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Transcriptional signatures of the cortical morphometric
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Recent studies have shown that major depressive disorder (MDD) is accompanied by alterations in functional and structural
network gradients. However, whether changes are present in the cortical morphometric similarity (MS) network gradient, and the
relationship between alterations of the gradient and gene expression remains largely unknown. In this study, the MS network was
constructed, and its gradient was calculated in 71 patients with first-episode, treatment-naive MDD, and 69 demographically
matched healthy controls. Between-group comparisons were performed to investigate abnormalities in the MS network gradient,
and partial least squares regression analysis was conducted to explore the association between gene expression profiles and MS
network gradient-based alternations in MDD. We found that the gradient was primarily significantly decreased in sensorimotor
regions in patients with MDD compared with healthy controls, and increased in visual-related regions. In addition, the altered
principal MS network gradient in the left postcentral cortex and right lingual cortex exhibited significant correlations with symptom
severity. The abnormal gradient pattern was spatially correlated with the brain-wide expression of genes enriched for
neurobiologically relevant pathways, downregulated in the MDD postmortem brain, and preferentially expressed in different cell
types and cortical layers. These results demonstrated alterations of the principal MS network gradient in MDD and suggested the
molecular mechanisms for structural alternations underlying MDD.
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INTRODUCTION
Major depressive disorder (MDD) is a prevalent and debilitating
psychiatric disease worldwide that causes major social and
economic burdens on individuals and countries [1]. Despite
substantial efforts, the pathophysiological mechanism behind
MDD is still unclear due to the inconsistency of abnormalities and
treatment effects on brain structure and function [2, 3].
While heterogeneous, a large body of recent magnetic

resonance imaging (MRI) studies have reported widespread
abnormalities in brain structure and function in MDD [4–8]. More
specifically, individuals with MDD showed abnormal gray matter
volumes [9], cortical thickness [10], surface area [11], structural
networks [12, 13], and functional networks [14, 15] compared to
healthy controls. Although converging evidence points to
disrupted structure and function in regions within the cortico-
mesolimbic circuit, the neurobiological mechanisms responsible
for the interaction of low-level sensory processing and high-order
cognitive remains unclear [16, 17].
The hierarchical architecture of macroscopic brain features

follows a “sensory-fugal” axis, which spans from sensory-motor to
multimodal areas, allowing for information encoding and

integration from sensation to cognition [18, 19]. This architecture
is assumed to aid the integration of abstract concepts, cognition,
and behavior [20], and revealing it offers the possibility to shed
light on how the integrated nature of neural processing gives rise
to function and dysfunction. More recently, the advent of the
diffusion map embedding method has allowed macroscale brain
features to be converted to low-dimensional manifold representa-
tions, namely, gradients [21] that represent hierarchical organizing
axes to describe continuous spectra of brain features. To date, an
increasing number of gradient studies have attempted to
investigate spatial transitions of brain organization. Among them,
functional connectivity gradients reflect the functional spectrum
from perception and action to abstract cognition [22], and a
previous study found alterations in functional connectivity
gradients in MDD [23].
In parallel, structural connectivity gradients capture gradual

transitions of morphology or microstructure, and have the
potential to reveal mechanisms of neurodevelopment [22, 24].
Traditionally, structural connectivity gradients were calculated
based on structural covariance [25] or anatomical connectivity
[26, 27]. However, structural covariance based on a large sample

Received: 16 May 2022 Revised: 15 September 2022 Accepted: 5 October 2022
Published online: 17 October 2022

1Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China. 2Tianjin Anding Hospital, Tianjin
300222, China. 3The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the
Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China. 4These authors contributed equally: Kaizhong Xue, Lining Guo,
Wenshuang Zhu. ✉email: zhangyong@tjmhc.com; fengliu@tmu.edu.cn

www.nature.com/npp

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01474-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01474-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01474-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01474-3&domain=pdf
http://orcid.org/0000-0002-3570-4222
http://orcid.org/0000-0002-3570-4222
http://orcid.org/0000-0002-3570-4222
http://orcid.org/0000-0002-3570-4222
http://orcid.org/0000-0002-3570-4222
https://doi.org/10.1038/s41386-022-01474-3
mailto:zhangyong@tjmhc.com
mailto:fengliu@tmu.edu.cn
www.nature.com/npp


size for accuracy neglects gradient construction at the individual-
subject level [28], and anatomical connectivity constructed by
tractography based on diffusion-weighted MRI (DWI) under-
recovers long-distance projections [29]. Morphometric similarity
(MS) has recently been proposed to quantify the similarity
between cortical areas, by combining multiple individual mor-
phological features instead of measuring the interregional
correlation of a single MRI feature across individuals [30]. MS
networks contained more connections between cortical areas
within the same cytoarchitectonic class than structural covariance
and anatomical connectivity. The connections of MS networks
correlate highly with the brain-wide expression of genes enriched
for neurobiologically relevant pathways, and regions of higher MS
have been shown more likely to have axon trajectories with each
other in a rhesus monkey model [30]. In addition, MS networks can
be viewed as a neuroimaging phenotype linking brain structural
changes to transcriptional data [31, 32]. A recent study found that
the principal MS gradient is anchored by sensory and motor
cortices, and it is closely associated with properties of cortical
organization in healthy subjects [33]. Nevertheless, whether and
how the principal MS gradient is disrupted in patients with MDD
remains unclear.
Emerging evidence suggests that genes play an important role

