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Substantial clinical heterogeneity and comorbidity inherent amongst mental disorders limit the identification of neuroimaging
biomarkers that can reliably track clinical symptoms. Strategies that enable generation of meaningful and replicable
neurobiological markers at the individual level will push the field of neuropsychiatry forward in developing efficacious personalized
treatment. The current study included 142 adult patients with a primary diagnosis of schizophrenia (SCZ), bipolar (BP), or attention
deficit/hyperactivity disorder (ADHD), and 67 patient ratings across four behavioral measures. Using functional connectivity derived
from a personalized fMRI approach, we identified several candidate imaging markers related to dimensional phenotypes across
disorders, assessed the internal and external generalizability of these markers, and compared the probability of replicating findings
across datasets using individual and group-averaged defined functional regions. We identified subject-specific connections related
to three different clinical domains (attention deficit, appetite-energy, psychosis-positive) in a discovery dataset. Importantly, these
connectivity biomarkers were robust and were reproduced in an independent validation dataset. For markers related to
neurovegetative symptoms (attention deficit, appetite-energy symptoms), the brain connections involved showed similar
connectivity patterns across the different diagnoses. However, psychosis-positive symptoms were associated with connections of
varying strength across disorders. Finally, we found that markers for symptom domains were replicable for individually-specified
connections, but not for group template-derived connections. Our personalized strategies allowed us to identify meaningful and
generalizable imaging markers for symptom domains in patients who exhibit high levels of heterogeneity. These biomarkers may
shed new light on the connectivity underpinnings of psychiatric symptoms and lead to personalized interventions.
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INTRODUCTION
Mental disorders such as schizophrenia (SCZ) and bipolar disorder
(BP) do not arise from localized brain lesions, but are thought to
be related to “disconnection” among distributed networks [1].
However, determining the exact nature of the disconnection in
mental disorders has proven elusive [2, 3]. Identifying brain-based
biomarkers that track clinical symptoms would be a significant
advancement for elucidating the pathophysiology underlying
mental disorders but this approach faces several major challenges,
including: (1) patient heterogeneity and comorbidity, (2) unspe-
cific conceptualization of symptom clusters, (3) a lack of precision
in imaging measurements at the individual level, and (4) poor
generalizability of findings to new cases. For example, two
patients with a diagnosis of SCZ can present with non-
overlapping symptoms. On the other hand, comorbidity is
ubiquitous in psychiatry, genetics, imaging, and neuropathology
research. Psychopathology research suggests that various psy-
chiatric symptoms result from broad neurobiological disruptions
across networks in phenotypically-related psychiatric disorders

including SCZ, BP, and attention deficit/hyperactivity disorder
(ADHD) [4, 5]. Consequently, psychiatric disorders such as SCZ, BP,
and ADHD may not be biologically discrete entities, but co-
occurring syndromes positioned along a continuum [6, 7]. It has
been well-recognized that brain circuit dysfunction in mental
disorders could be more successfully delineated by investigations
that employ a dimensional, transdiagnostic approach, rather than
a narrow categorical approach.
A lack of precision in mapping the functional regions at the

individual level has greatly hampered the study of network
abnormalities in patients with mental disorders. We and others
[8, 9] have repeatedly demonstrated that functional organization
is highly variable across individuals, especially in the higher-order
association cortices. The substantial inter-subject variability
requires accurate identification of the functional nodes in
individuals to enable detection of neuroimaging biomarkers for
mental disorders. We have shown that brain-behavior associations
could be reliably captured when brain features were carefully
examined using an individual’s own functional regions, but missed
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if feature detection relied on traditional group-averaged brain
templates [10, 11]. As a matter of fact, numerous brain-behavior
associations have been reported in the literature but few can be
generalized to new, previously unseen cases [12].
To address the aforementioned questions, here we attempted to

