieved

an accelerated treatment response in MDD. While some treatments
are still under investigation, challenges of accelerating treatment
response using pharmacological and invasive brain stimulation
techniques include a heightened risk of more or more severe side
effects, reduced tolerability, or neurophysiological characteristics of
the treatment that prevent successful acceleration.

THE CASE FOR ACCELERATED TMS
Two noninvasive neuromodulation techniques with relatively
benign side effect profiles are prime candidates to investigate
the impact of direct and more precise neural stimulation in
accelerating the antidepressant response: transcranial direct
current stimulation (tDCS) and TMS. tDCS uses a weak electrical
current to provide stimulation via an anode and cathode placed
on the scalp to inhibit or facilitate neural circuits to affect
cognition, motor skills, psychotic and mood disorders [26].
Functional neuroimaging (e.g., functional Magnetic Resonance
Imaging; fMRI) and electroencephalograms (EEGs) have been used
to examine the network changes before, after, and during tDCS so
perturbations in the networks can be analyzed and potentially
enhanced to accelerate the response. tDCS is also relatively
inexpensive to administer and could potentially be self-
administered by a patient with minimal training, and therefore
allow for maximizing the number of stimulations to accelerate
treatment. Despite these advantages, the evidence for an
antidepressant effect for tDCS is mixed and the optimal parameter
settings for treating depression are continuing to develop [27–29].
In contrast, TMS has a number of advantages when reviewing

methods to accelerate the antidepressant response. TMS is FDA
cleared to treat MDD and has been widely adopted in clinical
settings which may facilitate the eventual use of an accelerated
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protocol in clinical practice. Furthermore, it has a benign side
effect profile, is amenable to multiple daily administration, and has
neuroimaging data supporting the relationship of the antidepres-
sant effect with neurophysiologic changes (reviewed further
below). Accelerating the response time to TMS would also address
the burden of time required for daily administrations over weeks
(and associated staffing requirements). Given these factors, there
has been increasing interest in exploring various forms of
accelerated TMS in which multiple TMS sessions are delivered
per day.

CORE ELEMENTS OF ACCELERATED TMS
Preliminary evidence suggests that a more rapid improvement in
depressive symptoms may be achieved with accelerated TMS
protocols. However, the accelerated TMS protocols in clinical trials
have not been standardized and vary considerably across a variety
of elements. In this section we discuss available data on the core
elements to be considered in an accelerated TMS protocol (Fig. 1).

Treatment parameters
TMS treatment parameters vary between protocols and stimula-
tion frequency and inter-stimulation interval are essential
elements to consider for accelerating TMS.

Stimulation frequency. TMS stimulation protocols have utilized a
variety of frequencies. TMS is typically defined as either high
frequency (at least 5 Hz) or low frequency (most often 1 Hz), and
are typically designated to be excitatory or inhibitory [30–33],
respectively, to cortical neural transmission. The relationship of
TMS frequency to neuronal firing arose from studies of
corticospinal excitability applying TMS to the motor cortex
(reviewed in ref. [34]). This observed directional relationship was
later corroborated by positron emission tomography or single
photon computed emission tomography studies [35–37]. Some
comparable results were observed in early studies of TMS applied
over the DLPFC [38]. That stated, this simple binary heuristic likely
represents a dramatic oversimplification; neuroimaging studies of
TMS, particularly using functional connectivity measures, have not
consistently replicated this directionality [34–36].
One practical impediment to increasing the number of sessions

per day is the length of the TMS sessions (20–40min) needed to
deliver high frequency trains of pulses with the necessary

intertrain pause. A key development was a technological
advancement that significantly decreased the time needed to
administer TMS treatments while maintaining the number of
pulses per session. In 2005 investigators began to evaluate the
safety and efficacy of theta burst TMS stimulation [37]. This
stimulation approach, intermittent theta burst TMS or iTBS, was
found to mimic endogenous hippocampal theta neural activity
and provide short bursts of intermittent stimulation at high
frequencies which allowed for the delivery of multiple TMS pulses
in a matter of a few minutes.
In 2018, Blumberger et al. [38] provided a key step towards the

