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Electrophysiological signatures of reward learning in the rodent
touchscreen-based Probabilistic Reward Task
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Blunted reward learning and reward-related activation within the corticostriatal-midbrain circuitry have been implicated in the
pathophysiology of anhedonia and depression. Unfortunately, the search for more efficacious interventions for anhedonic
behaviors has been hampered by the use of vastly different preclinical and clinical assays. In a first step in addressing this gap, in
the current study, we used event-related potentials and spectral analyses in conjunction with a touchscreen version of the rodent
Probabilistic Reward Task (PRT) to identify the electrophysiological signatures of reward learning in rats. We trained 11 rats (5
females and 6 males) on the rodent touchscreen-based PRT and subsequently implanted them with deep electrodes in the anterior
cingulate cortex (ACC) and nucleus accumbens (NAc) for local field potentials recordings during the PRT. Behaviorally, the expected
responsivity-to-reward profile was observed. At the electrophysiological level, we identified a negative amplitude deflection
250–500ms after feedback in the ACC and NAc electrodes, as well as power increase in feedback-locked delta (1–5 Hz) and alpha/
beta (9–17 Hz) bands in both electrodes for rewarded trials. Using a reverse-translational approach, we identified
electrophysiological signatures of reward learning in rats similar to those described in humans. These findings and approaches
might provide a useful translational platform to efficiently evaluate novel therapeutics targeting anhedonia.

Neuropsychopharmacology (2023) 48:700–709; https://doi.org/10.1038/s41386-023-01532-4

INTRODUCTION
Reward-related processes have long been considered in the
study of psychiatric disorders. In particular, impairments in
reward learning (i.e., the ability to modulate behavior as a
function of reinforcement history) have been associated
with major depressive disorder (MDD), and have been
found to predict poor disease outcome and treatment
response [1–3]. Accordingly, reward learning is a critical
domain for the study of mood disorders and target for
translational work.
From a behavioral perspective, reward learning can be

objectively evaluated using the Probabilistic Reward Task (PRT)
[4], which is a recommended assay to probe the Positive
Valence Systems in the latest revision of the RDoC matrix [5].
Rooted in signal-detection theory [6], the PRT exposes subjects
during discrimination learning to an asymmetric probabilistic
reinforcement schedule which, in healthy subjects, reliably
evokes a response bias toward the more frequently rewarded
stimulus (the so-called “rich stimulus”). Relative to healthy
controls, individuals with MDD—and specifically those report-
ing high levels of anhedonia (loss of pleasure to previously
rewarding events)—are characterized by a blunted response
bias toward the more frequently rewarded stimulus, thus
evincing decreased responsiveness to reward [3, 7, 8]. Criti-
cally, and highlighting high translational relevance, similar
effects have been repeatedly observed using back-translated
versions of the PRT designed for laboratory animals (e.g., rats,

non-human primates) while investigating anhedonic pheno-
types [9–13].
Regarding the neural basis of reward learning, studies

have emphasized the role of the corticostriatal-midbrain
dopaminergic circuitry [2, 14]. In particular, nonhuman
primate studies have highlighted dopaminergic “teaching”
signals in the form of “reward prediction errors” (which refer
to the differences between predicted and received rewards),
with positive and negative prediction errors eliciting
increased and decreased, respectively, phasic neuronal
activity of midbrain dopaminergic neurons that support
adaptive learning [15–17].
These neural mechanisms have been indirectly assessed in

humans using electrophysiological indexes such as the
feedback-related negativity (FRN) [18], which more recently
has been conceptualized as reward positivity (RewP) [19–21],
because the apparent “negativity” actually reflects a reward-
related positivity that is reduced in response to non-rewards
[20] (thus, therafter, we will use the term “FRN/RewP”). This
ERP component is thought to be evoked by performance
feedback and is usually measured ~200–300 ms post-feedback
at fronto-central electrodes. The FRN/RewP is assumed to
reflect transmission of dopaminergic signals from striatal
regions to the dorsal anterior cingulate cortex (dACC)
[22, 23]. Directly relevant here, a prior human PRT study
found that pharmacologically-induced reduction in reward
learning was associated with a larger (i.e., more negative FRN)

Received: 2 October 2022 Revised: 18 December 2022 Accepted: 31 December 2022
Published online: 16 January 2023

1Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA. 2Department of Child and Adolescent Psychiatry, Columbia University, New York, NY 10032, USA. 3Data
Science Institute, Columbia University, New York, NY 10027, USA. ✉email: dap@mclean.harvard.edu

www.nature.com/npp

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-023-01532-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-023-01532-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-023-01532-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-023-01532-4&domain=pdf
http://orcid.org/0000-0002-4597-9801
http://orcid.org/0000-0002-4597-9801
http://orcid.org/0000-0002-4597-9801
http://orcid.org/0000-0002-4597-9801
http://orcid.org/0000-0002-4597-9801
http://orcid.org/0000-0002-7772-1143
http://orcid.org/0000-0002-7772-1143
http://orcid.org/0000-0002-7772-1143
http://orcid.org/0000-0002-7772-1143
http://orcid.org/0000-0002-7772-1143
https://doi.org/10.1038/s41386-023-01532-4
mailto:dap@mclean.harvard.edu
www.nature.com/npp


and/or reduced RewP in response to the more frequently
rewarded (rich) stimulus [24]. Similarly, among healthy
controls, those with the largest reward learning in the PRT
were characterized by significantly smaller FRN (i.e., more
positive RewP) in response to rich reward feedback relative to
participants learning less [23]. Finally, in the latter study, a
positive correlation between FRN in response to rich reward
feedback and reward learning emerged: thus, a smaller (less
negative) FRN correlated with larger reward learning. In the
current study, correlational analyses were run between FRN/
RewP and reward learning to evaluate whether similar brain-
behavior relationships emerged in rats.
In addition to the FRN/RewP, other EEG parameters, including

task-induced spectral (oscillatory) changes have been related to
different aspects of reward processing [20, 21]. In particular, delta
activity has been associated with positive prediction errors (with
more delta power when better than expected outcomes are
delivered) [25]. Although less studied, feedback-related beta
oscillations have also been found to be sensitive to the receipt of
unexpected gains and they have been hypothesized to relate to
dopaminergic activation after a salient event [26, 27]. Conceptually,
in the PRT, the largest positive reward prediction errors is elicited
when the least frequently rewarded stimulus (the so-called “lean
stimulus”) is rewarded; accordingly, correlational analyses evaluated
whether delta and beta oscillations in response to rewarded lean
stimuli were particularly associated with higher reward learning.
The overarching aim of the current study was to identify

electrophysiological signatures of reward learning using both
ERP and EEG spectral analyses while rats performed a
touchscreen-based version of the PRT that is functionally
identical to the human version [9]. Owing to human PRT
findings linking response bias toward the more frequently
rewarded stimulus to reward-related activation in the nucleus
accumbens (NAc) and dACC [23, 24], electrophysiological signals
in the homologous regions of the rat were probed. We
hypothesized that the current touchscreen-based rodent version
of the PRT would elicit (1) a robust response bias, (2) a FRN/
RewP-like waveform, (3) and feedback-locked spectral changes
in oscillatory activity in delta and beta frequency bands in

response to reward, similarly to what has been observed in
humans.

MATERIALS AND METHODS
Subjects
Eleven Sprague-Dawley rats (6 males weighing 300–350 g and 5 females
weighing 250–300 g) were purchased from Charles River Laboratories
(Wilmington, MA) and maintained on a 12 h light/dark cycle (lights on
7:00 a.m. to 7:00 p.m.). Rats were initially housed in groups of three and
then singly housed following electrode implantation surgery. Access to
water was unrestricted and access to food was restricted to daily post-
session portions of ~10 to 15 g of rodent chow per subject. All procedures
were approved by the McLean Hospital Institutional Animal Care and Use
Committee and consistent with the 2010 National Institutes of Health
Guide for the Care and Use of Laboratory Animals.
The sample size was calculated using the software G*Power version

3.1.9.7 (Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany) for
within factors repeated measures ANOVA and assuming a level of
significance of 0.05, an effect size of 0.95 and power of 0.80.

Apparatus
The rat touch-sensitive experimental chamber (Fig. 1a) used in these
experiments have been previously described [27]. A chamber made of
plexiglas (25 × 30 × 35 cm) was situated in a sound- and light-attenuating
enclosure (40 × 60 × 45 cm), with a 17″ touch-sensitive screen (1739L, ELO
TouchSystems, Menlo Park, CA) comprising the inside right-hand wall of
the chamber. Outside of the enclosure, an infusion pump (PHM-100-5, Med
Associates, St. Albans, VT) was used to deliver sweetened condensed milk
solution (Sysco Corporation, Houston, TX) into the reservoir (diameter:
3 cm) of a custom-designed aluminum receptacle (4 × 5 × 1 cm) mounted
2 cm above the floor and centered on the left-hand inside wall. Above the
touchscreen, a speaker bar (NQ576AT, Hewlett-Packard, Palo Alto, CA) was
mounted to emit audible feedback. All experimental events and data
collection were programmed in E-Prime Professional 2.0 (Psychology
Software Tools, Inc., Sharpsburg, PA).

Experimental design and statistical analysis
Probabilistic Reward Task (PRT). Empirical validation and task optimiza-
tion of the touchscreen-based rat PRT has been previously described
elsewhere [9].