establish a novel framework for discovering biomarkers that can
track unique and shared symptoms in transdiagnostic patients with
mental disorders. We hypothesized that individual-level analysis
can identify reliable markers in transdiagnostic patients with high
heterogeneity, and that these individualized markers can capture
idiosyncrasies of individuals and therefore have a higher probability
to generalize to new cases than the biomarkers identified through
group-level analysis, which are based on an averaged brain
template. To test this hypothesis, we used data from the University
of California, Los Angeles (UCLA) Consortium for Neuropsychiatric
Phenomics (CNP), a unique dataset that integrates large numbers of
phenotypes spanningmultiple biological and behavioral scales with
the aim of discovering genetic mechanisms for common neurop-
sychiatric disorders, including SCZ, BP, and ADHD. These psychiatric
disorders present both unique and overlapping symptoms and
phenotypes. For example, psychosis can be a symptom of SCZ and
BP but is rare in ADHD; on the other hand, all three disorders may
present some form of attention and memory deficit. As such, they
provide a good basis for the study of neurological mechanisms
underlying both disease-specific and shared phenotypes. This
dataset allowed us to perform a connectivity analysis based on
individually-specified cortical regions using a dimensional, trans-
diagnostic approach. Clinical symptoms were characterized by four
scales consisting of 67 items, and were clustered into eight domains
with similar FC-symptom relationships in each domain. We
identified markers that tracked each of these domains (e.g.,
psychosis-positive, attention deficit, and appetite-energy domains)
and tested their accuracy and robustness for predicting symptoms
using internal validation as well as external validation in a previously
unseen cohort. We also tested whether brain connections involved

in the markers differ in connectivity strength across diagnoses.
Lastly, we compared the generalizability of markers identified
based on individually-specified regions and those based on a group
template.

METHODS AND MATERIALS
Participants
The UCLA CNP data of 142 patients with SCZ, BD, and ADHD from
OpenNeuro dataset ds00030 were used in this study. Each of the patient
groups excluded anyone with one of these other diagnoses. The
procedures were approved by the Institutional Review Boards at UCLA
and the Los Angeles County Department of Mental Health. All participants
provided written informed consent. Additional information can be found in
Poldrack, Congdon [13]. Following our data quality control procedures
detailed below, we retained 133 patients for further analyses, including 45
patients with SCZ, 48 patients with BP, and 40 patients with ADHD. Our
primary analyses were carried out using the data of 78 participants that
were matched on gender, age, education, and head motion (p’s > 0.6)
across SCZ (n= 26), BP (n= 26), and ADHD (n= 26). This sample served as
our discovery dataset (see Supplementary Materials). The remaining 55
patients (SCZ: n= 29, BP: n= 25, ADHD: n= 16) served as the validation
dataset. The validation dataset was not required to have balanced
characteristics across diagnostic groups, as the validation of the findings
was conducted at the level of individual participants. The descriptive
statistics for patient demographics, clinical characteristics, and mean head
motion for subjects in the discovery and validation datasets are provided
in Table 1 and subject IDs are provided in Table S1. Each subject
completed a battery of clinical and neuropsychological tests [13].
Symptom severity was assessed using four different clinical scales,
including the Young Mania Rating Scale (YMRS), the Hamilton Psychiatric
Rating Scale for Depression (HAMD-28), the Brief Psychiatric Rating Scale
(BPRS), and the Adult Self-Report Scale v1.1 Screener (ASRS), yielding a
total of 67 symptom items.

MRI data acquisition and preprocessing
All patients underwent a resting-state fMRI scan, seven task-based fMRI
scans, and a structural MRI scan. Because the brain’s functional network

Table 1. Participants’ demographic information.

Discovery (n= 78)

SCZ (n= 26) BP (n= 26) Adult ADHD (n= 26) p value

Mean SD Mean SD Mean SD

Age, year 34.88 9.10 34.19 10.35 34.19 11.21 0.961

Education, year 13.69 1.52 13.85 1.59 13.96 1.56 0.823

Gender Male: 18; Female: 8 Male: 17; Female: 9 Male: 15; Female: 11 0.677

Motion 0.098 0.041 0.095 0.055 0.091 0.043 0.860

Validation (n= 55)

SCZ (n= 19) BP (n= 22) Adult ADHD (n= 14) p value

Mean SD Mean SD Mean SD

Age, year 37.05 8.78 36.32 7.40 28.07 7.57 0.004

Education, year 11.53 1.02 15.41 2.09 15.93 1.54 5.09e−11

Gender Male: 15; Female: 4 Male: 10; Female: 12 Male: 6; Female: 8 0.049

Motion 0.159 0.048 0.104 0.037 0.054 0.014 6.98e−10

Whole cohorts (n= 133)