in human brain networks, especially in shaping functionally
valuable and metabolically costly connections [34, 35]. The
availability of the whole-brain atlas of gene expression based on
the Allen Human Brain Atlas (AHBA) database has generated new
opportunities to understand how disease-related gene expression
at the microlevel is associated with macrolevel brain alterations in
various psychiatric disorders [36–38]. In addition, neuroimaging
features as intermediate phenotypes are theoretically closer to
genetic substrates of MDD [39]. Thus, more recently there has
been an increasing number of imaging transcriptomics studies
linking cortical morphology and functional alterations in MDD to
gene expression data [23, 40], in an attempt to reveal the complex
mechanisms behind MDD.
In the present study, we hypothesized that there would be

significant differences in the principal MS gradient between
patients with MDD and healthy controls. We further hypothesized
that these differences would be related to gene expression. To test
these hypotheses, we first combined the MS network and the
diffusion map embedding method to construct the principal MS
gradient and evaluate the hierarchical organization of the MS
gradient in patients with MDD and healthy controls. The relation-
ships between case-control changes in the principal MS gradient
and clinical variables of symptoms were also examined. Second,
we conducted partial least squares (PLS) regression to link MDD-
related changes in the principal MS gradient with anatomically
patterned gene expression to determine which genes are MDD-
related. Moreover, we performed various enrichment analyses
connecting genes, molecular pathways, cell classes, and cortical
layers to further interpret our results. An overview of the analytical
framework is summarized in Fig. 1.

METHODS AND MATERIALS
Participants
This study was approved by the ethical committee of Tianjin Medical
University General Hospital, and written informed consent was obtained
from participants. Seventy-two first-episode, treatment-naive patients with
MDD were recruited, and diagnoses were determined by trained
psychiatrists using the diagnostic criteria of the Structured Clinical
Interview of DSM-IV (SCID). Following a previous study [41], we recruited
only MDD patients with the Hamilton Depression Rating Scale-17 (HDRS-
17) scores ≥ 18. The Hamilton Anxiety Rating Scale-14 (HARS-14) was also
applied to evaluate anxiety symptoms in these patients, but we did not set
a cutoff value. Seventy age- and gender-matched healthy controls were
recruited from nearby communities, and they were free of any history of
neurological and psychiatric disorders. The general exclusion criteria were

(i) younger than 18 years or older than 65 years; (ii) left-handedness; (iii)
the presence of magnetic resonance contraindications; (iv) organic
intracranial lesions; (v) poor image quality checked before and during
neuroimaging data preprocessing, and (vi) any history of comorbid alcohol
or drug abuse.

Neuroimaging data acquisition and preprocessing
The MRI data of all participants were collected using a 3.0-Tesla GE
Discovery MR750 scanner. For T1-weighted imaging acquisition, please see
Supplementary Text. The 3D high-resolution T1-weighted images were
preprocessed for cortical surface reconstruction using FreeSurfer (v6.0),
including skull stripping, tissue segmentation, surface reconstruction,
metric reconstruction, and spherical normalization parameter estimation
(Supplementary Text).

Construction of MS gradients
The cortical surfaces were divided into 1533 spatially contiguous regions
[33, 42] derived from the DK-68 atlas [43], which parcellated approximately
1 cm2 for each region by using a backtracking algorithm [44]. This
parcellated DK anatomical template was transformed from standard space
to each participant’s individual space by using inverse spherical normal-
ization parameters estimated in cortical surface reconstruction, and five
structural features were extracted including gray matter (GM) volume,
cortical thickness (CT), surface area (SA), intrinsic (Gaussian) curvature (IC),
and mean curvature (MC). Each participant’s morphometric feature was
z-score normalized across 1533 regions, and Pearson’s correlation
coefficients were calculated between each pair of z-score normalized
morphometric feature vectors, which formed a 1533 × 1533MS matrix for
each participant. The construction of MS gradients was preprocessed using
the BrainSpace toolbox [42]. Given that the principal MS gradient is closely
associated with cortical fundamental properties and diverges from the
principal functional gradient [33], we focused on MDD-related alterations
in the principal MS gradient. Thus, the group-level scores of the principal
MS gradient were finally generated across aligned patients with MDD and
healthy individuals (Supplementary Text).