Fig. 1 Recording setup and electrode placement. a Photograph of the behavioral/recording setup (the rat in the picture is only an example
as we used a different breed for these experiments). b Representative histology image showing the electrode placement in ACC (upper panel)
and NAc (lower panel).
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Line length discrimination training: Trials began with presentation of
a white line on a black background, with its lower edge presented 3 cm
above 5 × 5 cm left and right blue response boxes. The length of the line
was either 600 × 120 px (31.5 × 6.5 cm: long line) or 200 × 60 px
(10.5 × 3.25 cm: short line). Long and short line-length trial types varied
in a quasi-random manner across 100-trial sessions such that there were
exactly 50 trials of each type, but a given trial type would not be presented
more than 5 times in a row. Subjects were differentially reinforced to
respond to the left or right response box depending on the length of the
white line (e.g., long line: respond left, short line: respond right, or vice
versa). Long and short response box designation was counterbalanced
across subjects. During line length discrimination training, each correct
response was reinforced with 0.1 ml of 30% sweetened condensed milk,
paired with an 880-ms yellow screen flash and a 440 Hz tone, and followed
by a 5-s blackout period, whereas each incorrect response immediately
resulted in a 10-s blackout period. A correction procedure was
implemented during initial discrimination training in which each incorrect
trial was repeated until a correct response was made [28] and was
discontinued after fewer than ten repeats of each trial type occurred in two
consecutive sessions. Discrimination training sessions continued without
correction until accuracies for both line length trial types were ≥80%
correct for two consecutive sessions, concordant with the performance
criteria in previous human PRT studies [4, 8, 29]. After this criterion was
met, PRT testing commenced.

PRT testing: Subjects were exposed to a 300-trial test session using 3:1
probabilistic reinforcement contingencies, such that a correct response to
one of the line lengths (long or short) was reinforced 60% of the time (rich
stimulus), whereas a correct response to the other line length was
reinforced 20% of the time (lean stimulus). Incorrect responses were never
reinforced. The line length associated with the rich and lean contingency
was determined for each subject during their final two-line length
discrimination training sessions by examining their accuracies and
designating the line length with a higher mean accuracy as the stimulus
to be rewarded on the lean schedule. This approach was expressly
designed to examine response bias generated by responsivity to
asymmetrical probabilistic contingencies, rather than the amplification of
a preexisting inherent bias that is a function of uncontrolled variables.

PRT data analysis: The implementation of probabilistic contingencies
yields two primary dependent measures: response bias and discrimin-
ability, which can be quantified using equations derived from signal-
detection theory [6, 30, 31] by examining the number of correct and
incorrect responses for Rich and Lean trial types. Response Bias is
calculated using the following log b equation:

log b ¼ 0:5 ´ log
RichCorrect þ 0:5ð Þ ´ LeanIncorrect þ 0:5ð Þ
RichIncorrect þ 0:5ð Þ ´ LeanCorrect þ 0:5ð Þ

� �

High bias values are produced by high numbers of correct responses for
rich trials and incorrect responses for lean trials. Discriminability is
calculated using the following log d equation:

log d ¼ 0:5 ´ log
RichCorrect þ 0:5ð Þ ´ LeanCorrect þ 0:5ð Þ
RichIncorrect þ 0:5ð Þ ´ LeanIncorrect þ 0:5ð Þ

� �

High discriminability values are produced by high numbers of correct
responses for both rich and lean trials (0.5 is added to all parameters in
both equations to avoid instances where no errors are made on a given
trial type, thus making log transforms impossible.) The utility of these
equations has been repeatedly confirmed in prior studies in humans
[3, 4, 8, 29, 32–34] and laboratory animals [2, 9, 11–13, 35]. In addition,
accuracy (percent correct calculated by dividing the number of correct
trials of each rich/lean trial by the total number of trials of that type) and
reaction time (latency from line presentation to response) were calculated
and presented as individual subject values and session-wide group means
(±SEM) for rich and lean trials.

Electrode implantation
Once the rats acquired line length discrimination, they underwent
stereotaxic surgery. Rats were anesthetized with isoflurane (induction
4%, maintenance 2%) in O2 and secured to a stereotaxic frame with
blunted ear bars. Next, rats were surgically implanted with wires in the
anterior cingulate cortex (ACC) (AP: +1.2, ML: +0.8, DV: −3.0; all electrodes

were positioned in Cg2) and NAc (AP: +1.2, ML: +0.8, DV: −7.0) for local
field potential (LFP) recordings, and two skull screw electrodes near the
cerebellum as ground and reference channels. In order to control the
distribution of the signal across channels, one of the rats (male) was
implanted with two additional skull screw electrodes in the left
hemisphere at a frontal and parietal site (Supplementary Fig. 1). The
electrodes were connected to an EIB-16 electrode interface board
(Neuralynx, Bozeman, MT) and the assembly was secured to the skull
using dental acrylic. After a 7-day recovery period, PRT performance was
re-established to criteria for the EEG recordings (RHD-2000, Intan
Technologies, Los Angeles, CA). At the end of the experiments, the
animals were euthanized, and the location of the electrodes was confirmed
with Nissl histology (Fig. 1b).