SCZ (n= 45) BP (n= 48) Adult ADHD (n= 40) p value

Mean SD Mean SD Mean SD

Age, year 35.80 8.93 35.17 9.08 32.05 10.41 0.156

Education, year 12.78 1.70 14.56 1.98 14.65 1.81 1.74e−6

Gender Male: 33; Female: 12 Male: 27; Female: 21 Male: 21; Female: 19 0.103

Motion 0.124 0.054 0.099 0.047 0.078 0.040 8.60e−5

p values of age, education, and motion were obtained by one-way ANOVA test. The p value of gender was obtained by chi-squared test.
SCZ schizophrenia, BP bipolar, ADHD attention deficit/hyperactivity disorder, SD standard deviation.
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organization is preserved whether performing a task or at rest [14–17], we
combined the resting-state and task fMRI data of each participant in order to
yield more reliable functional connectivity measures. The resting-state and
task-based fMRI data were processed in the same way using the procedures
described in Yeo et al. [18]. A detailed description of data collection and
preprocessing can be found in the Supplementary Materials. Scan sessions
with mean head motion greater than 0.3mm and/or subjects with less than
one scanning session, no T1 image, or subjects scanned with the wrong
imaging orientation were excluded from further analyses.

Imaging data analysis
The workflow to identify imaging markers for clinical symptoms is shown
in Fig. 1, and included the following four steps:

● Extracting individualized and group-level functional imaging features:
we ran an individual parcellation to generate 92 individual-level
functional regions covering the whole cerebral cortex (Supplementary
Materials; Fig. 1, step 1). A pairwise 92 × 92 FC matrix based on
individualized ROIs and a similar FC matrix based on the
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corresponding population-level ROIs were estimated (Fig. 1, step 2).
The FC matrices were transformed to Fisher’s z values for each subject.
The 92 ROIs were further grouped into seven networks according to
their maximal overlap with the seven canonical networks reported by
Yeo et al. [18], which included the visual (VIS), sensorimotor (MOT),
attention (ATN), salience (SAL), limbic (LMB), frontoparietal (FPN), and
default mode networks (DMN).

● Determination of relationships between functional connectivity and
clinical symptom scores: Spearman correlations were performed
between the participants’ 92 × 92 FC matrices and each of the
67 symptom item scores in the discovery sample, yielding 67 FC-
symptom correlation matrices (Fig. 1, step 4). Because some FC-
symptom correlation matrices were similar to one another, we ran a
hierarchical clustering (Ward’s method) analysis [19] to classify the 67
FC-symptom correlation matrices into different clusters (Fig. 1, step 5).
This method yielded eight optimal clusters (Supplementary Materials).
The normalized symptom items within a given cluster were then
averaged to generate a representative cluster-based clinical
domain score.

● Identification of symptom-related biomarkers (internal validation): to
evaluate the robustness of the connectivity features that were related
to each of the eight symptom domains, we first performed a leave-
one-out cross-validation (LOOCV) in the discovery sample (Fig. 1, step
6). In each LOOCV iteration, we performed permutation tests to
determine whether the FC-symptom correlation matrices grouped into
a single cluster were more similar and strongly correlated to each
other than would be expected by chance alone (Supplementary
Materials). Connectivity features that survived the permutation tests
were identified as potential markers for a given clinical domain. The
correlation between FC and symptom was set as weight, providing an
estimate of the degree of association between FC and clinical
domains. The identified connections and weights served as the
candidate symptom-related markers that were then applied to new
subjects. A composite connectivity score was calculated for the test
subjects using a weighted average of the connections involved in the
candidate marker. This composite connectivity score was regarded as
imaging marker scores. The correlations between symptom scores and
imaging marker scores were computed to verify the candidate
markers’ reliability.

● External validation: we applied the candidate biomarkers obtained
from the discovery dataset to the previously unseen validation sample
(external validation) to assess their generalizability. Correlations
between imaging marker scores and symptom scores in the validation
sample were computed as a measure of the markers’ generalizability
(Fig. 1, step 7).

Determination of whether marker FC strengths differ between
diagnostic groups: once the symptom-related markers were identified,
we re-analyzed data from all participants to determine whether the
symptom-related markers identified in the transdiagnostic cohort exhibit
common or unique patterns of FC strength in different diagnoses (i.e., SCZ,
BP, and ADHD). We ran a one-way analysis of covariance (ANCOVA) to test
whether connections involved in these markers were significantly different
between diagnostic groups, after controlling for covariates including age,
gender, education, and head motion. Post hoc t-tests, corrected for
multiple comparisons using the Bonferroni correction, were used to test
the statistical significance between any two groups.

