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Adolescent alcohol use is linked to disruptions in
age-appropriate cortical thinning: an unsupervised
machine learning approach
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Cortical thickness changes dramatically during development and is associated with adolescent drinking. However, previous findings
have been inconsistent and limited by region-of-interest approaches that are underpowered because they do not conform to the
underlying spatially heterogeneous effects of alcohol. In this study, adolescents (n= 657; 12–22 years at baseline) from the National
Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study who endorsed little to no alcohol use at baseline
were assessed with structural magnetic resonance imaging and followed longitudinally at four yearly intervals. Seven unique spatial
patterns of covarying cortical thickness were obtained from the baseline scans by applying an unsupervised machine learning
method called non-negative matrix factorization (NMF). The cortical thickness maps of all participants’ longitudinal scans were
projected onto vertex-level cortical patterns to obtain participant-specific coefficients for each pattern. Linear mixed-effects models
were fit to each pattern to investigate longitudinal effects of alcohol consumption on cortical thickness. We found in six NMF-
derived cortical thickness patterns, the longitudinal rate of decline in no/low drinkers was similar for all age cohorts. Among
moderate drinkers the decline was faster in the younger adolescent cohort and slower in the older cohort. Among heavy drinkers
the decline was fastest in the younger cohort and slowest in the older cohort. The findings suggested that unsupervised machine
learning successfully delineated spatially coordinated patterns of vertex-level cortical thickness variation that are unconstrained by
neuroanatomical features. Age-appropriate cortical thinning is more rapid in younger adolescent drinkers and slower in older
adolescent drinkers, an effect that is strongest among heavy drinkers.
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INTRODUCTION
Neuromaturation during childhood and adolescence undergoes a
dramatic transformation of cortical gray-matter thickness and
volume. Gray matter volume peaks before the teen years and then
declines into adulthood as underutilized connections between
neurons are pruned [1–3]. Widespread differences in brain morpho-
metry are observed in adolescent drinkers [4, 5]. Heavy adolescent
alcohol use [6] is associated with faster cortical grey matter decline,
possibly related to vulnerability during adolescent development [4].
However, slower grey matter thinning is also hypothesized on the
premise that alcohol disrupts the process of pruning [6].
Alcohol is the most commonly misused substance with 24% of

adolescents reporting consumption by 8th grade and 59% before
the end of high school [7]. An alarming number of drinks are
consumed by adolescents [8] who drink less frequently and overall

consume less than adults, but are more likely to binge drink [9].
Binge drinking prevalence increases between 12–25 years [8] with
14% of 12th graders binging every two weeks [7].
Hypothesis-driven region-of-interest (ROI) analyses have identi-

fied lower cortical thickness in the frontal, temporal, parietal,
occipital, and cingulate cortices [2, 10, 11] of adolescent binge
drinkers compared to light or non-drinking peers [12], an effect that
was further amplified among younger adolescents [13, 14]. By
contrast, competing findings of higher cortical thickness in the
frontal, parietal, temporal, and occipital regions [13, 15] have been
reported. Previous studies have tested mean cortical thickness in
anatomically defined ROIs. However, the patterns of brain matura-
tion and the disrupted patterns in cortical thickness that are
associated with binge drinking, do not necessarily follow neuroa-
natomical boundaries along prescribed gyral and sulcal features.
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We addressed these challenges with a data-driven method called
non-negative matrix factorization (NMF). Conceptually, NMFmay be
compared to more widely known methods of principal component
analysis (PCA) capable of feature extraction and independent
component analysis (ICA) capable of source separation (see Supple-
mentary Material). More generally, NMF has been successfully used
in the fields of astronomy, computer vision, and audio signal
processing [16, 17]. NMF is a multivariate algorithm that achieves
matrix factorization of anm x n input matrix (m: number of vertices;
n: number of subjects) into two matrices with non-negative
elements. Factorization results in two matrices. The first matrix
provides cortical thickness measurements organized into rows and
spatially covarying patterns organized into columns. The second
matrix specifies spatially covarying patterns organized into rows
and subjects organized into columns. Here NMF was applied to
identify spatial patterns in cortical thickness variation at the vertex-
level that are unconstrained by neuroanatomical borders [18].
We analyzed NCANDA data to assess the effects of adolescent