development of accelerated TMS, by conducting a non-inferiority
randomized clinical trial that compared 3000 pulses of TMS with
600 pulses of iTBS per day, each delivered five days per week for
4–6 weeks. This study clearly demonstrated that once-daily iTBS
was non-inferior to standard TMS, yet with the critical advantage
of shortening the session time from 37.5 to 3 min per treatment
session. Thus, the development of iTBS protocols has allowed
investigators to administer multiple iTBS sessions a day by
increasing the number of sessions a day and is a major contributor
to the rapid expansion of accelerated TMS protocols for research
and clinical practice.
A different form of TBS, continuous TBS (cTBS), can also be

applied in an accelerated form as 600 pulses are delivered in 40 s.
The traditional assumption, based on studies of corticospinal
excitability is that iTBS may yield LTP-like effects, whereas cTBS
may provide LTD-like effects. However, more recent work has
clearly demonstrated this is an oversimplification and is likely
incorrect (e.g., refs. [39, 40]). One recently published accelerated
cTBS pilot study [41] for patients with Obsessive Compulsive
Disorder delivered 1800 pulses (600 bursts 3 pulses each)
per session, 10 sessions per day for 5 days to the right frontal
pole. The study showed preliminary data on safety, feasibility, and
efficacy of accelerated cTBS with 71% efficacy and minimal side
effects. Of note there is far less data on accelerated cTBS and
therefore the remainder of the review predominantly focuses
on iTBS.

Inter-stimulation interval. As described above, standard TMS
protocols typically involve a single session per day with ≥24 h
spacing of sessions. Reduction of the inter-stimulation interval
would support an accelerated protocol and may enhance the
efficacy of certain types of TMS stimulation, such as TBS. There are
two types of inter-stimulation intervals to be considered: the time
between stimulation trains and the time between sessions. Cole
and colleagues [42, 43] have utilized a reduced intertrain interval
compared to standard TMS by delivering three consecutive iTBS
sessions of 600 pulses per session. Additionally, in this protocol,
there is a 50-min interval between treatment sessions which was
guided by animal work that has demonstrated that hour-long
intervals between sessions may be optimal for producing long
term potentiation via TBS [44, 45]. Other studies, however, have
used as little as 10-min breaks or as much as 10 h between
sessions (reviewed in refs. [46, 47]), and clear data on best
parameters is unavailable. A study examining the optimal interval
between TMS trains (600 iTBS pulses/session) showed that 1800
pulses with no interval resulted in reduced cortical excitability,
whereas 10- and 30-min breaks enhanced cortical excitability, with
maximum excitability observed in the 30-min interval group [48].

Summary – Protocols and parameters. iTBS allows for more
treatment sessions per day, and therefore more flexibility in
accelerating TMS treatments. While studies showing efficacy for
accelerated iTBS have been published, there are many unknowns
and a better understanding of the interplay between stimulation
frequency and inter-stimulation parameters is critical. Both the
stimulation frequency and inter-stimulation interval may deter-
mine whether the TMS stimulus is either excitatory or inhibitory.

Fig. 1 Core elements of accelerated TMS. The nine core elements
considered in this review for accelerated TMS. rTMS repetitive
transcranial magnetic stimulation, TBS theta-burst stimulation, MRI
magnetic resonance imaging.
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Investigators are still working to determine the optimal interval. It
is likely that a number of individual factors will also influence
cortical excitability, including a person’s neuroanatomy, the
disease state, complicated by likely non-linear effects with
cumulative exposure on MEPs [40]. Individualizing treatments
such as real time electroencephalogram (EEG) feedback loops
(e.g., ref. [49]) could also inform us about preferred intervals
instead of using average data.

Cumulative exposure
Cumulative TMS exposure or TMS pulses delivered during a
treatment course is driven by three main factors: the number of
treatment days, the number of treatment sessions per day, and
the number of pulses per session.

