Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons

Abstract

The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity—a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent—this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibitory afferents to VTA GABA neurons exhibit either iLTP or iLTD in response to a 5 Hz stimulus.
Fig. 2: The iLTP and iLTD observed at the inhibitory VTA GABA synapses are unique synaptic events.
Fig. 3: The iLTP does not involve the nitric oxide pathway but is somewhat NMDAR-dependent.
Fig. 4: The iLTD is GABAB receptor-dependent, but independent of the endocannabinoid system and dopamine receptor D2.
Fig. 5: Chronic ethanol treated mice displayed anxiety and compulsive-like behavior during the ethanol withdraw period and eliminated iLTD.

Similar content being viewed by others

References

  1. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28:309–69.

    CAS  PubMed  Google Scholar 

  2. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in. learned appetitive behavior and positive reinforcement. Ann Rev Neurosci. 2007;30:289–316.

  3. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA. 1988;85:5274–8.

    PubMed  PubMed Central  Google Scholar 

  4. Lüscher C, Ungless MA. The mechanistic classification of addictive drugs. PLoS Med. 2006;3:e437.

    PubMed  PubMed Central  Google Scholar 

  5. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–12.

    CAS  PubMed  Google Scholar 

  6. Creed MC, Lüscher C. Drug-evoked synaptic plasticity: beyond metaplasticity. Curr Opin Neurobiol. 2013;23:553–8.

    CAS  PubMed  Google Scholar 

  7. Ungless MA, Whistler JL, Malenka RC, Bonci A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001;411:583–7.

    CAS  PubMed  Google Scholar 

  8. Bonci A, Malenka RC. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. The. J Neurosci: Off J Soc Neurosci. 1999;19:3723–30.

    CAS  Google Scholar 

  9. Nugent FS, Penick EC, Kauer JA. Opioids block long-term potentiation of inhibitory synapses. Nature 2007;446:1086–90.

    CAS  PubMed  Google Scholar 

  10. Stuber GD, Hopf FW, Hahn J, Cho SL, Guillory A, Bonci A. Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcohol, Clin Exp Res. 2008;32:1714–20.

    CAS  PubMed  Google Scholar 

  11. Nugent FS, Niehaus JL, Kauer JA. PKG and PKA Signaling in LTP at GABAergic Synapses. Neuropsychopharmacology 2009;34:1829–42.

    CAS  PubMed  Google Scholar 

  12. Saal D, Dong Y, Bonci A, Malenka RC. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 2003;37:577–82.

    CAS  PubMed  Google Scholar 

  13. Zweifel LS, Argilli E, Bonci A, Palmiter RD. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 2008;59:486–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci: Off J Soc Neurosci. 2008;28:9092–100.

    CAS  Google Scholar 

  15. Kodangattil JN, Dacher M, Authement ME, Nugent FS. Spike timing-dependent plasticity at GABAergic synapses in the ventral tegmental area. The. J Physiol. 2013;591:4699–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C, de Roo M, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 2013;341:1521–5.

    CAS  PubMed  Google Scholar 

  17. Liu QS, Pu L, Poo MM. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 2005;437:1027–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barrett AC, Negus SS, Mello NK, Caine SB. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats. J Pharmacol Exp therapeutics. 2005;315:858–71.

    CAS  Google Scholar 

  19. Degenhardt L, Charlson F, Ferrari A, Santomauro D, Erskine H, Mantilla-Herrara A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Psychiatry 2018;5:987–1012.

    Google Scholar 

  20. Darvishi N, Farhadi M, Haghtalab T, Poorolajal J. Alcohol-related risk of suicidal ideation, suicide attempt, and completed suicide: a meta-analysis. PloS one. 2015;10:e0126870.

    PubMed  PubMed Central  Google Scholar 

  21. Stahre M, Roeber J, Kanny D, Brewer RD, Zhang X. Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. Prev Chronic Dis. 2014;11:E109.

    PubMed  PubMed Central  Google Scholar 

  22. Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, et al. Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. Jama 2006;295:2003–17.

    CAS  PubMed  Google Scholar 

  23. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985;348:201–3.

    CAS  PubMed  Google Scholar 

  24. Brodie MS, Shefner SA, Dunwiddie TV. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65–9.

    CAS  PubMed  Google Scholar 

  25. Melis M, Camarini R, Ungless MA, Bonci A. Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci. 2002;22:2074–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weiss F, Parsons LH, Schulteis G, Hyytiä P, Lorang MT, Bloom FE, et al. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci: Off J Soc Neurosci. 1996;16:3474–85.