The MS gradient comparison
A general linear model (GLM) was used to investigate between-group
alterations of the regional principal MS gradient while regressing out the
effects of age, sex, and age × sex. In addition, to contextualize the regional
principal MS gradient alterations in the MDD group, we referred them to
two prior classifications of cortical areas: the Yeo atlas of the cortex
classified according to resting-state networks [45], and the von Economo
atlas of the cortex classified by cytoarchitectonic criteria [46]. To this end,
the mean principal MS gradient score of all regions within a particular Yeo
network or von Economo class was calculated, and the GLM was applied to
explore case-control differences in the principal MS gradient by regressing
out the same covariates. The significance of each region, network, or class
was corrected with the Benjamini–Hochberg false discovery rate (BH-FDR)
method p < 0.05.

Correlations between the abnormal principal MS gradient and
clinical variables
The mean scores of brain regions with the abnormal principal MS gradient
in the MDD group were extracted to perform partial correlations between
the principal MS gradient and clinical variables (the HDRS and the HARS) in
patients with MDD while adjusting for age, sex, and age × sex. The
correlation results were BH-FDR corrected at p < 0.05.

Gene expression data preprocessing
The available gene expression data of six postmortem brains with 3702
distinct samples were provided by the AHBA database [47]. We used the
abagen toolbox (https://www.github.com/netneurolab/abagen) to process
and map the transcriptomic data onto the 1533 parcellated brain regions
[48]. Briefly, the preprocessing of gene expression data can be summarized
as the follows: (i) update probe-to-gene annotations; (ii) intensity-based
filter; (iii) probe selection; (iv) sample-to-region matching; (v) handling
missing data; (vi) sample normalization; (vii) gene normalization; (viii)
sample-to-region combination metric, and (ix) selection of stable genes.
Finally, only 7443 genes remained (Supplementary Text). Since only two of
the six brains of the AHBA database included samples from the right
hemisphere, only the left hemisphere was considered (more details of six
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donors in the AHBA database are shown in Supplementary Table 7). Thus, a
gene expression matrix of 767 regions × 7443 genes was finally used for
further analyses.

Transcription-neuroimaging association analysis
We used PLS regression [49] to relate the gene expression of 7443 genes to
case-control differences in the principal MS gradient (t values from 767

cortical regions in the left hemisphere). In the PLS regression model, the
z-score normalized gene expression matrix (767 regions × 7443 genes) was
taken as the independent variable, and the z-score normalized principal
MS gradient case-control t vector (767 regions × 1) was treated as the
dependent variable. The PLS components, the linear combination of
weighted gene expression values, are ranked by the explained variances
between independent and dependent variables. Thus, the first PLS
component (PLS1) provides the optimal low-dimensional representation

Fig. 1 Schematic summary of the study design. A Gradient construction. Morphological features (GM, SA, CT, IC, MC) were first derived from
individual structural imaging maps. Based on the DK atlas, regionally morphological features were extracted and concatenated into a vector in
each region. Pearson’s correlation was calculated between each pair of regional vectors, and the MS matrix was obtained from each subject.
Then, the MS matrix was transformed into the affinity matrix by using a kernel function. Finally, the diffusion embedding algorithm was
applied to decompose the affinity matrix and the first gradient map was acquired from each subject. B Gene expression. The expression value
in each region (the left hemisphere only) of each gene was extracted from the AHBA database, and the gene expression matrix could be
obtained. C Transcriptional analysis. PLS regression was conducted to link MDD abnormalities of the principal MS gradient with gene
expression data, and enrichment analyses were performed subsequently on the significant gene list of the first component of PLS (PLS1).
AHBA Allen Human Brain Atlas, CT cortical thickness, DK Desikan-Killiany, GM gray matter, IC intrinsic (Gaussian) curvature, MC mean
curvature, MDD major depressive disorder, MS morphometric similarity, PLS partial least squares, SA surface area.
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of the covariance of the high-dimensional data matrices [50]. We used a
spatial autocorrelation-preserving permutation test (i.e., spin test,
n= 10,000) to examine whether the explained variance of the PLS
component was significantly greater than expected by chance [51].
Moreover, a bootstrapping method was conducted to evaluate the
significance of genes contributing to components (Supplementary Text).
Only significant genes (BH-FDR p < 0.01) were retained for subsequent
analyses.
To further explore the relationships between the expression of MDD-

related genes and principal MS gradient alterations, we obtained 24 genes
related to depression from the AHBA database [52] (https://help.brain-
map.org/download/attachments/2818165/HBA_ISH_GeneList.pdf?
version=2&modificationDate=1614977648535&api=v2), and 270 genes
from the two recent genome-wide association studies (GWAS) of MDD
[53, 54]. The spatial relationships between the expression of these genes
(genes overlapped with significant PLS genes) and the principal MS
gradient case-control differences in the left hemisphere were examined. In
addition, we performed gene set analyses to further test whether the
significant genes with positive or negative weight (PLS+ /−) were
enriched for MDD-related genes from the AHBA database [52] and risk
genes identified by the largest GWASMDD [54] (Supplementary Text).