Number of treatment days and the number of sessions
per day. The earliest attempts to accelerate the TMS response
increased the number of sessions from one to two a day for the
treatment of depression [50, 51] and schizophrenia [52] with
positive clinical outcomes and tolerability. In an unblinded trial,
Holtzheimer et al. [53] delivered 15 high frequency TMS sessions
over a two-day period. These sessions were administered (five
consecutive hourly sessions on Day 1, and ten consecutive hourly
sessions on Day 2) using 10 Hz TMS in 5 s trains with a 25 s
intertrain interval at 100% of motor threshold. A significant
treatment effect was achieved by day three and maintained six
weeks later. Positive clinical and tolerability outcomes have since
been observed in protocols delivering two TMS sessions per day
[54] as well as five TMS sessions per day [55]. However, in a large
recent RCT no significant differences in clinical improvements
were observed when comparing twice daily (two times 600 pulses)
versus once daily (1200 pulses) iTBS, and response and remission
rates were similar in both groups [56], indicating the number of
sessions per day (alone) is unlikely to improve treatment
outcomes.
A recent review by Caulfield et al summarizes the extant data

on studies using accelerated TMS protocols [46]. There was
notable variability across the majority of studies; the authors
reviewed 63 accelerated TMS studies that administered
2–10 sessions per day for 2–30 treatment days, and the total
number of TMS sessions ranged from 9 to 104. This review
reported initial evidence that increasing the number of sessions
per day, the total number of sessions, and the total number of
pulses each appear to have a positive relationship with response
rate, which was postulated to be linear. It is important to consider,
however, that these parameters are fundamentally interrelated as
more sessions per day typically equates to more sessions in total
as well as more pulses. It is therefore key to understand the
interaction between the treatment parameters and cumulative
exposure elements.
The largest number of sessions per day to date has been

implemented by Cole and colleagues [42, 43]. The effects of
increasing the number of treatment sessions per week was
studied by delivering ten sessions of theta burst stimulation
per day for five days. The FDA recently cleared the SNT protocol
following high remission rates in a small number of severely
depressed patients (n= 29), where n= 11 (78.6%) met MDD
remission criterion at some point in their participation, and no
serious adverse events [42, 43]. One other study employed a
similar protocol and showed significant improvements in post-
partum depression [57].

Number of pulses per session. Current TMS protocols typically
deliver 3000 pulses/day (or 1800 pulses for a 1 Hz TMS) but
published accelerated TMS studies have applied a considerably
higher number of pulses per day or session. The initial accelerated
TMS study led by Holtzheimer and colleagues delivered 7500
pulses per day [53] while additional studies employing 10 Hz TMS

delivered up to 6000 pulses/day [54]. Similarly, in another
unblinded trial, Hadley et al. [58] provided a 2-week accelerated
10 Hz TMS protocol involving a higher number of pulses (6800
pulses/day) delivered in once daily sessions to patients with TRD.
In this study, 33% of patients met criteria for clinical remission at
the conclusion of the study and importantly, the higher TMS doses
were well tolerated without significant adverse outcomes. The
largest reported number of pulses per session is the protocol
described by Cole et al. [42, 43]. In this protocol, 1800 pulses are
delivered per session for ten sessions per day, totaling 18,000
pulses per day, providing evidence that this high number of
pulses with 50-min delays between sessions can be delivered
safely.
A notable difference between rTMS and iTBS is the pulse

pattern. Repetitive TMS includes delivery of stimulation at a
particular frequency (e.g., 10 Hz), whereas during TBS, triplets of
high-frequency (50 Hz) stimulation are repeated at 5 Hz (200 ms
interval), designed to resemble hippocampal theta oscillations
[37]. While a comprehensive comparison of different patterns is
outside the scope of this review (these are reviewed in more detail
in ref. [46]), future studies are needed to compare whether the
pattern itself or the ability of TBS to deliver large numbers of
pulses in a short period of time is driving clinical changes.
Sequential bilateral TMS is another novel approach to accelerate

or enhance clinical outcomes. While initial studies of bilateral TMS
did separate from sham [59], later examinations have not found
superiority of bilateral TMS to unilateral TMS [60]. Bilateral theta
burst TMS and bilateral repetitive TMS were both shown to be
superior to sham TMS in a network meta-analysis of randomized
clinical trials [61]. Recent data has indicated that sequential
bilateral TMS appears noninferior to bilateral theta burst TMS [62],
although whether this yields an accelerated response compared
to standard unilateral TMS remains unknown.