In vivo electrophysiology and data acquisition/reduction
Continuous LFP recordings were acquired during the PRT test session
using the RHD-2000 recording system and supported data acquisition
software (Intan Technologies, Los Angeles, CA). Signals were locally
digitized via a 16-channel headstage and continuously sampled at 1 kHz
with a bandwidth range of 0.1–300 Hz for the duration of the behavioral
session. Signal analysis was performed using BrainVision Analyzer 2.0
(Brain Products, Gilching, Germany). Data were bandpass filtered between
0.1 and 30 Hz and referenced offline to a common screw electrode placed
in the cerebellum. Artifacts were automatically rejected using a minimal-
maximal allowed amplitude of −300 µV and 300 µV, respectively, 200ms
before and after the event. Only trials that passed the artifact rejection
process were included in these analyses.
Feedback-locked ERP data were segmented into individual epochs

spanning from 500ms before and 1000ms after feedback, baseline-
corrected using a −500 to 0ms pre-feedback time window and
subsequently averaged. Feedback-locked ERPs were quantified as the
average activity within the 100–200ms and 250–500ms time window
following feedback on correct trials only.
For the spectral analysis, the pre-processing steps were similar to those

completed for the ERP analysis. Following artifact rejection with the
parameters specified above, a complex Morlet wavelet transformation was
implemented using a Morlet parameter c of 3.5 applied to all trials from 1
to 30 Hz in 30 frequency steps distributed on a logarithmic scale. A
percentage change baseline correction was implemented in Analyzer 2.0
(BrainVision Analyzer 2.0 Solution by Dr. Ingmar Gutberlet) by first
averaging the amplitude in a 500 to 0ms pre-feedback time window as
the reference interval for this correction. Power values were calculated
according to the percentage change in power relative to those baseline
periods using the following formula: percentage change (time-fre-
quency)= activity (time-frequency− baseline frequency)/baseline fre-
quency. This percentage change calculation was performed on a trial-by-
trial basis. As such, the power values analyzed represent the percentage
change in power relative to the baseline period. Subsequently, we applied
the average transformation in Analyzer 2.0 and then extracted the wavelet
layers of correct trials corresponding to delta (1–5 Hz) at 200–600ms and
9–17 Hz at 100–200ms, as an increased activity in the latter frequency
band was observed in preliminary analyses. Finally, we created wavelet-
decomposed time-frequency spectrograms using the grand average
difference in power between rewarded and non-rewarded trials
(rewarded− non-rewarded) for each stimulus type; thus, warmer colors
represent higher power for rewarded trials.

Statistical analysis
Normal distribution of all data was first tested using the Shapiro–Wilk test
and Mauchly’s test for sphericity. To analyze response bias and
discriminability, a one-way repeated measures ANOVA was conducted to
compare either log b and log d, respectively, across three 3 blocks of 100
trials each. To analyze accuracy and reaction time, a two-way ANOVA with
Stimulus Type (rich vs. lean) and Block as factors was performed.
Significant main effects or interactions were further examined using
Šídák’s multiple comparisons test.
To analyze possible time-domain differences between conditions, a two-

way ANOVA was performed using the ERP amplitude values at 250–500ms
post-feedback on correct trials for all conditions with Reward Feedback
(rewarded vs. non-rewarded) and Stimulus Type (rich vs. lean) as factors. We
selected this time window because it approximated the FRN/REwP in humans
[23] and visual inspection of the ERP waveforms highlighted deflections
differentiating between the feedback conditions. Similarly, a second
analogous set of analyses was performed on amplitudes averaged between
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100–200ms as the visual inspection of the ERP waveforms also revealed a
differentiation in the ERP between rewarded and non-rewarded trials.
To analyze differences at the spectral level, a two-way ANOVA was

applied using the correct trials wavelet average spectral power at
200–600ms for delta (1–5 Hz) and 100–200ms for the 9–17 Hz frequency
band with Reward Feedback and Stimulus Type as factors. These time
windows were selected after visual inspection of the grand average
wavelets computed for the overall sample. Significant main effects or
interactions were further examined using Šídák’s multiple
comparisons test.
To probe putative behavior-brain relationships, Pearson correlations

were run between response bias and EEG/ERP markers showing main
effects of the task. A Bonferroni correction was used to correct for four
correlations (rich/lean × rewarded/non-rewarded; p= 0.05/4= 0.0125). In
case of significant correlations, we evaluated the specificity of these
findings by running hierarchical regression. For example, if a significant
correlation emerged between response bias and feedback-related
responses to the rewarded rich stimulus, a regression analysis predicting
response bias was performed entering (1) feedback-related responses for
all other conditions (e.g., rich non-rewarded, lean rewarded, lean non-
rewarded trials) in the first step, and (2) responses to rewarded rich
stimulus in the second step. Specificity was formally evaluated by
considering ΔF and ΔR2.
Statistical analyses were performed using Graph Pad Prism 9 (GraphPad

Software Inc., La Jolla, CA) and IBM SPSS® version 24 (IBM Corp, New
York, NY).