binge drinking and its interactions with multiple risk factors
including age, sex, ethnicity, socioeconomic status (SES), family
history of alcohol use, and lifetime trauma exposure [19]. The
NCANDA study sampled a range of adolescent developmental
periods within a relatively short timeframe by adopting an
accelerated longitudinal design (ALD) [20]. While an important
advantage of a longitudinal design is that it measures changes
within subjects and within cohorts, making it more powerful than
a cross sectional design, it nonetheless cannot establish causation
[21]. Thus, it is possible that any brain changes we may detect
cannot be linked definitively to alcohol use. Subjects, ages 12–22
years, were recruited at baseline and followed longitudinally at

yearly intervals for 5 years. We used NMF to delineate covarying
patterns of cortical thickness in baseline scans, and applied
regression modeling to test alcohol-related departures from
normal developmental trajectories for each of the covarying
patterns. Consistent with prior evidence, we hypothesized that
heavy drinking would be associated with more rapid age-related
decline in cortical thickness [6].

METHODS AND MATERIALS
Participants
Adolescents (n= 837; 12 - 22 years at baseline) were recruited from five
sites: University of California at San Diego (n= 214), Duke University
(n= 176), SRI International (n= 169), Oregon Health and Science University
(n= 152), and University of Pittsburgh (n= 126). Exclusionary criteria
included serious medical, mental health, or learning disorders [19]. Only
youth who did not exceed drinking thresholds for alcohol (drinking
class= 0, see below; n= 657) at baseline were enrolled (Fig. 1A) [19].
Participants, n= 657 were assessed at baseline, 576 returned in 1 year for
follow-up-1, 536 for follow-up-2, and 484 for follow-up-3, totaling
2628 study visits. This study was approved by the institutional review
board at each site. Adult participants provided written informed consent,
and minors provided written assent along with consent from a parent/
legal guardian.

Clinical and demographic measures
Drinking class reflects drinking behaviors at baseline and yearly thereafter
with the Customary Drinking and Drug Use Record (CDDR) [19] into three
drinking classes: (1) no/low drinkers, (2) moderate drinkers, and (3) heavy
drinkers. No/low drinkers consumed <1×/month, <2 drinks on average,
and <4 drinks maximum. Moderate drinkers consumed from a low

Fig. 1 Analyses pipeline and non-negative matrix factorization (NMF) solutions. A Analyses pipeline. B NMF finds the solution
that minimizes the difference between the raw data X and the reconstructed sample represented by the product ofW and C. In matrix X, each
row corresponds to a cortical vertex and each column corresponds to a subject. In matrix W, each row corresponds to the cortical thickness of
a vertex and each column corresponds to an NMF pattern. In matrix C, each row corresponds to a NMF pattern and each column corresponds
to a subject. C The optimal number of NMF patterns is 7 based on peaks of the split-sample reproducibility analyses results (NMF solutions
ranged from 2 to 100 patterns). D The optimal solution of 7 NMF patterns. Pattern 1 contains voxels in angular gyrus, supramarginal gyrus,
inferior frontal areas, and superior/middle/inferior temporal regions; pattern 2 is related to superior and middle frontal regions; pattern 3 is
associated with frontopolar regions; pattern 4 is associated with postcentral regions and superior parietal lobule; pattern 5 is mainly
associated with anterior/middle cingulate cortex and bilateral insula; pattern 6 is associated with posterior cingulate areas, lingual gyrus,
cuneus, calcarine sulcus, and primary visual cortex; and pattern 7 is related to parahippocampal gyrus. LL left hemisphere lateral view, LM left
hemisphere medial view, RM right hemisphere medial view, RL right hemisphere lateral view.
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frequency of <1×/month with moderate quantity of 2–3 drinks on average
and 4–5 drinks maximum up to moderate frequency of 1×/week and low
quantity of 2 drinks on average and <4 drinks maximum. Heavy drinkers
consumed from moderate frequency of 2×/month with high quantity of
3–4 drinks on average up to a high frequency of 1×/week or more with
moderate quantity of 2–3 drinks or high quantity of >4 drinks [22].
Self-identified ancestry: African-American, White, and Other.
SES was quantified using the highest years of education (range 6–20) of

either parent [19] into low SES (6–12 years, n= 47) and high SES (13–20
years, n= 610).
Family history of alcohol use and dependence (AUD) density (range 0–4)

was based on AUD in first- and second-degree relatives using the Family
History Assessment Module [23].
Cumulative trauma was quantified as the sum of reported DSM-IV or