Enrichment analyses
To test whether significant PLS+ /− genes were enriched for genes
implicated in the pathogenesis of MDD and other brain disorders, we used
a catalog of genes with differential expression information (fold change
values) for five major psychiatric disorders [55]. Based on the analysis
results (please see RESULTS section), only genes with positive weights in
the first PLS component (PLS1+ ) were used in the following enrichment
analyses. Next, Gene Ontology (GO), Reactome, and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) embedded in Metascape (https://
metascape.org/gp/index.html#/main/step1) were used for functional
annotations of the PLS1+ genes [56]. Cell-type specific expression analysis
of the PLS1+ gene list was performed using the specificity index
probability (pSI) package in R [57]. Cortical layer enrichment was applied
by using marker genes obtained based on a previous transcriptomic study
[58]. To explore developmental time windows across brain regions,
developmental gene expression enrichment analysis was performed by
the cell-type specific expression analysis (CSEA, http://genetics.wustl.edu/
jdlab/csea-tool-2/) [57]. All enrichment analyses were corrected by BH-FDR
p < 0.05 (Supplementary Text).

Null model
A spin test was conducted to control the potential confounding effects of
spatial autocorrelations [51, 59]. A set of null Pearson’s correlation
coefficients can be generated by randomly rotating the spherical
projection of spatial maps while preserving the spatial relationship. Thus,
in this study, we first performed 10,000 spin test permutations of cortical
regions to generate a null distribution, and the pspin value was computed
as the proportion of null values of the correlation coefficient that were
greater than the real values of the correlation coefficient.

Reproducibility analyses
To test the reliability of our results, the following five analyses were
performed: (i) validation of the robustness of the case-control principal MS
gradient after regressing the effect of total intracranial volume (TIV); (ii)
validation of the robustness of MS network construction with Spearman’s
correlation analysis; (iii) testing the reliability of the principal MS gradient
using an independent neuroimaging dataset [33]; (iv) testing the reliability
of the association between gene expression and the case-control t-map of
the principal MS gradient using three MDD-related gene markers of
somatostatin (SST) interneurons [40], and (v) testing the reliability of
enrichment results using a multi-gene-list meta-analysis [56] based on the
GWASMDD [53, 54], and gene-category enrichment analysis (GCEA) with
ensemble-based null models [60] (Supplementary Text).

RESULTS
Data samples
After qualifying for the structural MRI data, we ultimately recruited
71 patients with MDD and 69 healthy subjects in this study (one
MDD and one healthy control were excluded due to the artifact of

head motion). The demographic and clinical data of patients and
controls are shown in Supplementary Table 1. The two groups did
not show significant differences in sex (chi-squared test, χ2= 0.23,
p= 0.63) or age (two-sample t-test, t=−0.28, p= 0.78).

Case-control differences in the principal MS gradient
The first principal gradient explained 34% of the MS network
variance in our dataset (with similar variance explained in MDD
and controls across gradients, revealed by the two-sample t-test,
t= 4.34 × 10−16, p > 0.99, Supplementary Fig. 1). It also showed
two extreme ends by motor and sensory cortices with the
association cortex in the middle (Fig. 2A). The spatial patterns of
the 2–5 gradients are shown in Supplementary Fig. 2.
Applying gradient alignment across individuals, we compared

the principal MS gradient scores between patients with MDD and
healthy controls using the GLM with age, sex, and age × sex as
covariates. As shown in Fig. 2B, there was a significant case-control
difference in the distribution of the mean principal MS gradient
scores after regressing out age, sex, and age × sex (two-sample
Kolmogorov–Smirnoff test, p= 1.11 × 10−4). Region-wise compar-
isons revealed that the principal MS gradient decreased in MDD in
the left postcentral (part 15 and part 29), left frontal pole (part 2),
right lateral occipital (part 43), and right precentral (part 25 and
part 36) regions, and an increase in the principal MS gradient in
MDD in the left pericalcarine (part 8), right cuneus (part 11), right
lingual (part 17), right pericalcarine (part 7 and part 12), and right
rostral middle frontal (part 24 and part 37) regions (Fig. 2C and
Supplementary Table 2).
There was a positive correlation between the mean control

regional MS gradient and the case-control t-map (r= 0.46,
pspin < 1 × 10−4, Fig. 2D), which showed that regions with higher
positive MS gradient scores in healthy controls tended to have a
greater decrease in patients with MDD, and on the contrary,
regions with higher negative MS gradient scores in healthy
controls had a greater increase in MDD patients. This result
indicated that higher MS gradient scores at the two extreme ends
tend to show larger case-control differences.
We also applied two prior classifications of cortical regions (the