RESULTS
The rat PRT elicited the intended response bias without
fluctuations in task difficulty or reaction time throughout the
task
As shown in Fig. 2, the expected responsivity-to-reward
behavioral profile was observed. Namely, response bias—which
reflects the tendency to correctly classify the more frequently
rewarded (rich) stimulus and misclassify the less frequently
rewarded (lean) stimulus as being the rich stimulus—was
observed and increased across successive blocks (log b, Fig. 2a);
this pattern emerged in the context of no significant changes in
discriminability, which reflects the ability to differentiate
between the stimuli and provides a proxy of task difficulty (log
d, Fig. 2b). These signal-detection metrics are collectively a
product of increases in accuracy for rich trials paired with
decreases in accuracy for lean trials (Fig. 2c), as reliably seen in
humans [6]. Reaction times remained consistent across trial
blocks (Fig. 2d).
For response bias, the repeated measures ANOVA confirmed a

main effect of Block (F[1.59, 15.9]= 17.50; p= 0.0002), with
significant differences between block 1 and 2 (p= 0.01) as well
as 1 and 3 (p= 0.0019), but not between block 2 and 3 (p= 0.07).
For accuracy, the two-way ANOVA revealed a main effect of
Stimulus Type (rich/lean) (F[1,10]= 52.90; p < 0.0001) due to

Fig. 2 Behavioral performance in the PRT. The graphs show each variable across 3 blocks of 100 trials each. a Response bias, measured with
log b, b discriminability measured with log d, c accuracy, calculated as the percentage of correct responses, and d reaction time, measured as
time to make a response (seconds). Collectively, these findings indicate that the task evoked the intended preference for the stimulus paired
with more frequent reward (log b and higher accuracy for the rich vs. lean stimulus), without fluctuations in task difficulty (log d) or reaction
time throughout the task. Main effects and interaction are presented with letters S (Stimulus Type) and B × S (Block × Stimulus Type
interaction) with asterisks according to their statistical significance. Dotted lines/arrows with asterisks show the statistical significance
obtained after multiple comparisons. N= 11.
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significantly higher rich than lean accuracy, and a significant
Block × Stimulus Type interaction (F[2,20]= 11.77; p= 0.0004) due
to the difference between rich and lean accuracy becoming
larger over blocks (Block 1: p= 0.005; Block 2: p < 0.0001; Block 3:
p < 0.0001). Critically, no significant differences in discriminability
(F[1.31, 13.1]= 0.57; p > 0.5) and reaction time (F [1.937,
19.37]= 0.01; p > 0.98) emerged. Collectively, these findings
indicate that the task evoked the intended preference for the
stimulus paired with more frequent reward (log b and accuracy),

without fluctuations in task difficulty (log d) or reaction time
throughout the task.

The feedback-locked ERP in the rat PRT resembles an “FRN/
RewP” waveform in the ACC and NAc local field potentials
In the ERP (Fig. 3a), the first finding was an early positivity
occurring around 100–200 ms in the ACC and NAc electrodes; the
two-way ANOVA confirmed a main effect of Reward Feedback for
the ACC (F[1,10]= 60.69; p < 0.0001) and NAc (F[1,10]= 13.53;

Fig. 3 Feedback-locked event-related potentials (ERPs) in ACC and NAc. a Grand average of the feedback-locked ERPs for rewarded (blue),
non-rewarded (red) trials, and the difference between them (gray) separated by stimulus type (Left: ACC, right: NAc). A negative deflection at
250–500ms after feedback similar to an “FRN” (shaded area) was observed in the ACC and NAc local field potentials. Note: The amplitude is
presented as microvolts and the time as milliseconds. b The graphs show the mean amplitude values in microvolts for the ERPs 250–500ms
after feedback presentation in ACC (left) and NAc (right) for all correct rewarded and non-rewarded trials separated by stimulus type—lean
(white circle) and rich (black circle). The magnitudes are presented as microvolts. Data presented as mean ± SEM. Main effects are presented
with letters R (reward/non-reward feedback) and S (stimulus type) with asterisks according to their statistical significance N= 11.
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p= 0.004) due to significantly higher amplitudes for rewarded
than non-rewarded trials.
Next, a negative deflection 250–500 ms after reward feedback

was observed in the ACC and NAc electrodes, similar to ERP
waveforms (FRN/RewP) previously described in humans during
the PRT [23], although with an inverse polarity that can be
explained by the different type of electrodes used (LFP). As shown
in Fig. 3b, for both ACC and NAc channels, this negative deflection
was significantly larger for rewarded compared to non-rewarded
trials (main effects of Reward Feedback: ACC: F[1,10]= 132;
p < 0.0001; NAc: F[1,10]= 94.6; p < 0.0001) and a main effect for
Stimulus Type (rich vs. lean) also emerged for the NAc
(F[1,10]= 5.65; p= 0.04).