RESULTS
Reliable associations between functional connectivity and
symptoms
The individualized functional regions demonstrated a high degree
of inter-subject variability in size, shape, and location across
individuals, while preserving good reproducibility within the same
subject (Fig. S1a). In the discovery sample, the mean inter-subject
similarity for all regions yielded a Dice coefficient= 0.58 ± 0.01
(range: 0.54–0.60) and a within-subject test-retest reliability of
0.71 ± 0.04 (range: 0.61–0.78) (Fig. S1b).
The hierarchical clustering analysis classified the 67 FC-

symptom correlation matrices into eight clusters/domains with a
reliability of 0.83 ± 0.002 (Fig. S1c). Eight domains with clustered
symptom items are displayed in Table S2, and included the
following symptoms: Domain-1: Attention deficit; Domain-5:
Psychosis-positive; Domain-7: Appetite-energy. The clustering
was not a by-product of head motion (Fig. S2), though several
items exhibited a trend toward significance (p < 0.05, uncor-
rected). Notably, however, we did not attempt to identify
connectivity markers related to each single item, but rather
connections related to each symptom cluster.

Identification and validation of potential symptom-predictive
markers
In the discovery sample with SCZ, BP, and ADHD patients,
significant correlations between three symptom domains and
imaging marker scores were found (q= 0.05, FDR corrected),
potentially indicating common symptomology among these
disorders. Correlation analyses revealed significant relationships
denoted by r= 0.33, p= 0.003 for domain-1 (attention deficit),
r= 0.32, p= 0.005 for domain-5 (psychosis-positive), and r= 0.52,
p < 0.001 for domain-7 (appetite-energy) (Fig. 2a). For domain-7
(appetite-energy), the SCZ, BP, and ADHD patients demonstrated
no significant differences in symptom severity (p= 0.09,
F(75)= 2.50), while the severity of domain-1 (attention deficit)
and domain-5 (psychosis-positive) symptoms differed significantly
across diagnoses (p= 5.39e−5, F(75)= 11.24 for domain-1 (atten-
tion deficit); p= 4.07e−12, F(75)= 37.97 for domain-5 (psychosis
positive)); see Table S3 for mean symptom domain scores per
group.
We hypothesized that if the imaging markers were shared by

different patient groups with similar symptom presentations, a
substantial correlation between the observed clinical scores and the
imagingmarker scores would be expected in the validation sample as
well. Results of the analyses revealed robust correlations for all three
domains in the validation sample: r= 0.33, p= 0.013 for domain-1
(attention deficit), r= 0.41, p= 0.002 for domain-5 (psychosis-
positive), and r= 0.31, p= 0.020 for domain-7 (appetite-energy)
(Fig. 2b). To test whether these markers showed consistent
associations with domain scores across datasets, we computed
Spearman correlations between marker-domain relationships in the

Fig. 1 Workflow for identifying robust imaging markers of clinical symptom domains. The procedure included the following steps: (1) 92
individual-specific ROIs were generated by employing an individual, iterative parcellation method; (2) functional connectivity among the 92
individualized ROIs was calculated for each subject; (3) 67 clinical symptom items from the four behavioral scales, including the BPRS, HAMD,
YMRS, and ASRS, were used; (4) 67 FC-symptom correlation matrices were created by computing the Spearman correlations between the
patients’ functional connectivity matrix and the 67 clinical symptom items; (5) the FC-symptom matrices that were most similar to one another
were grouped into clusters using a hierarchical clustering method, resulting in items getting clustered together on the basis of their similar
relationships with functional connectivity patterns. The domain clinical scores were calculated by averaging the normalized item scores
included in a given domain, the number of clinical scores equals the number of subjects; (6) identification of functional connections (ROI
pairs) potentially related to the clinical symptoms was done using a leave-one-out cross-validation (LOOCV) analysis. Connections trained on
the whole cohort sample were ultimately used to generalize to an external dataset; (7) generalization to a new dataset to validate the
robustness of the identified markers (external validation). Imaging marker scores were estimated by calculating the weighted average of the
markers’ strengths from a participant’s functional connectivity matrix. High correlations between the domain scores and imaging marker
scores demonstrate the accuracy and reliability of the identified connections in characterizing the symptom domain score. FC functional
connectivity, BPRS Brief Psychiatric Rating Scale, HAMD Hamilton Depression Rating Scale for Depression, YMRS Young Mania Rating Scale,
ASRS Adult Self-Report Scale v1.1 Screener, ROI region of interest.
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discovery and validation datasets. Results demonstrated significant
correlations for all three domains (domain-1: r= 0.47, p= 0.002;
domain-5: r= 0.60, p= 0.001, domain-7: r= 0.55, p < 0.001, permuta-
tion test, 5000 iterations).
The connectograms shown in Fig. 3 depict the connectivity