Yeo 7 functional networks atlas [45] and the von Economo
cytoarchitectural atlas [46]) to apply the findings to the functional
and cytoarchitectural level of brain organization. For the Yeo
functional networks atlas, patients with MDD had a decreased
principal MS gradient in the somatomotor network (corrected
p= 1.14 × 10−2, Fig. 2E and Supplementary Fig. 3 and Supple-
mentary Table 3). For the von Economo cytoarchitectural atlas,
patients with MDD exhibited a decreased principal MS gradient in
the motor cytoarchitectural class (corrected p= 9.84 × 10−3, Fig. 2E
and Supplementary Fig. 3 and Supplementary Table 4).
The correlations between case-control changes in the principal

MS gradient scores and clinical variables were assessed by using
partial correlation analysis controlling for age, sex, and age × sex.
We included two clinical variables in this study: the HDRS-17 and
the HARS-14. After BH-FDR correction, we found that the left
postcentral cortex (part 15) exhibited a significant negative
correlation with HDRS scores, whereas the right lingual cortex
(part 17) had a significant positive correlation with HDRS scores
(Supplementary Table 5). No significant correlations were found
between the principal MS gradient scores and HARS scores.

Transcription-neuroimaging associations
The brain gene expression matrix was obtained from the AHBA
database. Considering just two right hemisphere data available,
we only used the left hemisphere in this study. Accordingly, the
brain gene expression matrix (767 regions × 7443 genes) was
applied to PLS regression to identify patterns of gene expression
correlated with the anatomical distribution of the principal MS
gradient of case-control differences (Fig. 3A). Only the first PLS
component (PLS1) explained 8.5% of the variance in the principal
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MS gradient case-control differences, significantly more than
expected by chance (spin test, pspin= 2.1 × 10−3). The distribution
of the PLS1 scores showed an anterior-posterior gradient of gene
expression (Fig. 3B), which is consistent with a previous study [31].

The PLS1 gene expression map was positively correlated with the
case-control t-map (r= 0.29, pspin= 2.1 × 10−4, Fig. 3C). As
suggested by previous studies [31, 36], we ranked the normalized
weights of PLS1 according to the z score of each gene. Overall,

Fig. 2 The principal MS gradient mapping in patients with MDD and healthy controls. A The principal MS gradient pattern in patients with
MDD and healthy controls. Motor and sensory cortices anchor at two extreme ends, with the association cortex in the middle. Regions with
similar connectivity patterns show similar colors. B The histogram shows the distributions of mean principal MS gradient scores in the MDD and
control group after regressing out the effect of age, sex, and age × sex. C Region-wise statistical comparisons between healthy controls andMDD,
with healthy controls > MDD and healthy controls < MDD shown in red and blue, respectively (first row, un-threshold; second row, p < 0.05,
threshold by BH-FDR correction). D A density scatterplot of the mean regional MS gradient scores of healthy controls (x-axis) and the case-control
t-statistic (y-axis) (r= 0.46, pspin < 1 × 10−4). Most cortical regions have negative principal MS gradients in healthy controls, which decreases in
healthy controls compared to MDD patients (34% of regions), or positive principal MS gradients in healthy controls, which increases in healthy
controls compared to MDD patients (30% of regions). E Functional community-based absolute t-value (left, Yeo functional networks) and
cytoarchitecture-based absolute t-value (right, von Economo classes) of the principal MS gradient indicate significant difference primarily in the
somato-motor network and primary motor class. Asso1 association cortex1, Asso2 association cortex2, BH-FDR Benjamini–Hochberg false
discovery rate, DAN dorsal attention network, DMN default mode network, FPN fronto-parietal network, Insula insular cortex, Limbic limbic
regions, LN limbic network, MDD major depressive disorder, MS morphometric similarity, Prim motor primary motor cortex, Prim sens primary
sensory cortex, Sec sens second sensory cortex, SMN somato-motor network, VAN ventral attention network, VN visual network.
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5485 genes were identified to make significant contributions to
PLS1 (p < 0.01, BH-FDR corrected, Fig. 3D). Among them, 2882
genes had normalized positive PLS1 weights (PLS1+ ), and 2603
genes had normalized negative PLS1 weights (PLS1-), which
indicated that gene expression was either over- or under-
expressed, corresponding to increased or decreased changes in
the principal MS gradient in the healthy control group compared
to the MDD group.
Moreover, among 13 genes (the overlapped genes between

MDD-related genes from the AHBA database and background
genes), eight MDD-related genes from the AHBA database made
significant contributions to PLS1 (Supplementary Table 6);
among 221 genes (the overlapped genes between MDD-
related genes from the GWASMDD and background genes), 92
MDD-related genes from the GWAS made significant contribu-
tions to PLS1. For MDD-related genes from the AHBA database,
46% (6 of 13) of the genes were in the PLS1+ gene list, and 15%
(2 of 13) were in the PLS1- gene list. The expression profiles of all
these genes (62%, 8 of 13) were significantly spatially correlated
with the case-control t-map (all pspins < 0.05, BH-FDR corrected,
Supplementary Fig. 4). For MDD-related genes from the GWAS,
19% (42 of 221) of the genes were in the PLS1+ gene list, and
23% (50 of 221) were in the PLS1- gene list. The expression
profiles of part of these genes (39%, 86 of 221) were significantly
spatially correlated with the case-control t-map (all pspins < 0.05,
BH-FDR corrected, Supplementary Fig. 5). Besides, we found that
there was no significant enrichment of the significant PLS1
genes for MDD-related genes from in situ hybridization (ISH)

gene expression in the AHBA database (p= 0.90) or the PLS1-
genes for risk genes identified by the GWASMDD (p= 0.94), but
the PLS1+ genes were significantly enriched for risk genes
identified by the GWASMDD (p= 0.029)