Relationship between FRN/RewP-like responses and response bias
ACC electrode: Pearson correlation analyses (Fig. 4, upper
panels) revealed significant positive correlations between
response bias and FRN/RewP-like responses to rich rewarded
stimuli (r= 0.899, p < 0.0002; p < 0.05 after Bonferroni correction)

and rich non-rewarded stimuli (r= 0.67, p= 0.017; ns after
Bonferroni correction) (all other ps > 0.28). A hierarchical
regression entering feedback-related responses for rich non-
rewarded, lean rewarded and lean non-rewarded trials in the
first step, and responses to rewarded rich stimulus in the second
step, clarified that FRN/RewP-like ACC responses to rich
rewarded stimuli uniquely predicted response bias
(ΔF[1,6]= 21.18; p= 0.004), accounting for 27.42% of the
variance in response bias (variance explained by the other three
independent variables: 55.2%, p > 0.11). Further highlighting the
specificity of these findings, none of the FRN/RewP-like
responses correlated with discriminability (log d) (ps > 0.20),
and an analogous regression considering discriminability was
not significant (p > 0.58). Collectively, these control analyses
indicate that ACC FRN/RewP-like responses to rewarded rich
stimuli was specifically associated with the animals’ ability to
modulate behavior as a function of the probability of reinforce-
ment, rather than general responses to any stimuli or a general
ability to discriminate between the stimuli. Critically, in both rats

Fig. 4 Correlations between FRN/RewP-like responses and response bias. Scatter plots of the correlations for response bias (log b) and the
feedback-locked average amplitude at 250–500ms (FRN/RewP-like response) for rich rewarded trials in ACC and NAc (top and bottom left,
respectively) as well as for lean rewarded trials (top and bottom right). N= 11.
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(present study) and humans [23], a significant positive correla-
tion between FRN/RewP and response bias emerged.

NAc electrode: Similar to the ACC, significant positive correla-
tions (Fig. 4, lower panels) emerged between response bias and
FRN/RewP-like responses to the rich rewarded stimuli (r= 0.74;
p < 0.009; p < 0.05 after Bonferroni correction) and non-rewarded
rich stimuli (r= 0.62; p= 0.042; ns after Bonferroni correction) in
the NAc. However, an analogous hierarchical regression analysis
for the NAc—entering FRN/RewP-like responses for rich non-
rewarded, lean rewarded and lean non-rewarded trials in the first
step, and responses to rewarded rich stimulus in the second step
—was not significant (ΔF[1,6]= 3.55; p > 0.10).

The feedback-locked spectral analysis in ACC and NAc
revealed increased delta (1–5 Hz) and 9–17 Hz power for
rewarded trials
Feedback-locked 1–5 Hz frequency band. Consistent with human
EEG studies highlighting increased delta power in response to
rewards and favorable outcomes [22, 36–38], the wavelet
frequency decomposition for correct responses highlighted an
increased delta power (1–5 Hz) 200–600ms after reward feedback

in ACC and NAc LFP electrodes (Fig. 5a); these effects were
corroborated by main effects of Reward Feedback for both
electrodes (ACC: F[1,10]= 26.60; p= 0.0004; NAc: F[1,10]= 16.10;
p= 0.003), which was driven by significantly higher overall delta
power for rewarded than non-rewarded trials (Fig. 5b). Similarly, a
main effect of Stimulus Type was found in the ACC and NAc (ACC:
F[1,10]= 5.99; p= 0.034; NAc: F[1,10]= 24.10; p= 0.0006) as the
lean stimulus (which, per design, is associated with the largest
positive reward prediction error due to the less frequent rewards)
was associated with higher delta power. An interaction between
Stimulus Type and Reward Feedback in the NAc was also found
(F[1,10]= 5.98; p= 0.035), due to significantly higher delta power
for rewarded vs. non-rewarded lean stimuli (p= 0.0007), with no
differences for the rich stimulus (Fig. 5b).