DSM-5 Criterion-A traumatic events. DSM Criterion-A trauma was assessed
separately in the subject and one parent at baseline [22].

MRI acquisition
SRI, Duke, and UCSD used a 3 T General Electric (GE) Discovery
MR750 scanner and an 8-channel phased-array, receive-only head coil.
Pittsburgh and OHSU used a 3 T Siemens TIM TRIO with a 12-channel
phased-array, receive-only head coil. The high-resolution 3D T1-weighted
scan was acquired in sagittal orientation. On the GE scanners, the IR-FSPGR
(Inversion Recovery-Fast SPoiled Gradient Recalled) sequence was used
and, on the Siemens scanners, MPRAGE (Magnetization Prepared Rapid
Gradient Echo), with a FOV= 240mm× 240mm, acquisition matrix
256 × 256 and slice thickness 1.2 mm. Other parameters for IR-FSPGR were
TR/TI/TE= 5.912/400/1.932ms, flip angle= 11°, 146 slices and, for
MPRAGE, TR/TI/TE= 1900/900/2.92 ms, flip angle= 9°, 160 slices.

Analysis overview
Data analysis consisted of 5 major steps. (1) We assembled the relevant
imaging, clinical, and demographic data from 5 NCANDA sites for 4
timepoints. (2) We generated vertex-wise cortical surface maps of each
participant at each time point using the longitudinal FreeSurfer stream. (3)
We performed harmonization of cortical thickness data to account for site
and scanner effects using ComBat. (4) We applied a multivariate,
hypothesis-free method, called non-negative matrix factorization (NMF)
to identify image features based on vertex-level patterns of covarying
cortical thickness using baseline (first timepoint) scans (5) The mean
cortical thickness of 7 covariance patterns from step #4 were used as the
dependent variables in regression analyses designed to assess time-related
changes in cortical thickness associated with alcohol use. Independent
variables included drinking class, cohort age, within person age change,
ancestry, SES, family history of alcohol use, lifetime trauma exposure, and
participant ID. (5) We used regression analyses to test interactions of
drinking class, within-person age change, and cohort age.

Longitudinal segmentation pipeline
FreeSurfer v6.0 longitudinal segmentation was applied using the 4-step
longitudinal processing stream [22, 24]. T1 scans for 4 timepoints per
subject were supplied to the longitudinal pipeline. The pipeline created an
average template from all timepoints. The segmentation of each subject’s
first timepoint scan used this template as an initial estimate to make the
segmentation unbiased by time. The process generated 4 segmentations
of the T1 scan, which were processed in the usual manner in native space,
and 4 T1 longitudinal segmentations in template space [24]. One
participant failed FreeSurfer longitudinal processing.

Outlier detection and removal
Vertices whose cortical thickness were more than 3 standard deviations
from the mean of longitudinal scans were removed as outliers. A specific
vertex could be excluded, but the remaining vertices for the same subject
at other timepoints were retained.

Data harmonization across sites
Harmonization of cortical thickness data from multiple sites/scanners was
achieved with ComBat that removes scanner/site effects while preserving
inherent biological associations such as age, sex, drinking class etc. The
tool models expected imaging features as linear combinations of the
biological variables and scanner/site effects whose error term is further
modulated by site-specific scaling factors [25]. ComBat applies empirical

Bayes to improve the estimation of site parameters by effectively removing
unwanted sources of scanner/site variability while simultaneously increas-
ing the power and reproducibility of subsequent statistical analyses of
multi-site cortical thickness studies [25].