The PLS1+ gene list of the principal MS gradient denoted
gene downregulation in patients with MDD
We first performed psychiatric disorder enrichment analysis to
investigate whether the PLS1+ or PLS1- genes were enriched for
genes with differential expression information for five major
psychiatric disorders. As shown in Fig. 3E, the PLS1+ genes were
significantly enriched for MDD downregulated genes (corrected
p= 9.18 × 10−4), ASD upregulated genes (corrected p= 5.84 × 10−5),
bipolar depression upregulated (corrected p= 1.96 × 10−2) and
downregulated (corrected p= 5.08 × 10−6) genes, and schizophrenia
upregulated genes (corrected p= 3.30 × 10−11). For the PLS1- genes,
they were only enriched for genes with schizophrenia downregulated
genes (corrected p= 1.06 × 10−2). Therefore, we only focus on the
PLS1+ gene list for subsequent analysis based on the above-
mentioned results.

Pathway enrichment associated with changes in the principal
MS gradient
Metascape was used for gene functional annotations, and the
15,633 genes with qualified brain expression data were used as
background. The PLS1+ gene list was mainly enriched for several
GO biological processes, Reactome gene sets, and KEGG pathways
(Fig. 4A, B).

Fig. 3 Gene expression profiles related to case-control differences of the principal MS gradient. A The case-control t-map of the regionally
principal MS gradient scores in the left hemisphere. B A weighted gene expression map of regional PLS1 scores in the left hemisphere. C A
density scatterplot shows the relationship between regional PLS1 scores and regional changes in the principal MS gradient (r= 0.29,
pspin= 2 × 10−4). The gray band indicates the 95% confidence interval. D Ranked PLS1 genes based on z score. E Psychiatric enrichment
analysis using the PLS1+ and PLS1- gene lists (the dashed line represents the significant threshold). AAD alcohol abuse or dependence, AHBA
Allen Human Brain Atlas, ASD autism spectrum disorder, BD bipolar disorder, BH-FDR Benjamini–Hochberg false discovery rate, DGs
differential genes, ISH in situ hybridization, MDD major depressive disorder, MS morphometric similarity, PLS partial least squares, SCZ
schizophrenia.
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Cell-type specific expression associated with changes in the
principal MS gradient
Given that the pathogenesis of MDD is complex and includes
complicated interactions among diverse cell types in the brain, we
used five central nervous system (CNS) cell types to further refine
our analysis. Cell-type specific expression analysis revealed broad
enrichment across astrocytes (corrected p= 2.12 × 10−51), neurons
(corrected p= 8.23 × 10−18), and microglia (corrected p= 9.54 ×
10−13, Fig. 4C).

Cortical layer enrichment associated with changes in the
principal MS gradient
Using the laminar gene markers, we linked the PLS1+ genes
with mesoscale cortical layers. The PLS1+ gene list was
significantly enriched for layer I (corrected p= 7.18 × 10−16),
layer II (corrected p= 3.48 × 10−7) and layer V (corrected
p= 2.14 × 10−4, Fig. 4D).

Developmental gene expression enrichment associated with
changes in the principal MS gradient
By using the web server CSEA, we investigated whether the
PLS1+ genes were enriched in particular human brain regions or
developmental windows. Developmental gene expression analysis
revealed that the PLS1+ genes were expressed in the brain from
early/mid fetal development onward and across several brain
regions comprising the cortex and subcortex (i.e., thalamus,
striatum, amygdala). The PLS1+ genes were expressed predomi-
nantly in late infancy and mid/late childhood (Fig. 4E).

Reproducibility analyses
To test the reliability of our results, we first examined whether case-
control differences in the principal MS gradient were affected by
TIV. As shown in Supplementary Fig. 6, the case-control differences
in the principal MS gradient with TIV as a covariate were highly
correlated to those without TIV (r= 0.99, pspin < 1 × 10−4).