markers associated with each of the three cluster domains from
the discovery sample. For domain-1 (attention deficit), 27
connections were identified, with the most important weights in
connectivity being observed in the FPN (30% of the 27
connections), dorsal ATN (dATN, 18.5% of the 27 connections),
and ventral ATN (vATN, 16.7% of the 27 connections)). For
domain-5 (psychosis-positive), 23 connections were identified, and
involved the FPN (28.3% of the 23 connections), VIS (21.7% of the
23 connections), DN (15.2% of the 23 connections) and MOT
(15.2% of the 23 connections). For domain-7 (appetite-energy), 42
connections were identified and were anchored in the VIS (25% of
the 42 connections), MOT (19.1% of the 42 connections), and FPN
(20.2% of the 42 connections). The stability of the selected
features used for cross-validation and the whole discovery sample
are shown in Fig. S3.

Brain-based markers can reflect shared or unique connectivity
patterns in disorders
We performed a one-way ANCOVA with diagnosis (SCZ, BP, and
ADHD) as the main factor to investigate whether the markers for
these symptom domains have different connectivity strengths
across diagnoses. No significant differences in the 27 connections
related to attention deficit or the 42 connections related to
appetite-energy were found among the three patient groups,

which may reflect a shared connectivity substrate for attention
deficit or appetite-energy related symptoms among SCZ, BP, and
ADHD patients. However, we did find significant differences in 9
out of the 23 connections related to psychosis-positive symptoms
(q= 0.05, FDR corrected) across the three groups of patients. See
ANCOVA results for each connection in Fig. S4.
Post hoc t-tests comparing the 9 significantly different

connections related to psychosis-positive symptoms were per-
formed between groups, and showed significantly different
connectivity strength patterns for the inferior (IFG) and middle
frontal gyri (MFG), as well as the motor and visual cortices
between SCZ and ADHD, and between SCZ and BP patients
(p < 0.05, Bonferroni correction; see Fig. 4, also see Table S4 for FC
strength and p values for each connection). These findings
suggest that the connectivity marker for the psychosis-positive
symptom domain can have different connectivity strength
patterns across diagnostic groups, but that may also be due to
the low presence of these symptoms in BP and especially ADHD
compared to SCZ (p= 4.07e−12, F(75)= 37.97 as described
above).

Connectivity markers derived from a group-level brain atlas
cannot be generalized to new data
A parallel analysis using the same strategy employed to identify
symptom-related markers was performed based on functional
connectivity derived from group-averaged brain template regions.
This analysis yielded four candidate markers that showed good
performance for internal validation; however, no relationships
were found during external validation (Fig. 5), suggesting that

Fig. 2 Identification and validation of symptom-related imaging makers. Scatterplots show the relationships between observed cluster
scores and imaging marker scores for each of three domains for the SCZ (orange dots), BP (green dots), and ADHD (gray dots) participants.
a In the discovery dataset, we found significant correlations (q= 0.05, FDR corrected) between domain and imaging marker scores for
symptoms related to attention deficit (domain-1), r= 0.33, p= 0.003, psychosis-positive (domain-5), r= 0.32, p= 0.005, and appetite-energy
(domain-7), r= 0.52, p < 0.001. A high degree of overlap (domain-7) or dispersion (domain-1 and domain-5) of imaging marker scores is shown
along the clinical score axis. b The markers that tracked the three symptom domains in the discovery dataset also tracked the symptom
domains in the validation dataset (domain-1: r= 0.33, p= 0.013; domain-5: r= 0.41, p= 0.002; domain-7: r= 0.31, p= 0.020).
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these candidate markers are not robust and reproducible in an
independent dataset. In contrast, our individual-level analysis
described above achieved good generalizability in the same
independent dataset.