    CAS  Google Scholar 

  27. Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL. Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA. 1993;90:7966–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Steffensen SC, Walton CH, Hansen DM, Yorgason JT, Gallegos RA, Criado JR. Contingent and non-contingent effects of low-dose ethanol on GABA neuron activity in the ventral tegmental area. Pharmacol, Biochem, Behav. 2009;92:68–75.

    CAS  PubMed  Google Scholar 

  29. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. The. J Comp Neurol. 2003;467:60–79.

    CAS  PubMed  Google Scholar 

  30. Gonzalez-Hernandez T, Barroso-Chinea P, Acevedo A, Salido E, Rodriguez M. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. The. Eur J Neurosci. 2001;13:57–67.

    CAS  PubMed  Google Scholar 

  31. Olson VG, Nestler EJ. Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synap (NY). 2007;61:87–95.

    CAS  Google Scholar 

  32. Merrill CB, Friend LN, Newton ST, Hopkins ZH, Edwards JG. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Sci Rep. 2015;5:16176.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, et al. Preparation of acute brain slices using an optimized N-Methyl-D-glucamine protective recovery method. J Vis Exp. 2018.

  34. McMahon LL, Kauer JA. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 1997;18:295–305.

    CAS  PubMed  Google Scholar 

  35. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 2008;57:746–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dudek SM, Bear MF. Homosynaptic Long-Term Depression in Area CA1 of hippocampus and effects of N-Methyl-D-Aspartate receptor blockade. Proc Natl Acad Sci 1992;89:4363–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams SB, Yorgason JT, Nelson AC, Lewis N, Nufer TM, Edwards JG, et al. Glutamate transmission to ventral tegmental area GABA neurons is altered by acute and chronic ethanol. Alcohol, Clin Exp Res. 2018;42:2186–95.

    CAS  PubMed  Google Scholar 

  38. Nelson AC, Williams SB, Pistorius SS, Park HJ, Woodward TJ, Payne AJ, et al. Ventral Tegmental Area GABA Neurons Are Resistant to GABA(A) Receptor-Mediated Inhibition During Ethanol Withdrawal. Front Neurosci. 2018;12:131.

    PubMed  PubMed Central  Google Scholar 

  39. Wang J, Jiang L, Du H, Mason GF. An ethanol vapor chamber system for small animals. J Neurosci Methods. 2012;208:79–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Umathe S, Bhutada P, Dixit P, Shende V. Increased marble-burying behavior in ethanol-withdrawal state: modulation by gonadotropin-releasing hormone agonist. Eur J Pharmacol. 2008;587:175–80.

    CAS  PubMed  Google Scholar 

  41. Njung’e K, Handley SL. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol, Biochem, Behav. 1991;38:63–7.

    PubMed  Google Scholar 

  42. Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. J Vis Exp. 2008.

  43. Friend L, Weed J, Sandoval P, Nufer T, Ostlund I, Edwards JG. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: a Novel Target for Marijuana. J Neurosci. 2017;45:10943–54.

  44. Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res. 1998;118:155–72.

    CAS  PubMed  Google Scholar 

  45. Heifets BD, Castillo PE. Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol. 2009;71:283–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Margolis EB, Toy B, Himmels P, Morales M, Fields HL. Identification of rat ventral tegmental area GABAergic neurons. PloS one. 2012;7:e42365.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cruz HG, Ivanova T, Lunn M-L, Stoffel M, Slesinger PA, Luscher C. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nat Neurosci. 2004;7:153–59.

    CAS  PubMed  Google Scholar 

  48. Wöhrl R, von Haebler D, Heinemann U. Low-frequency stimulation of the direct cortical input to area CA1 induces homosynaptic LTD and heterosynaptic LTP in the rat hippocampal-entorhinal cortex slice preparation. The. Eur J Neurosci. 2007;25:251–8.

    PubMed  Google Scholar 

  49. Jappy D, Valiullina F, Draguhn A, Rozov A. GABABR-dependent long-term depression at hippocampal synapses between CB1-positive interneurons and CA1 pyramidal cells. Front Cell Neurosci. 2016;10:4.

    PubMed  PubMed Central  Google Scholar 

  50. Kamikubo Y, Tabata T, Kakizawa S, Kawakami D, Watanabe M, Ogura A, et al. Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J Physiol. 2007;585:549–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Scanziani M. GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity. Neuron 2000;25:673–81.