NMF
The spatial patterns in cortical thickness were estimated using NMF [18],
which weights cortical thickness values that covary within the template to
generate highly specific and reproducible pattern-based representations.
NMF finds patterns of covariance that are common to all participants, such
that a combination of these patterns with non-negative values approx-
imates the original data. To achieve this, we first organized the cortical
thickness data into a non-negative m x n matrix X with m vertices and n
participants. We then represented the membership of the vertex-wise
cortical thickness values to patterns of structural covariance using an m x v
matrix W with m vertices and v patterns. We also represented the
contribution of each pattern to the whole cortical thickness map per
participant with a v x n matrix C with v patterns and n participants. The
NMF algorithm minimized the difference between the raw data X and the
reconstructed sample represented by the product of W and C (Fig. 1B).
Since matrix decomposition is generally not exactly solvable, we
approximate it numerically with NMF. The cortical thickness values in the
data matrix X that tend to covary are positively weighted, thus minimizing
the reconstruction error and aggregating variance. The non-negativity
constraint results in a non-overlapping pattern-based representation of
whole-brain cortical thickness, which boasts advantageous specificity [18].
NMF was applied to cortical thickness maps from the baseline scans of

657 no/low drinkers to obtain basis vectors of cortical thickness that
capture normal adolescent growth with minimal drinking at baseline. The
cortical thickness maps of all participants’ longitudinal scans were
projected onto the basis vectors to obtain the participant-wise coefficients
for each basis vector. All participants have the same number of patterns
irrespective of cohort or data source. NMF was run with MATLAB scripts
(https://github.com/sundelinustc/NCANDA_NMF).

Solution selection
The NMF algorithm provides many possible solutions to matrix decom-
position, each containing a different number of patterns. A solution with
too many patterns may overfit the data by modeling noise fluctuations,
while too few patterns may combine inherently distinct patterns, which
inadequately models the underlying heterogeneity. We determined the
optimal number of patterns between 2 and 100 based on reproducibility of
data split into two sex- and age-matched halves [18]. We calculated
reproducibility across patterns by measuring the overlap between
independently estimated patterns from the inner product of the two
splits using the Hungarian Algorithm for combinatorial optimization [26].

Study design of NCANDA
NCANDA is a longitudinal study of age-related developmental brain
changes associated with adolescent alcohol use that is designed to
investigate both within-subject and within-cohort changes. Within-person
age change represents the difference between the age at each scan and
the mean age across visits of a subject. Thus, positive within-person age
change corresponds to later visits, whereas negative change corresponds
to earlier visits relative to the sample mean. For example, if a participant
was scanned at 12, 13, 14, and 15 years old, then the mean of scan age is
13.5 years, and the corresponding within-person age changes are −1.5,
−0.5, 0.5, and 1.5 years, respectively. Cohort-age represents the difference
between a subject’s mean age across visits and the mean age of the entire
sample across timepoints, thus centering cohort-age at the sample mean.
Each participant’s cohort-age remained constant across timepoints. For
example, if the average age across all participants is 15 years, the above
participant’s cohort age is 13.5–15=−1.5 years.

Statistical analyses
We modeled the developmental trajectories of cortical thickness using a
linear mixed-effects (LME) approach [20]. In all models, participant identity
was included as a random intercept to account for within-subject
covariance across time. Drinking class, within-person age change, cohort-
age, sex, self-identified ethnicity, SES, family history of AUD density, and
cumulative lifetime trauma at baseline visit were included as fixed-effects
variables. We investigated the main effect of drinking class; the two-way
interactions between drinking class and each of the other fixed-effects
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variables; and three-way interactions between drinking class, within-
person age change and cohort-age (without two-way interactions), on
each of the NMF-derived patterns. The dependent variable for each
regression model was the mean cortical thickness at vertices in a given
pattern. We also tested the main effects of within-person age change and
cohort-age as well as their two-way interaction.
All statistical analyses were conducted in RStudio using lme4. The sjPlot

package was used to plot the significant main and interaction effects. The
false discovery rate (FDR) method [27] with a q-value threshold of 5% was
applied to correct for multiple comparisons corresponding to the number
of NMF patterns.