DISCUSSION
The neurobiological heterogeneity and comorbidity across mental
disorders are reflected in the difficulty of identifying meaningful
brain-based biomarkers for clinical symptoms within a single
diagnosis. The present study took a transdiagnostic, individualized
approach to establish a novel framework for discovering robust
biomarkers for diagnosis-shared symptoms across a range of
clinical symptoms. We found functional connections that were
associated with attention deficit, appetite-energy, and psychosis-
positive domains in patients with SCZ, BP, and ADHD. Importantly,
these connectivity biomarkers are robust, as they were general-
ized to a previously unseen dataset. Markers for neurovegetative
symptoms (attention deficit, appetite-energy) showed similar
connectivity strength patterns across the three diagnoses,
whereas the marker for psychosis-positive symptoms appeared

to have different connectivity strength patterns for different
diagnoses. Finally, we found that the individualized approach
identified more reliable markers with higher generalizability than
the group-level approach.

Symptoms in transdiagnostic patients are associated with
common functional networks
Attention impairment has long been recognized as a fundamental
cognitive deficit in patients with SCZ [20], adult ADHD [21], BP [22],
and other disorders [23, 24], and the same was apparent in our
study. We found that the attention deficit domain was robustly
associated with functional connections in the FPN, vATN, and dATN.
This is in line with results from the study of Sha et al. [25], who found
that functional connectivity alterations in the FPN, vATN, and DMN
were common across eight different psychiatric disorders. The
dATN and vATN are thought to support orienting attention and the
FPN is thought to support cognitive control [26]. The medial frontal/
anterior cingulate and insula in particular are associated with
sustained attention, and are activate across diverse cognitive tasks
[27, 28]. These studies support the notion that FPN and ATN
connectivity is involved in the domain of attention deficit.

Fig. 3 Replicable markers related to clinical symptom domains. a Imaging marker for attention deficit (domain-1) mainly involved
connections in the FPN, dATN, and vATN. b Marker for psychosis-positive symptoms (domain-5) mainly involved connections in the FPN, VIS,
and MOT. c Marker for appetite-energy related symptoms (domain-7) mainly involved connections in the VIS, MOT, and FPN. The weight of
each region represents the correlation strength between FC and symptom cluster scores. The percent of the total connections that each
network contributed to the imaging marker is indicated outside of the circos plot. For each network, the between-network weight was
calculated as the sum of weight of all connections between a region within the network and regions outside of the network. For the within-
network weight, the connection weights within a given network were added up. Both between- and within-network weights were normalized
to allow for comparison. Visual (VIS), sensorimotor (MOT), attention (ATN), salience (SAL), limbic (LMB), frontoparietal control (FPN), and the
default mode network (DMN). Black lines delineate the boundaries of 92 ROIs included in the group atlas.
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Appetite changes were widely reported in patients with ADHD
[21], SCZ [29], BP [30], and depression [31], and these disorders
exhibit shared neural correlates for impairments in inhibitory
control and reward processing [31]. We found this domain to be
associated with the orbitofrontal cortex that has been implicated
in the integration of hedonic and non-hedonic information in the
computation of food value [32]. Additionally, the vegetative
symptoms (inattention, appetite changes, fatigue, and insomnia)
observed herein are symptoms that tend to be shared across
disorders and cannot by themselves serve to discriminate
between disorders [33]. Weiss et al. [34] indicated that increased
attention deficit was associated with higher risk of emotional
distress, which can in turn increase the severity of food addiction
[35]. In the future, novel computational approaches might benefit
the study of these vegetative symptoms which should be
expanded to include more disorders, as inattention, appetite
changes, and insomnia are common symptoms in depression,
anxiety, posttraumatic stress disorder, and obsessive-compulsive
disorder as well. Doing so would serve to better understand the
common pathophysiology of these diagnostic features across
disorders.
The connectivity strength in the FPN, VIS, and DMN reflected

the severity of psychosis-positive symptoms, with severity being
most extreme in SCZ, followed by BP, and then ADHD (see Fig. 2
and Table S3). This could potentially mean that SCZ, which is
typically associated with symptoms of psychosis, is characterized
by more severe connectivity disturbances within and between
these networks. These findings suggest diagnosis-shared and
diagnosis-unique connectivity substrates of clinical symptoms in
these disorders. It is important to note, however, that psychosis
symptoms were scarce in the ADHD sample. To ensure that the
same connectivity substrates underlie psychosis symptoms in
ADHD, these results would have to be verified in a sample that

exhibits more pronounced symptoms. Processing deficits of the
VIS network, when exploring interactions between feedforward
and feedback signals, and the FPN network, which supports
executive control, were repeatedly reported across diagnostic
categories, and especially in SCZ pathophysiology [25, 36]. These
results suggest that mental disorders operate in a transdiagnostic
manner, affecting the function of neural circuits underlying both
non-specific (common) and specific (unique) symptom domains,
which may lead to the identification of biomarkers and new
models for prevention and treatment of mental disorders.

