Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory

Abstract

Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KCC2 down-regulation in dorsal hippocampus impairs spatial and contextual memory.
Fig. 2: KCC2 down-regulation in principal cells is sufficient to alter contextual memory.
Fig. 3: KCC2 downregulation leads to hippocampal network hyperexcitability.
Fig. 4: Task-3 channel activator terbinafine occludes memory deficits upon KCC2 knockdown.

Similar content being viewed by others

References

  1. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15:637–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999;397:251–5.

    Article  CAS  PubMed  Google Scholar 

  3. Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 2021;44:378–92.

    Article  CAS  PubMed  Google Scholar 

  4. Bonislawski DP, Schwarzbach EP, Cohen AS. Brain injury impairs dentate gyrus inhibitory efficacy. Neurobiol Dis. 2007;25:163–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, et al. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Investig. 2020;130:6005–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaenisch N, Witte OW, Frahm C. Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke; a J Cereb Circ. 2010;41:e151–9.

    Article  CAS  Google Scholar 

  7. MacKenzie G, Maguire J. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility. Epilepsy Res. 2015;109:13–27.

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci: Off J Soc Neurosci. 2011;31:18198–210.

    Article  CAS  Google Scholar 

  9. Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, et al. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci: Off J Soc Neurosci. 2007;27:14012–22.

    Article  CAS  Google Scholar 

  10. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci: Off J Soc Neurosci. 2007;27:9866–73.

    Article  CAS  Google Scholar 

  11. Pallud J, Le Van Quyen M, Bielle F, Pellegrino C, Varlet P, Labussiere M, et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med. 2014;6:244ra89.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S, et al. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci: Off J Soc Neurosci. 2004;24:4683–91.

    Article  CAS  Google Scholar 

  13. Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Arch Gen Psychiatry. 2011;68:21–31.

    Article  CAS  PubMed  Google Scholar 

  14. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci: Off J Soc Neurosci. 2011;31:11088–95.

    Article  CAS  Google Scholar 

  15. Sullivan CR, Funk AJ, Shan D, Haroutunian V, McCullumsmith RE. Decreased chloride channel expression in the dorsolateral prefrontal cortex in schizophrenia. PloS one. 2015;10:e0123158.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bertoni A, Schaller F, Tyzio R, Gaillard S, Santini F, Xolin M, et al. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol Psychiatry. 2021;26:7582–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banerjee A, Rikhye RV, Breton-Provencher V, Tang X, Li C, Li K, et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci USA. 2016;113:E7287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duarte ST, Armstrong J, Roche A, Ortez C, Perez A, O'Callaghan Mdel M, et al. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome. PloS one. 2013;8:e68851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, et al. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med. 2019;11:eaau0164.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dillon DG, Pizzagalli DA. Mechanisms of memory disruption in depression. Trends Neurosci. 2018;41:137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dupont S, Van de Moortele PF, Samson S, Hasboun D, Poline JB, Adam C, et al. Episodic memory in left temporal lobe epilepsy: a functional MRI study. Brain: J Neurol. 2000;123:1722–32.

    Article  Google Scholar 

  22. Lim C, Alexander MP. Stroke and episodic memory disorders. Neuropsychologia 2009;47:3045–58.

    Article  PubMed  Google Scholar 

  23. Gur RC, Gur RE. Memory in health and in schizophrenia. Dialogues Clin Neurosci. 2013;15:399–410.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M. GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol. 2014;26:34–41.

    Article  CAS  PubMed  Google Scholar 

  25. Buchin A, Chizhov A, Huberfeld G, Miles R, Gutkin BS. Reduced efficacy of the KCC2 cotransporter promotes epileptic oscillations in a subiculum network model. J Neurosci: Off J Soc Neurosci. 2016;36:11619–33.

    Article  CAS  Google Scholar 

  26. Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014;343:675–9.

    Article  CAS  PubMed  Google Scholar 

  27. Chevy Q, Heubl M, Goutierre M, Backer S, Moutkine I, Eugene E, et al. KCC2 gates activity-driven AMPA receptor traffic through cofilin phosphorylation. J Neurosci: Off J Soc Neurosci. 2015;35:15772–86.

    Article  CAS  Google Scholar 

  28. Gauvain G, Chamma I, Chevy Q, Cabezas C, Irinopoulou T, Bodrug N, et al. The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines. Proc Natl Acad Sci. 2011;108:15474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, et al. KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 2007;56:1019–33.

    Article  CAS  PubMed  Google Scholar 

  30. Llano O, Smirnov S, Soni S, Golubtsov A, Guillemin I, Hotulainen P, et al. KCC2 regulates actin dynamics in dendritic spines via interaction with beta-PIX. J cell Biol. 2015;209:671–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chevy Q, Simonnet C, Al Awabdh S, Lévi S, Poncer JC. Chapter 7-Transport-dependent and independent functions of KCC2 at excitatory synapses. In: Tang X, editor Neuronal Chloride Transporters in Health and Disease. Academic Press; 2020. 133–58.