Summary – Cumulative exposure. Extant studies have shown that
delivering as much as ten sessions per day with a total of 18,000
pulses for five consecutive days (90,000 pulses in total) appears
safe from early pilot randomized controlled trials. What is not
known, however, is if there is value in less than this number of
treatments per day. From a practical point of view (clinical hours,
staff availability) ten sessions per day seems to be the maximum
number of treatments per day given that with treatment time and
delay between treatments this would take ten hours to administer.
It is unclear if, for example, five sessions per day spread out over
two weeks has similar treatment benefits or whether the succinct
delivery has biological advantages.
Of note, none of the available data include biological readouts

of brain-based response, leaving the best estimates of efficacy to
rely upon clinical rating scales. While these are the standard of
care, EEG or fMRI obtained during the treatment course is likely to
be required to better characterize (and utilize) individual
differences in future protocols.

Individualized parameters
Treatment response can possibly be accelerated by using a more
personalized treatment approach to improve efficacy and thereby
reduce the number of treatments needed for optimal response.
Specifically, treatment dose and treatment target can be
individualized using different neuroimaging techniques. In current
standard treatment protocols, these parameters are adjusted to
the individual using motor threshold testing to define the
treatment dose (using 80–120% of the output over the motor
strip to typically move the contralateral abductor pollicis), and to
locate the TMS target (applying the 5.5 cm rule) or use the Beam
F3 method [63] which accounts for individualized head size and
shape. In line with ongoing research, we discuss the use of
neuroimaging methods in further personalizing and optimizing
these parameters.
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Treatment target. The definition of the TMS treatment target
could be individualized using structural and functional MRI.
Structural MRI is used to provide details of the neuroanatomy
and can be used to locate the structurally defined individualized
TMS target. Functional connectivity (FC) networks link neuronal
areas to projections on the cortex and TMS is applied to an area
on the skull corresponding to the underlying cortex to “target”
stimulation of the neuronal structure. Resting state (RS) fMRI scans
are typically utilized for FC analyses to define the individual’s TMS
treatment targets. FC has been used in accelerated TMS protocols
[64–66] to demonstrate that baseline anti-correlation patterns to
the subgenual anterior cingulate cortex (sgACC) were reversed in
responders after accelerated TMS treatment but not in non-
responders. Following the rationale that cortical areas are
connected with deeper brain regions through functional net-
works, MRI connectivity measures may help define the best
cortical target that engages the network and the subcortical
region of interest.
Cole et al. [42, 43] used RS fMRI scans to define the area within

the l-DLPFC (defined as Brodmann Area 46) that has the strongest
anticorrelation with the sgACC, following earlier research show-
ing the greatest clinical effect for the TMS target site with the
greatest negative correlation [67]. Assessment of personalized
DLPFC targeting using RSFC with the sgACC showed substantial
individual variability but across time stability in 1000 healthy
volunteers with RS scans [68]. These studies suggest precision of
this individualized targeting method, however, no direct com-
parisons between individualized TMS treatment targets and other
protocols have been published to date and the added benefit of
this method has yet to be confirmed. In fact, some of the few
prospective studies comparing neuronavigated TMS versus scalp-
based targeting have failed to clearly demonstrate clinical
superiority of basic neuronavigation [65]. Moreover, a recent
fMRI study [69] estimated sgACC functional connectivity with the
stimulation site and related to TMS treatment outcomes in a large
number of patients with MDD. Notably, while sgACC functional
connectivity with the stimulated area predicted a small degree of
the treatment response (2.56% of the variance), this effect was
mainly explained by respiratory patterns of a subgroup of
patients. Furthermore, predictive models incorporated electrical
field modeling, which reduced the spatial precision of the
engaged cortex. This study raised serious questions about
whether sgACC-dlPFC functional connectivity has sufficient
reliability to define personalized TMS treatments; furthermore,
how this connectivity intersects with the extensive cumulative
exposure of accelerated TMS needs to be carefully examined and
considered.