Relationship between feedback-locked delta power and response bias
ACC electrode: Pearson correlations revealed a significant associa-
tion between response bias and ACC delta power for lean rewarded
(r= 0.673, p= 0.023; p < 0.05 after Bonferroni correction) (all others
ps > 0.08). The hierarchical regression (first step: lean non-rewarded,
rich rewarded and rich non-rewarded; second step: lean rewarded)
revealed that, although delta power to lean rewarded stimuli

Fig. 5 ACC and NAc feedback-locked wavelet-decomposed time-frequency spectra for correct rich/lean trials. a Grand average of
feedback-locked wavelet-decomposed time-frequency spectra for correct rich/lean trials presented as the difference between rewarded minus
non-rewarded trials for the ACC and NAc channels. The black squares show the time window selected to analyze power difference in delta
(1–5 Hz) and 9–17 Hz. b The graphs show the mean delta power at 200–600ms and c the mean 9–17 Hz power at 100–200ms after feedback
in ACC and NAc for all correct rewarded and non-rewarded trials separated by stimulus type—lean (white circle) and rich (black circle). The
feedback-locked spectral analysis in ACC and NAc revealed increased delta (1–5 Hz) and 9–17 Hz power for rewarded trials. The magnitudes
are presented as the percentage change in power from baseline. Data presented as mean ± SEM. Main effects and interaction are presented
with letters R (reward/non-reward feedback), S (stimulus) and R × S (interaction) with asterisks according to their statistical significance Dotted
lines with asterisks show the statistical significance obtained after multiple comparisons. N= 11.
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accounted for 21.3% unique variance in response bias, the model
was not significant (ΔF[1,6]= 2.93; p > 0.13). Of note, the model was
significant when controlling only for delta power responses to rich
rewarded stimuli in the first step and introducing lean rewarded in
the second step, highlighting some degree of specificity
(ΔF[1,6]= 8.99; p= 0.017), with delta responses to lean rewarded
stimuli accounting for 50.6% unique variance in response bias.
Further highlighting specificity, an analogous hierarchical regres-
sion predicting discriminability (log d) was not significant
(ΔF[1,6]= 4.50; p > 0.067).

NAc electrode: For the NAc, a significant correlation between
delta power for lean non-rewarded stimuli and response bias
emerged (r= 0.84; p= 0.001) (all other ps > 0.55). A hierarchical
regression (with lean rewarded, rich rewarded and rich non-
rewarded in the first step and adding lean non-rewarded in the
second step) clarified that delta power in the NAc to lean non-
rewarded stimuli uniquely predicted response bias (ΔF[1,6]= 21.18;
p= 0.004), accounting for 73.2% of the variance in response bias
(variance explained by the other three independent variables: 6.1%,
p > 0.92). Further highlighting specificity, none of the correlations
with discriminability were significant (all ps > 0.30), and an
analogous regression was not significant (p > 0.31).

Feedback-locked 9–17 Hz frequency band. The wavelet frequency
decomposition analysis also revealed an increase in 9–17 Hz
power band at 100–200ms after feedback for the ACC and NAc
electrodes (Fig. 5a), and the ANOVA confirmed a main effect of
Reward Feedback (ACC: F[1,10]= 13.40; p= 0.004; NAc:
F[1,10]= 11.20; p= 0.007) as rewarded trials showed higher
9–17 Hz power than non-rewarded trials. A main effect of Stimulus
Type for ACC was also found (F[1,10]= 12.80; p= 0.005) as lean
trials elicited higher overall 9–17 Hz power than rich trials. A
similar trend was observed for the NAc, although it was not
statistically significant (F[1,10]= 3.82; p= 0.079) (Fig. 5c).

Relationship between feedback-locked 9–17 Hz power and response
bias
ACC electrode: Pearson correlations revealed only a significant
correlation between response bias and 9–17 Hz power to lean
rewarded stimuli (r= 0.796, p= 0.003; p < 0.05 after Bonferroni
correction) (all others, ps > 0.16). A hierarchical regression (with
lean non-rewarded, rich rewarded and rich non-rewarded in
the first step and adding lean rewarded in the second step)
clarified that 9–17 Hz power in the ACC to lean rewarded
stimuli uniquely predicted response bias (ΔF[1,6]= 6.68;
p= 0.042), accounting for 26.3% of the variance in response
bias (variance explained by the other three independent
variables: 50.2%, p > 0.15). Further highlighting the specificity
of these findings, an analogous hierarchal regression predict-
ing discriminability was not significant (p > 0.68).

NAc electrode: Pearson correlations revealed no relationship
between response bias and any 9–17 Hz power responses in the
NAc (all ps > 0.68).

DISCUSSION
The overarching goal of the present study was to identify the
electrophysiological signatures of reward learning using both
ERP and event-related spectral analyses while rats performed a
reverse translated task that has been widely used in humans
(PRT). Overall, we found that the feedback-locked FRN/RewP-like
response, as well as power in feedback-locked delta and 9–17 Hz
frequency bands are robust neural signatures of reward learning.
Behaviorally, the expected responsivity-to-reward was

observed, confirming previous findings in rodents and high-
lighting the robustness and reliability of response bias toward the

more frequently rewarded stimulus [2, 9]. Of note, the PRT evoked
the intended preference for the stimulus paired with more
frequent reward (log b), without fluctuations in task difficulty (log
d) or reaction time throughout the task (Fig. 2).
The ERP analyses showed that following a positivity occurring