    CAS  PubMed  Google Scholar 

  52. Gassmann M, Bettler B. Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci. 2012;13:380–94.

    CAS  PubMed  Google Scholar 

  53. Dutar P, Nicoll RA. A physiological role for GABAB receptors in the central nervous system. Nature 1988;332:156–8.

    CAS  PubMed  Google Scholar 

  54. Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, et al. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci. 2017;20:438–48.

  55. Ciccarelli A, Calza A, Panzanelli P, Concas A, Giustetto M, Sassoè-Pognetto M. Organization of GABAergic synaptic circuits in the rat ventral tegmental area. PloS one. 2012;7:e46250.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li X, Terunuma M, Deeb TG, Wiseman S, Pangalos MN, Nairn AC, et al. Direct interaction of PP2A phosphatase with GABAB receptors alters functional signaling. J Neurosci. 2020;40:2808–16.

  57. Padgett Claire L, Lalive Arnaud L, Tan Kelly R, Terunuma M, Munoz Michaelanne B, Pangalos, Menelas N, et al. Methamphetamine-Evoked Depression of GABAB receptor signaling in GABA neurons of the VTA. Neuron. 2012;73:978–89.

    CAS  PubMed  Google Scholar 

  58. Cryan JF, Kaupmann K. Don’t worry ‘B’ happy!: A role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36–43.

    CAS  PubMed  Google Scholar 

  59. Roberts DC, Andrews MM, Vickers GJ. Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacology 1996;15:417–23.

    CAS  PubMed  Google Scholar 

  60. Brebner K, Phelan R, Roberts DC. Intra-VTA baclofen attenuates cocaine self-administration on a progressive ratio schedule of reinforcement. Pharmacol, Biochem, Behav. 2000;66:857–62.

    CAS  PubMed  Google Scholar 

  61. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synap (N. Y, NY). 2003;50:1–6.

    CAS  Google Scholar 

  62. Heaney CF, Kinney JW. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev. 2016;63:1–28.

    CAS  PubMed  Google Scholar 

  63. Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang YP, et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 2006;50:589–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kasten CR, Boehm SL 2nd. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev. 2015;57:70–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Johnson S, North R. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Szabo B, Siemes S, Wallmichrath I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci. 2002;15:2057–61.

    PubMed  Google Scholar 

  67. Matyas F, Urban GM, Watanabe M, Mackie K, Zimmer A, Freund TF, et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 2008;54:95–107.

    CAS  PubMed  Google Scholar 

  68. Pan B, Hillard CJ, Liu QS. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci. 2008;28:1385–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. St Laurent R, Martinez Damonte V, Tsuda AC, Kauer JA. Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity. Neuron. 2020;4:624–36.e4.

  70. Simmons DV, Petko AK, Paladini CA. Differential expression of long-term potentiation among identified inhibitory inputs to dopamine neurons. J Neurophysiol. 2017;118:1998–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Linden DJ, Connor JA. Long-term synaptic depression. Annu Rev Neurosci. 1995;18:319–57.

    CAS  PubMed  Google Scholar 

  72. Guetg N, Abdel Aziz S, Holbro N, Turecek R, Rose T, Seddik R, et al. NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci USA. 2010;107:13924–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Maier PJ, Marin I, Grampp T, Sommer A, Benke D. Sustained glutamate receptor activation down-regulates GABAB receptors by shifting the balance from recycling to lysosomal degradation. The. J Biol Chem. 2010;285:35606–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Terunuma M, Vargas KJ, Wilkins ME, Ramírez OA, Jaureguiberry-Bravo M, Pangalos MN, et al. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc Natl Acad Sci USA. 2010;107:13918–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bouarab C, Thompson B, Polter AM. VTA GABA neurons at the interface of stress and reward. Front Neural Circuits. 2019;13:78–89.

  76. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    CAS  PubMed  Google Scholar 

  77. Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci. 2019;50:3732–49.

    PubMed  PubMed Central  Google Scholar 

  78. Phillips RA 3rd, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 2022;39:110616.

    CAS  PubMed  Google Scholar 

  79. Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev. 2009;89:649–705.

    CAS  PubMed  Google Scholar 

  80. Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci. 2014;35:317–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Juarez B, Han MH. Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016;41:2424–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wanat MJ, Sparta DR, Hopf FW, Bowers MS, Melis M, Bonci A. Strain specific synaptic modifications on ventral tegmental area dopamine neurons after ethanol exposure. Biol Psychiatry. 2009;65:646–53.