Treatment dose. Individualized targeting approaches using FC
does not generally account for TMS focality. As proposed by
Balderston et al. [70, 71], combining targeting using RSFC with
electrical (E) field modeling is another approach with potential
to optimize TMS target location and coil orientation. E-field
modeling uses an individual’s structural scan to approximate the
directionality and amplitude of the induced electrical current in
the brain based on the location and orientation of the coil.
Balderston’s proposed method reduces interindividual variability
in stimulation site and ideal coil orientation and decreases the
distance between the scalp and the cortical target. Findings
from their proof-of-concept study [70] suggest individualized
targeting may maximize clinical efficacy and contribute to
predicting treatment response. Other studies are ongoing that
aim to optimize the stimulation parameters based on each
individual’s cortical electrical field (e.g., ref. [72]). That stated, it
should be expected that some individuals may require above
the standard 120% of motor threshold, and the safety profile of
therapeutic TMS (including iTBS) at suprathreshold intensities
remains an important consideration.

Summary – Individualization. While the application of individua-
lized TMS treatments is still in its early days, the available data
incorporating neuroimaging and targeting appears promising.
That stated, whether and how to utilize these approaches, and
whether they are clinically superior to standard methods, requires
further definitive evidence. As described above, the general
paucity of biological readouts or measures to assess the impact of
individualization complicates interpretation of the existing data.
Yet, these precision approaches are likely to be able to provide the
evidence to demonstrate their clinical utility. As addressed below,
an important factor to consider for these individualized
approaches is access to the technologies needed, especially in
clinical settings, as well as feasibility and costs.

Brain state
Brain state is defined as the state the person is in when the TMS
treatment is delivered. We separately discuss contextual cues that
influence the immediate state when TMS is delivered and
concurrent treatments that the patient receives throughout the
course of TMS.

Context. One of the outstanding questions in the field is whether
there is an interaction between the context of the brain (i.e., what
an individual may be thinking or feeling) and effects of brain
stimulation. There is research suggesting differential effects of
TMS depending on the context [73]. Usually, TMS is delivered
while the patient is at rest (i.e., not asleep, watching TV, listening
to music, etc), however, a few studies have investigated the
impact of changing the brain state during the session and
measuring its effect. In an early study of 20 Hz TMS using the H1
TMS coil, Isserles et al. demonstrated that negative mood
induction could attenuate the antidepressant effects of stimula-
tion [74]. Cue provocation is another method that could change
the context in which TMS is delivered and augment the efficacy of
TMS. For example, cue provocation has been used to change the
brain state before or during delivering TMS for smoking cessation
[75, 76], though one study showed a placebo effect [77]. Similarly,
symptom provocation before TMS is used in treatment of
obsessive compulsive disorder (OCD) [78, 79]. The brain state
could also be changed by combining TMS with medication. One
example is the recent demonstration that d-cycloserine can
improve response rates when used in combination with iTBS [80].
Other options include combined use of stimulation with various
psychotherapy approaches, although whether and how to
combine these modalities remains an unanswered question, with
some evidence that the type and timing of the psychotherapy is
likely to be important. For example, exposure plus stimulation for
OCD appears to yield superior clinical outcomes [78], yet a similar
approach for PTSD attenuated effects of active stimulation when
using TMS with an H1 coil [81]. Although naturalistic studies
indicate benefit of combined TMS plus psychotherapy for
depression (e.g., ref. [82]), there are no prospective examinations
comparing TMS versus TMS plus evidence-based psychotherapy.