  32. Goutierre M, Al Awabdh S, Donneger F, Francois E, Gomez-Dominguez D, Irinopoulou T, et al. KCC2 regulates neuronal excitability and hippocampal activity via interaction with Task-3 Channels. Cell Rep. 2019;28:91–103.e7.

    Article  CAS  PubMed  Google Scholar 

  33. Buzsaki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015;25:1073–188.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nicoll RA. A brief history of long-term potentiation. Neuron 2017;93:281–90.

    Article  CAS  PubMed  Google Scholar 

  35. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006;313:1093–7.

    Article  CAS  PubMed  Google Scholar 

  36. Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci. 2016;17:239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bortone D, Polleux F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 2009;62:53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M, et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 2013;5:1704–13.

    Article  CAS  PubMed  Google Scholar 

  39. Chamma I, Heubl M, Chevy Q, Renner M, Moutkine I, Eugene E, et al. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci: Off J Soc Neurosci. 2013;33:15488–503.

    Article  CAS  Google Scholar 

  40. Kokare DM, Shelkar GP, Borkar CD, Nakhate KT, Subhedar NK. A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice. J Pharm Toxicol Methods. 2011;64:246–50.

    Article  CAS  Google Scholar 

  41. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci methods. 2010;192:146–51.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Navas-Olive A, Valero M, Jurado-Parras T, de Salas-Quiroga A, Averkin RG, Gambino G, et al. Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nat Commun. 2020;11:2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 2009;462:353–7.

    Article  CAS  PubMed  Google Scholar 

  44. Legéndy CR, Salcman M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J Neurophysiol. 1985;53:926–39.

    Article  PubMed  Google Scholar 

  45. Ceccom J, Halley H, Daumas S, Lassalle JM. A specific role for hippocampal mossy fiber’s zinc in rapid storage of emotional memories. Learn Mem. 2014;21:287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daumas S, Halley H, Francés B, Lassalle JMEncoding. consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem. 2005;12:375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 2001;30:515–24.

    Article  CAS  PubMed  Google Scholar 

  48. Uvarov P, Ludwig A, Markkanen M, Pruunsild P, Kaila K, Delpire E, et al. A novel N-terminal isoform of the neuron-specific K-Cl cotransporter KCC2. J Biol Chem. 2007;282:30570–6.

    Article  CAS  PubMed  Google Scholar 

  49. Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci: Off J Soc Neurosci. 2011;31:10721–31.

    Article  CAS  Google Scholar 

  50. Vogel-Ciernia A, Wood MA. Examining object location and object recognition memory in mice. Curr Protoc Neurosci. 2014;69:8.31.

    Article  Google Scholar 

  51. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85.

    Article  CAS  PubMed  Google Scholar 

  52. Gulyas AI, Sik A, Payne JA, Kaila K, Freund TF. The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci. 2001;13:2205–17.

    Article  CAS  PubMed  Google Scholar 

  53. Otsu Y, Donneger F, Schwartz EJ, Poncer JC. Cation-chloride cotransporters and the polarity of GABA signalling in mouse hippocampal parvalbumin interneurons. J Physiol. 2020;598:1865–80.

    Article  CAS  PubMed  Google Scholar 

  54. White MD, Milne RV, Nolan MF. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate neuronal gene expression in vivo. Front Mol Neurosci. 2011;4:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016;352:812–6.

    Article  CAS  PubMed  Google Scholar 

  57. Buzsaki G. Theta oscillations in the hippocampus. Neuron 2002;33:325–40.

    Article  CAS  PubMed  Google Scholar 

  58. Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12:1222–3.

    Article  CAS  PubMed  Google Scholar 

  59. Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci. 2019;20:746–62.

    Article  CAS  PubMed  Google Scholar 

  60. Colgin LL. Theta-gamma coupling in the entorhinal-hippocampal system. Curr Opin Neurobiol. 2015;31:45–50.

    Article  CAS  PubMed  Google Scholar 

  61. Gan J, Weng SM, Pernia-Andrade AJ, Csicsvari J, Jonas P. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron 2017;93:308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, et al. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat Neurosci. 2015;18:1281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, et al. Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron 2015;86:1277–89.

    Article  CAS  PubMed  Google Scholar 

  64. Pellegrino C, Gubkina O, Schaefer M, Becq H, Ludwig A, Mukhtarov M, et al. Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival. J Physiol. 2011;589:2475–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. Eur J Neurosci. 2018;48:2915–27.

    Article  PubMed  Google Scholar 

  66. Menendez de la Prida L, Trevelyan AJ. Cellular mechanisms of high frequency oscillations in epilepsy: on the diverse sources of pathological activities. Epilepsy Res. 2011;97:308–17.

    Article  PubMed  Google Scholar 

  67. Iwasaki S, Ikegaya Y. Contextual fear memory retrieval is vulnerable to hippocampal noise. Cereb Cortex. 2021;31:785–94.

    Article  PubMed  Google Scholar 

  68. Tian F, Qiu Y, Lan X, Li M, Yang H, Gao Z. A small-molecule compound selectively activates K2P Channel TASK-3 by acting at two distant clusters of residues. Mol Pharm. 2019;96:26–35.