    CAS  PubMed  Google Scholar 

  83. Stuber GD, Hopf FW, Tye KM, Chen BT, Bonci A. Neuroplastic alterations in the limbic system following cocaine or alcohol exposure. Curr Top Behav Neurosci. 2010;3:3–27.

    PubMed  Google Scholar 

  84. Lovinger DM, White G, Weight FF. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 1989;243:1721–4.

    CAS  PubMed  Google Scholar 

  85. Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017;122:85–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mrejeru A, Martí-Prats L, Avegno EM, Harrison NL, Sulzer D. A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 2015;290:649–58.

    CAS  PubMed  Google Scholar 

  87. Gallegos RA, Criado JR, Lee RS, Henriksen SJ, Steffensen SC. Adaptive responses of GABAergic neurons in the ventral tegmental area to chronic ethanol. J Pharm Exp Ther. 1999;291:1045–53.

    CAS  Google Scholar 

  88. Ludlow KH, Bradley KD, Allison DW, Taylor SR, Yorgason JT, Hansen DM, et al. Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA Neurons. Alcohol-Clin Exp Res. 2009;33:804–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stobbs SH, Ohran AJ, Lassen MB, Allison DW, Brown JE, Steffensen SC. Ethanol suppression of ventral tegmental area GABA neuron electrical transmission involves N-methyl-D-aspartate receptors. J Pharmacol Exp therapeutics. 2004;311:282–9.

    CAS  Google Scholar 

  90. Brodie MS, Appel SB. The effects of ethanol on dopaminergic neurons of the ventral tegmental area studied with intracellular recording in brain slices. Alcohol Clin Exp Res. 1998;22:236–44.

    CAS  PubMed  Google Scholar 

  91. Yin HH, Park BS, Adermark L, Lovinger DM. Ethanol reverses the direction of long-term synaptic plasticity in the dorsomedial striatum. Eur J Neurosci. 2007;25:3226–32.

    PubMed  Google Scholar 

  92. Johnson KA, Liput DJ, Homanics GE, Lovinger DM. Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure. Alcohol (Fayettev, NY). 2020;82:11–21.

    CAS  Google Scholar 

  93. Häusser MA, Yung WH. Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro. J Physiol. 1994;479:401–22.

    PubMed  PubMed Central  Google Scholar 

  94. Steffensen SC, Nie Z, Criado JR, Siggins GR. Ethanol inhibition of N-methyl-D-aspartate responses involves presynaptic gamma-aminobutyric acid(B) receptors. J Pharmacol Exp therapeutics. 2000;294:637–47.

    CAS  Google Scholar 

  95. File SE, Zharkovsky A, Gulati K. Effects of baclofen and nitrendipine on ethanol withdrawal responses in the rat. Neuropharmacology 1991;30:183–90.

    CAS  PubMed  Google Scholar 

  96. Knapp DJ, Overstreet DH, Breese GR. Baclofen blocks expression and sensitization of anxiety-like behavior in an animal model of repeated stress and ethanol withdrawal. Alcohol, Clin Exp Res. 2007;31:582–95.

    CAS  PubMed  Google Scholar 

  97. Walker BM, Koob GF. The gamma-aminobutyric acid-B receptor agonist baclofen attenuates responding for ethanol in ethanol-dependent rats. Alcohol, Clin Exp Res. 2007;31:11–8.

    CAS  PubMed  Google Scholar 

  98. Luscher C, Pascoli V, Creed M. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Curr Opin Neurobiol. 2015;35:95–100.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge assistance of Calvin Smith with molecular biology studies and Andrew J Payne with EtOH studies. USPHS NIH grants R15DA038092 (JE), R15DA049260 (JE) and AA020919 (SCS/JE) supported this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was also supported by institutional Mentoring Grants (JE) and Graduate Fellowship Awards (TMN).

Author information

Authors and Affiliations

Authors

Contributions

TMN, BJW, and JGE designed the research and wrote the paper. TMN and BJW preformed electrophysiology experiments. ZB performed quantitative PCR experiments. SCS provided funding, resources and expertise for the project. All authors performed the studies and analyzed the data, or edited the paper, and approve the final version.

Corresponding author

Correspondence to Jeffrey G. Edwards.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nufer, T.M., Wu, B.J., Boyce, Z. et al. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacol. 48, 1396–1408 (2023). https://doi.org/10.1038/s41386-023-01554-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01554-y

Search

Quick links