Concurrent treatments. Given that TMS is commonly used for
treatment-resistant depression and is offered after patients have
failed at least one medication trial, most patients in clinical trials
and receiving TMS in the community for MDD are on antide-
pressant medication(s). Whether and how medications influence
clinical outcomes in accelerated TMS remains unclear. In one of
the early randomized controlled trials of TMS monotherapy,
clinical outcomes improved once participants were placed on
antidepressant medications as they exited the trial, suggesting
synergy [2]. While several medications (e.g., antiepileptic agents,
benzodiazepines, psychostimulants, etc.) may impact motor
threshold calibration, whether these medications reliably impact
clinical outcomes in standard TMS remains unclear [83, 84].
Uncontrolled data has indicated reduced effectiveness for MDD
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when patients are on anticonvulsants, benzodiazepines, or
antipsychotics (e.g., refs. [85–87]), and possible improved out-
comes when on psychostimulants; [87, 88] yet the uncontrolled
nature of these studies makes it difficult to ascertain whether
these effects are directly related to the medication in question or
are related to other clinical factors such as increased comorbidity.
Of note, the SNT protocol allowed for anticonvulsant medication
and only one (out of 14) patient in the active iTBS group and four
(out of 15) in the sham group were not taking any other
medications. This further underscores the need to understand the
potential interactions (positive or negative) between stimulation
and psychotropic medication, with the understanding that these
interactions may be similar to or different from lessons learned
from standard TMS.

Summary – Brain state. Brain state is likely a critical and complex
factor in TMS treatment and research. Most RCTs and clinical
practice use rest as the standard context and stable medication
use as acceptable concurrent treatment, but effect of TMS may be
different depending on the brain state. TMS could possibly be
augmented (or impaired) by changing the context using
provocation techniques, medication, or psychotherapeutic
approaches. However, there is considerable nuance in this space
that will require careful consideration; controlling brain state
sounds laudable, but the actual procedures are likely to be
unfeasible. For example, will studies need to find a way to have
their participants maintain a single thought or series of thoughts
during stimulation (or during an entire course of TMS)? An
individual’s internal processes during tasks and provocation are
also likely to vary and will need to be assessed or evaluated.
Furthermore, depending on the type of concurrent medication
use, clinical outcomes may be improved or hampered, but
controlled studies are needed to establish any effects. Taken
together, considering ways to control (and measure) brain state is
a critical challenge in accelerated TMS and the field more broadly;
investigators should expect the unexpected when navigating the
intersection of an unknown brain state and higher cumulative
TMS exposure during accelerated TMS.

THE PROMISE AND PITFALLS OF ACCELERATED TMS
Early studies provided initial support that accelerated TMS is
effective with improved treatment outcomes in depression
compared to sham [50], but relatively few studies have directly
compared the effects of accelerated TMS to standard TMS
protocols in terms of efficacy, safety, and tolerability [89].
Preliminary data point to the potential that accelerated TMS can
deliver an increased number of pulses in a shorter time to shorten
the response time in depression over standard protocols.
However, it remains unclear how many treatments a day are
optimal, what is the most efficient intertrain duration, and what is
the maximum number of pulses that can be administered safely.
Even basic questions such as the durability of accelerated TMS

have not been answered. The possibility that the speed of acute
antidepressant response in studies of rTMS may be inversely
related to the likelihood of relapse has been postulated for some
time (e.g., ref. [90]). There are limited studies of the durability of
TMS (e.g., ref. [91, 92]), and early data from existing accelerated
TMS studies indicate a more rapid loss of acute efficacy
[42, 43, 64]. More research is needed in this area. Ameliorating
this concern somewhat is the fact that TMS has a high rate of re-
response when administered subsequently [92] which was also
suggested in a very small number (n= 6) of retreated patients
described in Cole et al. [43].
Accelerated approaches may yield additional safety concerns

particularly if the number of treatments or pulses is increased to
further improve the response time. To date, the safety profile of
TMS has been favorable, given its absence of the systemic side

effects, and small risk of seizure, but it is reasonable to expect a
different safety profile as doses increase over time. At this point in
the research on accelerated protocols it will be important to
develop systematic methods to assess in real time the individual’s
cortical excitability (i.e., perhaps by EEG measures) in relation to
the stimulation protocol. This can help determine the range of
individual variability. E-Field modeling can also help determine the
applied intensity of neurostimulation parameters based on an
individual’s neuroanatomy, potentially increasing the stimulation
above the standard maximum stimulus of 120% of the motor
threshold. Assessing cortical excitability can add a measure of
safety with the potential for increased stimulus parameters.
Incidence of treatment-emergent mania with iTBS protocols