RESULTS
Clinical and behavioral results
See Table 1 for sample demographic and alcohol use character-
istics stratified by study visit. See Table 2 for demographic
characteristics organized by site at the baseline visit. See
Supplementary Table S1 for demographic and clinical character-
istics organized by visit and site.

NMF patterns
We identified the optimal number of NMF patterns was 7 based
on the most prominent peak in split-sample reproducibility
(Fig. 1C). We did not choose 2 or 4 patterns because too few
patterns may fail to model the underlying heterogeneity. We also
reported the findings for 9 patterns (see SF6) in the Supplementary
Materials.
All seven patterns were symmetric bilaterally. As shown in

Fig. 1D, Pattern-1 contains the angular gyrus, supramarginal gyrus,
inferior frontal gyrus, and superior/middle/inferior temporal
cortex. Pattern-2 covers the superior and middle frontal regions.
Pattern-3 covers frontopolar cortex. Pattern-4 covers the post-
central and superior parietal cortex. Pattern-5 covers the anterior/

middle cingulate cortex and bilateral insular cortex. Pattern-6
covers the posterior cingulate gyrus, lingual gyrus, cuneus,
calcarine sulcus, and primary visual cortex. Pattern-7 covers the
parahippocampal gyrus.

Main effect of cohort-age
Older cohort-age was associated with lower cortical thickness in
all 7 patterns (β-values=−0.826 ~−0.127, t-values=−12.050 ~
−2.574, q-values < 0.01; Table 3, SF1).

Main effect of within-person age change
Older within-person age was associated with lower cortical
thickness in all 7 patterns (β-values=−1.382 ~−0.241, t-values=
−42.812 ~−12.166, q-values < 0.001; Table 3, SF2).

Main effect of drinking class
Higher drinking class, indicative of heavier drinking, was
associated with lower cortical thickness in pattern-2 (β-value=
−0.215, t-value=−2.752, q-value= 0.042; Table 3, SF3) but not
the other patterns (β-values=−0.180 ~ 0.001, t-values=−2.014
~ 0.023, q-values > 0.1).

Interaction of within-person age change and cohort-age
Significant interaction between within-person age change and
cohort-age was found in 6 patterns (β-values= 0.046 ~ 0.167, t-
values= 3.757 ~ 13.340, q-values < 0.001) except for pattern-7 (β-
value= 0.012, t-value= 1.534, q-value= 0.125). As shown in Table 4,
SF4, older cohorts had a slower rate of within-person age-related
cortical thickness decline as compared to younger cohorts.

Interaction of drinking class and cohort-age
Significant interactions were found in 6 patterns (β-values=
0.134–0.249, t-values= 3.887–6.867, q-values < 0.001) except

Table 1. Demographics and clinical characteristics at baseline and follow-ups.

Variable Baseline (n= 657) Follow-up 1 (n= 576) Follow-up 2 (n= 536) Follow-up 3 (n= 484)

Drinking Class

Low/No 657 482 383 299

Moderate 0 68 93 105

Heavy 0 26 60 80

Sex

Females 329 288 265 246

Males 328 288 271 238

Age at Scan (Years)

Mean 15.6 16.8 17.7 18.7

SD 2.3 2.3 2.3 2.3

Self-declared Ancestry

White 483 428 401 359

African American 92 77 73 63

Other 82 71 62 62

Socioeconomic Status

6–12 years 47 37 37 36

13–20 years 610 539 499 448

Family History Alcohol Density

Mean Score 0.20 0.00 0.17 0.16

SD 0.46 0.05 0.40 0.35

Cumulative Traumatic Events

Mean 1.01 1.01 1.00 1.00

SD 1.04 1.05 1.03 1.05

Note: Socioeconomic status (SES) was quantified using the highest years of education of either parent.
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pattern-7 (β-value= 0.031, t-value= 1.386, q-value= 0.166). As
shown in Table 4, SF5, higher drinking class was associated with a
slower rate of cohort-age-related cortical thickness decline.