100–200ms after feedback in the ACC and NAc for rewarded trials,
there was a negative deflection around 250–500 ms in both
electrodes (Fig. 3) that we named “FRN/RewP-like” response
because it resembles ERP waveforms previously described in
humans during the PRT [23, 36]. However, in our LFP experiments
we observed a reverse polarity compared to what has been
described using surface electrodes in humans. This reverse
polarity could be explained by the fact that we recorded deep
brain regions, and it has been described that the polarity recorded
in LFP is unreliable as it may be artifactually reversed by the
zeroing effect of AC-coupled recordings [37]. Additionally,
whether an ERP effect is observed to be positive-going or
negative-going depends on a variety of factors, such as the
location of the reference electrode, the baseline against which the
effect is compared, the location and orientation of its intracerebral
sources as well as the orientation of the electromagnetic field [38].
This is even more complex to interpret when recording LFP as the
polarity does not define their excitatory or inhibitory nature, and
the amplitude may increase when source’s activity is reduced [37].
Thus, in the absence of detailed information about the underlying
neural activity, the polarity of the ERP effect is of no particular
neurophysiological or functional significance for our
interpretation.
Critically, and in line with previous studies showing that the ACC

is key for encoding rewards and using reinforcement histories to
guide behavior [39–42], we found that the ACC FRN/RewP-like
responses to rewarded rich stimuli was specifically associated with
response bias (Fig. 4). Highlighting important translational
potential, it is interesting that in both rats (present study) and
humans [23], response bias was positively correlated with FRN/
RewP amplitudes.
The time-frequency wavelet decomposition also revealed a

finding consistent with human EEG studies implicating delta
power in reward processing [25, 43, 44] and in particular with
reward prediction error [25]. Specifically, we observed increased
delta power 200–600ms after reward feedback in the ACC and
NAc LFP electrodes (Fig. 5) with significantly higher overall power
for rewarded than non-rewarded trials, particularly for the lean
stimulus, which was supported by a strong correlation between
response bias and ACC delta power for lean rewarded trials. This is
consistent with the idea that feedback-locked delta emerged in
response to a positive prediction error (i.e., when the rats receive a
reward that was better than predicted), possibly highlighting an
electrophysiological signature of increased phasic neuronal
activity of midbrain dopaminergic neurons supporting adaptive
learning [15–17]. On the other hand, the finding of a significant
correlation between delta power in the NAc for lean non-
rewarded stimuli and response bias, may suggest that NAc and
ACC delta band differentially modulate response bias depending
on the feedback-valence for the lean stimulus (i.e., delta ACC
informing about reward vs. delta NAc informing about non-
reward); future studies, especially those utilizing more mechanistic
(e.g., optogenetic, chemogenetic) approaches, will be needed for
conclusive tests of these hypotheses.
In addition, we observed a reward feedback-locked power

increase in the 9–17 Hz frequency band at 100–200 ms for the ACC
and NAc electrodes (Fig. 5). Similar to the delta findings, 9–17 Hz
power in the ACC to lean rewarded stimuli was reliably associated
with response bias. We consider this frequency band as a beta
rhythm (12–30 Hz) possibly overlapping with some alpha activity
(7–12 Hz). It is likely that this 9–17 Hz time-frequency response is a
reflection of the 100–200ms feedback-locked ERP occurring
before the FRN/RewP and extends into the delta burst, where
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this 9–17 Hz band is part of a larger covarying reward-related
complex. Another interpretation is based on evidence showing
that, in humans, alpha and beta oscillations during reinforcement
learning are associated with the evaluation of reinforcement
magnitudes and their subsequent adaptation of response para-
meters based on this evaluation [45]. Further, our findings are
consistent with previous studies suggesting that beta oscillations
are stronger in power when the probability of cued rewards have
a low—relative to a high—probability [27]—in our case, the lean
rewarded trials. Again, more mechanistic studies will be needed to
corroborate this speculation.
Despite several innovative features, the current study has

limitations. First, although our sample was balanced with respect
to male and female subjects, it was not large enough to include
sex as a factor in the analyses. As the effect of sex on reward
processing is still poorly understood, we believe that preclinical
sex comparisons should be considered in the future to better
understand the neurophysiological correlates of reward learning.
Second, in this initial experiment, we recorded signals from a
limited number of LFP channels (but see Supplementary Material
for preliminary evidence of topographical specificity of our
findings) and we did not use any technique to directly manipulate
the circuitry and/or behaviors. Although we offer speculations at
the circuit level, and we identified strong brain-behavior associa-
tions, the current results are mainly descriptive, and further
experimental manipulations should be performed to understand
the neural mechanisms that regulate reward learning.
In spite of these limitations, the current data highlight neural

signatures of reward learning using electrophysiology and
touchscreen-based technology in rats and raise the possibility
that rats and humans share similar neural mechanisms to regulate
reward learning. It is our hope that the current findings and back-
translated approach will provide a useful translational platform to
efficiently evaluate novel therapeutics targeting anhedonia.
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