Generalization of brain-based biomarkers for psychiatric
symptoms
Delineating neuroimaging biomarkers that can be used to
evaluate network dysfunction and predict treatment responses
in patients will facilitate our understanding of psychopathology.
However, to date, no neuroimaging biomarkers are ripe for clinical
translation due to their low generalizability. Previous attempts
have been made to improve not only the accuracy but also the
generalizability of biomarkers by harmonizing imaging features to
remove MRI scan site differences [37, 38]. Other approaches
include mapping functional regions on an individual level [9, 10],
subtyping, and re-classifying patients based on neurobiological
traits rather than symptoms [39]. A fundamental requirement is
that a marker defined by the existing training dataset must be
able to estimate characteristics (e.g., current or future symptom
and cognitive scores) or labels (e.g., patients or controls) in new,
unseen populations with a high level of accuracy. Cross-validation
(e.g., LOOCV) has been widely used to assess machine learning
models for biomarker discovery. However, internal LOOCV
accuracy does not always predict how well a model will perform
on a new dataset, as excellent models obtained using this method
have been shown to perform substantially worse on held-out

Fig. 4 Marker for psychosis-positive symptoms showed different connectivity strengths across diagnoses. a Nine connections out of a
total of the 23 connections related to the psychosis-positive domain showed significant differences in the strength of functional connectivity
across the three groups (see the one-way analysis of covariance (ANCOVA) t-test in Fig. S4). The bar plots show comparisons in functional
connectivity strength using post hoc two-sample t-tests after controlling for age, gender, education, and head motion (Bonferroni corrected).
b Functional regions showing significantly different connectivity across diagnoses are displayed on surface brain maps. Compared to the
ADHD or BP patients, SCZ patients showed significant and widespread differences in connectivity located in the prefrontal, motor, and visual
cortical regions, while only a single connection located in the inferior temporal cortex was found to be significantly different between BP
and ADHD.
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datasets [40]. Therefore, to truly assess biomarker generalizability
it is critical to additionally test the final model on a completely
held-out dataset without any a priori adjustments made [41].
We used an individual-level approach which accurately

identified imaging markers with greater generalizability than a
group-level approach, though both methods are susceptible to
overfitting. We speculate that individualized functional mapping
improves generalizability of imaging markers because biologically
relevant information can be better captured in new subjects when
functional regions are accurately defined for each subject. Our
study provides proof of concept for the generalization perfor-
mance of individual- and group-level biomarkers based on
multiple symptom domains, rather than focusing on the general-
ization performance of group-level versus individual-level biomar-
kers that are related to a specific symptom.

LIMITATIONS
One major limitation of the present study is the small sample size
of the patient groups; such samples may not be representative of
the broader population. In the current study, the LOOCV
procedure was used for internal validation because of the small
sample size. A k-fold cross-validation analysis conducted with a
larger sample size may improve the accuracy and strengthen the
reliability of these markers. Second, numerous behavioral mea-
sures were collected in the UCLA CNP dataset, but we only utilized
behavioral data from four scales to focus on the common and core
symptoms related to these disorders. Cognitive assessments,
which will provide the biological link between primary clinical
symptoms and cognitive impairments in patients, will need to be
included in future explorations. Third, we validated the brain
markers in two independent cohorts selected from the same
dataset, and which used the same imaging protocols. Completely
independent datasets from different MRI scan sites with more
variance in fMRI scanner and imaging protocol would consolidate
the generalization performance to ensure the clinical applicability
in new and diverse cases. Fourth, our findings were based on
three distinct DSM categories—SCZ, BP, and ADHD; the clusters of
import may not generalize to a different patient cohort, e.g.,
obsessive-compulsive disorder. In the future, our model should be
tested on other mental disorders. Finally, we generated indivi-
dualized regions using a group-derived template of 92 ROIs,
defining 92 homologous regions across participants. It is possible
that some subjects have more or fewer than 92 regions, whose
functional correspondence cannot be established across partici-
pants due to inter-subject variability in the functional organization
of the brain [10, 42]. However, defining the same number of
regions across participants, whether using functional or structural
atlases, allows for comparisons across subjects and is crucial for
the detection of stable, reliable effects that can describe a majority
of the population.
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