    Article  CAS  Google Scholar 

  69. Wright PD, Veale EL, McCoull D, Tickle DC, Large JM, Ococks E, et al. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem Biophys Res Commun. 2017;493:444–50.

    Article  CAS  PubMed  Google Scholar 

  70. Kourdougli N, Pellegrino C, Renko JM, Khirug S, Chazal G, Kukko-Lukjanov TK, et al. Depolarizing GABA contributes to glutamatergic network rewiring in epilepsy. Ann Neurol. 2017;81:251–65.

    Article  CAS  PubMed  Google Scholar 

  71. Munakata M, Watanabe M, Otsuki T, Nakama H, Arima K, Itoh M, et al. Altered distribution of KCC2 in cortical dysplasia in patients with intractable epilepsy. Epilepsia 2007;48:837–44.

    Article  CAS  PubMed  Google Scholar 

  72. Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, et al. Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci USA. 2006;103:8465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blauwblomme T, Dossi E, Pellegrino C, Goubert E, Iglesias BG, Sainte-Rose C, et al. Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia. Ann Neurol. 2019;85:204–17.

    Article  CAS  PubMed  Google Scholar 

  74. Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 2002;12:258–68.

    Article  CAS  PubMed  Google Scholar 

  75. Kelley MR, Cardarelli RA, Smalley JL, Ollerhead TA, Andrew PM, Brandon NJ, et al. Locally reducing KCC2 activity in the hippocampus is sufficient to induce temporal lobe epilepsy. EBioMedicine 2018;32:62–71.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tornberg J, Voikar V, Savilahti H, Rauvala H, Airaksinen MS. Behavioural phenotypes of hypomorphic KCC2-deficient mice. The. Eur J Neurosci. 2005;21:1327–37.

    Article  PubMed  Google Scholar 

  77. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kim WB, Cho JH. Encoding of discriminative fear memory by input-specific LTP in the Amygdala. Neuron 2017;95:1129–46.e5.

    Article  CAS  PubMed  Google Scholar 

  79. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature 2014;511:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bähner F, et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci. 2009;106:3561–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Csicsvari J, Jamieson B, Wise KD, Buzsáki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 2003;37:311–22.

    Article  CAS  PubMed  Google Scholar 

  82. Hasselmo ME. What is the function of hippocampal theta rhythm? –Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 2005;15:936–49.

    Article  PubMed  Google Scholar 

  83. Schlingloff D, Kali S, Freund TF, Hajos N, Gulyas AI. Mechanisms of sharp wave initiation and ripple generation. J Neurosci: Off J Soc Neurosci. 2014;34:11385–98.

    Article  Google Scholar 

  84. Fernández-Ruiz A, Oliva A, Fermino de Oliveira E, Rocha-Almeida F, Tingley D, Buzsáki G. Long-duration hippocampal sharp wave ripples improve memory. Science 2019;364:1082–86.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, et al. Raising cytosolic Cl- in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 2012;31:1217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeiffer BE. The content of hippocampal "replay". Hippocampus 2020;30:6–18.

    Article  PubMed  Google Scholar 

  87. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012;74:467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koh MT, Haberman RP, Foti S, McCown TJ, Gallagher M. Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2010;35:1016–25.

    Article  Google Scholar 

  89. Wilson IA, Ikonen S, Gallagher M, Eichenbaum H, Tanila H. Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci: Off J Soc Neurosci. 2005;25:6877–86.

    Article  CAS  Google Scholar 

  90. Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med. 2013;19:1524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Liset M de la Prida and Gabrielle Girardeau for helpful discussions and critical reading of the manuscript. We acknowledge the Imaging Platform of Institut du Fer à Moulin, where confocal imaging was performed and Atlantic Gene Therapy (UMR-1089, Univ. of Nantes) for AAV production, and the IBPS Phenotypic Core Facility where most behavioral tests were performed.

Funding

This work was supported in part by Fondation pour la Recherche Médicale (DEQ20140329539 to JCP), ERANET-Neuron (ACRoBAT project, funded by Agence Nationale de la Recherche to JCP), and the Fondation Française pour la Recherche sur l’Epilepsie—Fédération pour la Recherche sur le Cerveau (to JCP). C.S. and M.G. were recipients of fellowships from Sorbonne University and C.S. was partly supported by the Bio-Psy Laboratory of Excellence. The Poncer and Daumas labs are affiliated with the Bio-Psy Laboratory of Excellence, and DIM C-BRAINS funded by the Conseil Régional d’Ile-de-France.

Author information

Authors and Affiliations

Authors

Contributions

CS, SD, and JCP designed the research; CS and MS performed the experiments; CS, MS, and MG analyzed the data; MS and MG wrote the MATLAB codes for data analysis; IM designed vectors for virus production; SD and JCP supervised the research; CS and JCP prepared the figures and wrote the manuscript with inputs from M.S., M.G. and S.D.

Corresponding author

Correspondence to Jean Christophe Poncer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonnet, C., Sinha, M., Goutierre, M. et al. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacol. 48, 1067–1077 (2023). https://doi.org/10.1038/s41386-022-01480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01480-5

Search

Quick links