[93] and anxiety with standard TMS therapy has been reported
(e.g. refs. [43, 94]), and as such should remind clinicians to
carefully monitor patients receiving accelerated treatments. Safety
will also have to be evaluated when applying accelerated
approaches to different patient populations that may have
different risk profiles, such as pediatric and geriatric patients.
Similarly, patients with comorbid substance use and other
common clinical conditions that place them at higher risk of
seizure will need to be carefully studied.
Access to accelerated TMS must also be considered. Technol-

ogies need to be scaled to use by nonacademic practitioners if
they are determined to be essential to the safety and efficacy of
the accelerated treatments. Accelerated protocols are already
being adopted into routine clinical practice even prior to studies
to define the most essential elements of accelerated TMS. For
example, are ten treatments a day required, or can that be
shortened to eight treatments to conform to an eight-hour
workday for a TMS administrator? And, is neuronavigation
necessary to maximize response and how does it compare to
more traditional methods such as the Beam/F3 method?
Of note, there have been attempts to develop at home TMS

using lower risk devices to improve access. One example is the use
of synchronized TMS, where low-field stimulation is synchronized
to an individual’s alpha peak frequency [95]. However, multisite
randomized controlled trials have reported mixed findings for the
efficacy of low-field synchronized TMS in treating depression
[96, 97]. Importantly, none of these trials have involved iTBS or
accelerated protocols, which potentially increase the risks of side
effects or serious adverse events. The safety of accelerated TMS
should be determined before trials using self-administered
devices.
Neuroimaging methods to identify a potential “ideal” location of

stimulation have garnered significant attention over the last
decade [67]. In fact, anticorrelation between the sgACC and TMS
target has emerged as one of the most promising predictors of
TMS response and was integrated into more recent studies of
accelerated TMS for depression. While studies identifying TMS
targets have shown positive preliminary results, it is unclear what
the actual added benefit of this technique is, which is critical to
understand given the additional costs and burden. There are
several important unknowns regarding this approach and more
mechanistic research in this area is imperative. Predictors for TMS
treatment success, such as greater pre-treatment functional or
structural connectivity are needed to further optimize personaliza-
tion. Moreover, it is unclear what the role of structural versus
functional brain connections is in defining the TMS treatment
target. A recent study demonstrated the importance of overlap
between structural and functional connectivity in enhancing the
impact of TMS [98], which suggests future studies should also
consider structural connections in defining the TMS target, yet all
clinical studies so far have used structural targets or functional
connectivity targets, not taking into account structural connec-
tions between regions.
One of the key challenges in clinical TMS is that patients must

fail several antidepressant treatments to be approved for
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commercial insurance coverage of their course of TMS. An
alternative strategy would be to implement a stratified or
precision medicine approach; using this framework, a patient
would undergo a biomarker assessment that would provide
treatment-specific guidance for the patient and clinician. In a
study nearly a decade ago, McGrath et al. [99], demonstrated that
brain glucose metabolism identified patients more likely to
respond to cognitive behavioral therapy versus an antidepressant.
In the last several years, multiple clinical investigations demon-
strated the potential of biomarkers to predict antidepressant
treatment response, which included central and autonomic
nervous system regulation [100], electroencephalogram
[101–103], fMRI functional connectivity [104, 105], and subcortical
volumes [106]. In the example of accelerated TMS, measurement
of a TMS-specific biomarker, obtained after the initial diagnosis of
depression or first antidepressant failure, would inform whether to
pursue TMS (e.g., ref. [107]). Additionally, there is a need for
biomarkers that could predict efficacy of TMS versus antidepres-
sants (such as [108]) or cognitive behavioral therapy. This could be
an important future strategy for earlier stratification of patients
who would be good candidates for TMS and supports the
potential of TMS as a first-line treatment option if supported by
biomarker data. This process, however, requires TMS-response
biomarkers to be reliable and specific; at the current time no
biomarkers have demonstrated sufficient validity for clinical use,
although several hold promise and are under active development
[109].
Furthermore, the field should also expect that some of the prior