Interaction of drinking class and within-person age change
No significant result was found in any pattern (β-values=
−0.073–0.162, t-values=−1.592–2.480, q-values > 0.09; Table 4).

Interaction of drinking class, cohort-age and within-person
age change
Significant three-way interactions were found in all patterns (β-
values= 0.065–0.182, t-values= 2.842–8.002, q-values < 0.01)
except for pattern-7 (β-value= 0.011, t-value= 0.725, q-value=
0.469). As shown in Table 4 and Fig. 2, the longitudinal rate of
cortical thickness decline in no/low drinkers was similar for all age
cohorts. The decline among moderate drinkers was faster in the
younger cohort and slower in the older cohort. The decline among
heavy drinkers was fastest in the younger cohort and slowest in
the older cohort.

Interaction of drinking class and other variables
There were no significant interactions between drinking class and
the other variables including sex, cumulative trauma, self-
identified ethnicity, SES, family history of AUD (see Supplementary
Table S2).

DISCUSSION
We investigated the longitudinal link between heavy drinking
behavior and cortical development in a large adolescent sample.
We applied NMF, a multivariate data-driven method, to cluster
vertices into 7 covarying patterns of cortical thickness. Significant
decline in cortical thickness was modulated by cohort-age
(Supplementary Fig. S1) and longitudinal progression (within-
person age change; Supplementary Fig. S2) in all 7 patterns.

Participants in older cohorts, relative to younger cohorts,
experienced slower declines in cortical thickness associated with
drinking across longitudinal visits for 6 patterns (Supplementary
Fig. S4). Adolescents who engaged in heavy drinking experienced
slower cohort-age associated declines in cortical thickness across
6 patterns (Supplementary Fig. S5) and exhibited lower cortical
thickness in pattern 2 (superior and middle frontal regions;
Supplementary Fig. S3). Of particular interest, the longitudinal rate
of cortical thickness decline was similar for all age cohorts among
no/low drinkers in widely distributed regions (6 patterns) over
longitudinal study visits. However, moderate and heavy drinking
was differentially linked to the trajectory of cortical thinning across
age cohorts. Specifically, cortical thinning among moderate
drinkers was faster in the younger cohort and slower in the older
cohort, whereas cortical thinning among heavy drinkers was
fastest in the younger cohort and slowest in the older cohort
(Fig. 2).
Our results confirm that cortical thinning, a process typical of

adolescent brain development, is particularly pronounced among
younger adolescents engaged in heavy drinking, and considerably
attenuated with heavy drinking in older adolescents [14]. The
present study is the largest to investigate cortical gray matter
changes associated with adolescent alcohol use and the first to
deploy unsupervised machine learning capable of identifying
coordinated patterns of cortical thickness variation that are
unconstrainted by neuroanatomical boundaries [18]. A small
number of strongly affected patterns are expected to be more
sensitive at capturing statistically significant results than region-of-
interest methods, which lack spatial localization to affected areas,
and whole brain vertex-wise analysis [14], which must survive
stringent corrections for multiple comparisons. Consequently,
both methods suffer from Type II error. Interestingly, the patterns
identified by NMF are closely related to meaningful functional
networks that recapitulate established patterns in large normative
adolescent samples [18].

Table 2. Demographic Characteristics at Baseline by Site.

Pittsburgh (n= 92) SRI (n= 126) Duke (n= 140) OHSU (n= 130) UCSD (n= 169)

Sex

Females 50 59 73 65 82

Males 42 67 67 65 87

Age at Scan (Years)