Fig. 4 Enrichment analyses of the PLS1+ genes. A The bubble plot shows the GO and KEGG functional annotations for the PLS1+ genes.
The bubble size represents the number of overlapped genes between the PLS1+ gene list and each GO term, Reactome gene set, or KEGG
pathway (y-axis). The color bar represents the BH-FDR corrected p value. B Metascape enrichment network visualization showing the intra-
cluster and inter-cluster similarities of enriched pathways. Each pathway is shown by a node, where the node size is proportional to the
number of input genes included in the pathway, and different colors respond to different clusters. *in A, B indicates that the biological
processes are still significant by using ensemble-based null models in reproducibility analysis. C Cell-type specific expression analysis of the
PLS1+ gene list. D Cortical layer enrichment analysis of the PLS1+ gene list. E Developmental gene expression enrichment analysis of the
PLS1+ gene list. The bubble size is proportional to the BH-FDR corrected p value. The bubble color represents whether the PLS1+ genes are
significantly enriched or not; the red represents yes, and the blue represents no. Ado adolescence, BH-FDR Benjamini–Hochberg false
discovery rate, EC early childhood, EF early fetal, EMF early/mid fetal, F false, GO gene ontology, KEGG Kyoto Encyclopedia of Genes and
Genomes, LF late fetal, LI late infancy, LMF late/mid fetal, M/LC mid/late childhood, NEF neonatal early infancy, PLS partial least squares, R-HAS
Reactome-Homo sapiens, T true, YA young adulthood.
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Second, we conducted Spearman’s correlation analysis instead
of Pearson’s correlation to construct the MS network and further
validated the reliability of the case-control differences. The results
showed that the case-control differences in the principal MS
gradient based on Spearman’s correlation analysis were largely
reproducible (r= 0.91, pspin < 1 × 10−4, Supplementary Fig. 7).
Third, we repeated the gradient construction using an

independent neuroimaging dataset of healthy subjects provided
by another study [33] (n= 116, mean age ± standard error of the
mean (SEM)= 25.77 ± 0.61 years, 58 females) to test the
reproducibility of the principal MS gradient. The results of the
spatial correlation analysis indicated that the pattern of the
principal MS gradient was reliable (r= 0.92, pspin < 1 × 10−4,
Supplementary Fig. 8).
Fourth, we used the three canonical gene markers of SST

interneurons (i.e., SST, CORT, NPY) to estimate the reliability of the
association between gene expression and the case-control t-map
of the principal MS gradient. The results showed that all three
genes were contained in the PLS1+ gene list, and they were
significantly correlated with the case-control t-map of the
principal MS gradient (SST: r= 0.21, pspin= 2.3 × 10−2; NPY:
r= 0.25, pspin= 1.3 × 10−2; CORT: r= 0.16, pspin= 1.7 × 10−2, all
BH-FDR corrected, Supplementary Fig. 9).
Finally, we performed two validation analyses to further validate

the reliability of gene enrichment results. For results of the multi-
gene-list meta-analysis, we found that all GO categories, Reactome
gene sets, and KEGG pathways of genes from GWASMDD overlapped
with genes from the PLS1+ gene list (Supplementary Text and
Supplementary Fig. 10). For results of GCEA using ensemble-based
null models, 7/14 GO categories related to biological processes were
still significant by using the more rigorous null models, which
indicated the results of gene enrichment were relatively reliable
(Supplementary Text, Fig. 4A, B, Supplementary Fig. 11, and
Supplementary Tables 8 and 9).

DISCUSSION
Here, we for the first time investigated the abnormalities of the
principal MS gradient in first-episode, treatment-naive patients
with MDD and healthy controls. We determined that the principal
MS gradient map of case-control difference was spatially
correlated to the cortical gene expression map. Furthermore, we
found that genes related to MS gradient changes (PLS1+ ) were
not only significantly enriched for downregulated genes in
postmortem brain with MDD and neurobiologically relevant
pathways, but also preferentially expressed in certainly different
cell types and cortical layers, which offers a perspective on the
relationship between the hierarchical organization of the macro-
scopically morphometric profile and the microscopic transcrip-
tomes during the onset and progression of MDD.
One of the advantages of MS is the combination of structural

multi-features in a single participant compared with structural
covariance and anatomical connectivity [30, 32, 61]. The principal
MS gradient pattern is closely associated with cortical funda-
mental properties, from gene expression, cytoarchitecture, and
myeloarchitecture to evolutionary expansion [33]. Given that MDD
is a disorder that disrupts neuroplasticity combined with multi-
factors (e.g., genetics, gene-environmental interactions, neuroen-
docrine, and inflammation) [62], we used a complex neuroimaging
phenotype, the principal MS gradient, to investigate differences
between patients with MDD and healthy controls. Our principal
MS gradient mapping showed that both groups revealed an axis
of connectivity variations with motor and sensory cortices on two
extreme ends and the association cortex in the middle (Fig. 2A).
We found that alterations of the principal MS gradient were
mainly concentrated in areas related to the somatomotor network
(SMN), such as precentral and postcentral regions. One of the
famous hallmarks of MDD is psychomotor abnormalities that