lessons learned may come with crucial caveats. As an example,
recent examinations have raised important new questions about
the use of personalized sgACC-dlPFC functional targeting. An
analysis of imaging data from Blumberger et al. [38] identified that
this connectivity relationship poorly predicted treatment response
and appeared to be heavily influenced by what appears to be
respiratory artifact [69]. While the field has yet to consider the full
impact of this work, it should remind researchers to carefully
examine of core components of clinical response.
To date, neuroimaging studies have largely focused on

comparing fMRI measures before and after treatment. However,
these designs provide limited direct information on how the brain
changes during the course of stimulation. Repeatedly, early clinical
response to TMS has broadly predicted longer-term outcomes
([110], but also see [111]). Recently, work from Berlow et al. [112]
indicated that TMS response follows an exponential decay
function, regardless of the protocol or approach (e.g., accelerated
vs. standard). Assuming a relationship between brain changes and
clinical symptom change, this indicates that large-scale changes in
circuit reorganization may be occurring early in the TMS course,
and empirically argues for oversampling (e.g., using MRI, EEG)
during the first weeks of TMS to characterize these large-scale
changes [113]. Once these early changes have been identified,
different stimulation approaches can be designed to provide a
maximally accelerated response. There is also a need for studies
investigating the immediate effect of such approaches on brain
function and functional connectivity. A few mechanistic studies
using interleaved TMS-fMRI have provided first evidence for a
causal relation between the DLPFC stimulation and activation in
the sgACC and its broader functional network, though findings
were not all in the same direction likely due to differences in study
designs [114–116], suggesting the need for more research in
this area.
It seems ideal to maximize treatment in a short amount of time,

but patients must be able to spend a full week to undergo the
treatment and the clinic schedule must be able to accommodate
this as well. By its definition, this is an expensive intervention
combined with further expensive approaches (e.g., EEG, MRI,
neuronavigation, etc.), with additional costs related to staffing.
Whether these interventions can be implemented in resource-

poor environments is also an important consideration. At the crux
of this question is: Are these more expensive approaches superior?
The field is overdue for properly powered and conducted studies
comparing high cost technical TMS approaches versus lower cost
interventions, or even comparisons between higher cost TMS and
earlier forms of TMS. If the effect sizes are truly superior with
accelerated approaches, then the increased short-term cost to
reduce longer-term and well-documented impacts of depression
can be justified. If, however, the gains are more modest, then the
field will need to carefully consider how and where to deploy
accelerated TMS (e.g., inpatient treatment while hospitalized), and
use the knowledge gained from high-cost approaches and
translate them into lower cost interventions with broader and
more equitable reach.

FUTURE RESEARCH DIRECTIONS AND CLINICAL IMPLICATIONS
Accelerated TMS is a promising application of TMS that increases
the number of TMS pulses that can be delivered, reduces
treatment time, and achieves a more rapid reduction in depressive
symptoms. However, the literature supporting this approach
remains at a very early stage, and it is possible, and even likely,
that misinterpreting efficacy signals from interrelated variables will
lead us to miss important signals hidden within our data. Precisely
which of these nine elements is critical and what parameters for
each of the elements is most optimal for the treatment of MDD
remains unclear at this time. To this end, there are ongoing
research initiatives that will evaluate different elements of
accelerated TMS. Yet, it is important to recognize these studies
will still depend upon imprecise measures of self- or clinician-
assessed symptom severity measures, and so these studies must
be coupled with biological measures (fMRI, EEG, etc.). Several
large-scale studies are ongoing [113] to determine how neuro-
physiologic outcomes can be used to optimize treatment
parameters and assess therapeutic efficacy, and adopting a high
sampling of biological signals early in the treatment course
remains a promising (and relatively unexamined) area of inquiry
that can be integrated into existing treatment protocols. Taken
together, the field is at an important crossroads, with new data
indicating that the promise of accelerated clinical outcomes,
without systemic side effects, may be within our reach. Yet, we
must be mindful that early adoption can come at the price of
missing opportunities to further develop accelerated TMS. And
finally, as future studies progress it will be incumbent upon the
field to ensure that the resultant treatments remain accessible to
the patients who need them the most.
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