designate the interaction of affective and cognitive functions with
motor function [63, 64]. A series of previous studies suggested
that neuronal activity in the motor cortex and SMN is closely
associated with subcortical inputs and other nonmotor cortical
networks, where the default mode network stands in the
reciprocal position [64]. The alterations of the principal MS
gradient in SMN again reiterate the core role of lower hierarchy
regions involved in feedforward communication in the process of
MDD development. Furthermore, abnormalities were also
observed in the frontal pole and visual-related regions, which
suggested that depression could cause disturbances in sensory
perception systems, and disruptions in visual functions may serve
as an essential clinical feature underlying MDD [65, 66]. In the
present work, our findings of abnormalities in the frontal pole and
visual network-related regions thought to be a part of low-level
sensory perception systems may indicate that hierarchical
organization changes in sensory systems could be endopheno-
types in MDD pathology.
MDD emerges from the complex interactions of biological

systems that span genes and molecules through cells, networks,
and behaviors [40, 62, 67]. Thus, MDD-related alterations in the
principal MS gradient might also be multiscale changes. By using
the PLS approach, we found that the cortical map of case-control
differences in the principal MS gradient was spatially correlated
with the cortical gene expression map and further identified the
weighted combination of genes in the first PLS component that
may drive structural hierarchical organization changes mediating
the genetic risk of MDD. Our results showed that the PLS1+ gene
list was not only significantly enriched for downregulated genes in
postmortem individuals with MDD but also significantly enriched
for SCZ-, ASD-, and BD-dysregulated genes, which is in line with
the results of a prior GWAS showing that psychiatric disorders
share common variant risks [68, 69]. Furthermore, gene markers of
SST interneurons were consistently spatially correlated with the
changes in the principal MS gradient. Converging evidence
suggests that SST interneurons are preferentially vulnerable in
patients with depression and are the pronounced pathophysio-
logical feature of depression [70, 71], which was further
corroborated by our results. All of the abovementioned results
indicate that downregulated genes of the postmortem brain in
MDD were normally overexpressed in cortical areas with
decreased principal MS gradient scores.
The genes in the PLS1+ list were highly expressed in the frontal

and temporal cortical areas, which were significantly enriched for
several relevant categories. The identified categories were mainly
implicated in neuron development, axon guidance, and response
to stimuli, indicating that neuronal impairment and maldevelop-
ment may be possible mechanisms of MDD. In addition, we found
that the significant PLS1 genes were not significantly enriched for
MDD-related genes, which is possibly due to the limited number
of MDD-related genes identified in the AHBA database. The
significant enrichment of PLS1+ genes for the risk genes
identified by the large-scale GWASMDD, along with several
neurobiological categories shared between our study and the
results of GWASMDD, highlights that the MDD-related genes
identified by PLS may provide novel insight into the complex
substrates of MDD.
Converging evidence indicates that understanding alterations

in cortical neuronal positioning and the complex interplay of brain
cells with specific contributions to psychiatric disease offers
opportunities to identify new avenues for disease treatment
[72, 73]. Using single-cell expression data and cortical layer
markers, we observed that significant enrichment of MDD-related
genes was most pronounced in astrocytes and neurons. Astro-
cytes have a close relationship with synaptic activity and modulate
neuronal circuits and behavior, which play a key role in MDD [74].
Combining the results of pathway and cell enrichment, neuroin-
flammation and microglia were also identified, which underlines
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the mechanisms of inflammation relevant to the development of
MDD [62]. We found that MDD-related genes were mainly
enriched for layer I, layer II, and layer V, indicating that the
characteristic distribution of different neurons and their connec-
tions with other regions may provide insight into the nature of the
pathology in MDD [72, 73]. Moreover, developmental enrichment
analyses revealed gene sets that were expressed in the cortex and
several subcortical regions from the early/mid fetal stage to young
adulthood in MDD by associating gene expression patterns with
our macroscale findings, suggesting that potential time windows
for susceptibility to MDD might be earlier than young adulthood.
Several limitations of this study should be highlighted. The first

limitation is that we only used five morphometric features to
construct the MS gradient. Although accumulating evidence
reveals that T1 weighted-restricted MS network construction
could be an appropriate proxy for multimodal MS networks when
multimodal imaging is not available [32, 33, 75], it is still necessary
for future studies to investigate the hierarchical organization of
morphology with multimodal imaging data. Second, the sample
size in the current study was relatively small, and future studies
with large sample sizes are needed to further validate MS
gradients across individuals and to identify abnormalities in
patients with MDD. Third, since gene expression profiles are
dependent on age, sex, and ethnicity [76, 77], these factors might
bias the results of our study. Finally, we only validated the results
of GO enrichment analysis with ensemble-based null models
because the toolbox only supports GCEA with GO terms [60].
In summary, the results of the current study supported our

hypotheses that alterations of the principal MS gradient existed in
individuals with MDD, and these alterations were spatially related
to gene expression. We further showed that MDD-related genes
were enriched for neurobiologically relevant pathways, down-
regulated genes in MDD, and were preferentially expressed in
different cell types and cortical layers. Together, our findings
provide new insight into understanding the altered coordination
of structure in patients with MDD and may offer a new
endophenotype to further investigate the complex substrate of
depression.
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