Mean 16.2 15.0 15.2 16.1 15.8

SD 2.5 1.9 1.9 2.6 2.4

Self-declared ancestry

White 71 98 76 109 129

African American 19 1 55 3 14

Other 2 27 9 18 26

Socioeconomic Status

6-12 years 7 4 12 7 17

13-20 years 85 122 128 123 152

Family History Alcohol Use Density

Mean Score 0.12 0.24 0.09 0.22 0.31

SD 0.30 0.60 0.24 0.43 0.54

Cumulative Traumatic Events*

Mean 0.87 0.52 1.41 1.20 0.99

SD 1.13 0.80 0.94 1.21 0.98

Socioeconomic status (SES) was quantified using the highest years of education of either parent.
Pittsburg University of Pittsburgh Medical Center, SRI SRI International, Duke Duke University Medical Center, OHSU Oregon Health and Science University, UCSD
University of California at San Diego.
*No participant met DSM criteria for PTSD at baseline.
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Pattern-1 (Fig. 1D) is aligned with the language network, which
has dorsal and ventral pathways. The dorsal pathway connects the
temporal cortex and premotor cortex to effect speech to posterior
Broca’s area to effect syntactic processes while ventral pathways
effect semantic process [28]. Motor and premotor regions are
relevant for language production, while auditory and visual
systems are recruited for language perception. Adult AUD is
implicated in both structural and functional alterations of the
language network [29, 30], while heavy drinking in adolescents is
implicated in gray matter decline of the language network that
involves middle temporal, superior temporal cortex and tempor-
oparietal cortex [6, 31]. Pattern-6 is aligned with the visual
network, which plays a vital role in perception. Rodent models
reveal ethanol disrupts the critical period of visual cortical
development, which includes the adolescence [32]. Human
adolescents engaging in heavy use similarly manifest lower
functional activity in the visual network including the occipital
lobe and cuneus [33]. Pattern-2 aligns with the sensorimotor
network including motor and premotor regions that are impacted
negatively by adolescent alcohol use [29]. Pattern-4 coincides with
the dorsal attention network (DAN) that exhibits increased activity
during the voluntary orienting of attention by the frontal eye
fields, the intraparietal sulcus (IPS), and superior parietal lobe
(SPL). Reduced white matter connectivity of the DAN is reflected
as behavioral deficits of impulsivity, inattention, and risk taking
[34]. Notably, increased connectivity in the DAN is linked to
adolescent alcohol use, adolescent ADHD, and is most increased in
comorbid adolescent alcohol use and ADHD [35]. Relatedly
alcohol use disorder is 5-fold higher in ADHD than individuals
without ADHD.

Adolescent binge drinking is linked to impaired executive
function, which is consistent with findings that link adolescent
binge drinking to weaker frontoparietal connectivity [36] and
reduced prefrontal activation [37–39]. Pattern-5 includes the
anterior and middle cingulate cortices and bilateral insula that
encompass the salience network (SN). The SN plays a crucial role
in consciously integrating autonomic feedback and responses
with internal goals and external demands [40], and in response
inhibition [41]. Adolescents who engage in binge drinking require
increased effort when inhibiting prepotent responses to alcohol-
related stimuli by engaging bilateral anterior insula and inferior
frontal gyrus, both of which are core components of the SN [42],
and depend on intact FPN function. The posterior cingulate cortex
and precuneus within pattern-6 and the anterior cingulate cortex
within pattern-5 are key components of the default mode network
(DMN). Self-referential processing, theory of mind (ToM), memory,
and learning [43], which are active in the absence of goal-directed
activity, are characteristic functions of the DMN. Notably, the DMN
is dysregulated in adolescents with family history of AUD [44] and
adolescent binge drinkers have heightened connectivity between
DMN regions, which impedes the maturation of affective and self-
reflective neural systems [45], and undermines the development
of complex social and emotional behaviors that are important in
transition to adulthood [46]. Thus, our findings in language, visual,
sensorimotor, and dorsal attention networks, which are integral to
adolescent brain development [47], are consistent with evidence
that adolescent alcohol exposure alters network activity and
reconfigures network connectivity [48]. Our NMF-derived findings
may help to guide future hypothesis-driven investigations of
alcohol effects on adolescent brain development.

Table 3. Main effects of drinking class, within-person age change, and cohort-age per NMF pattern.

Pattern β SD df t p q Adj. R2

Main effect of drinking class

1 −0.152 0.081 1699.0 −1.873 0.061 0.143 0.909

2 −0.215 0.078 1696.3 −2.752 0.006 0.042 0.895

3 −0.110 0.092 1715.3 −1.194 0.233 0.326 0.897

4 −0.180 0.090 1713.1 −2.014 0.044 0.143 0.890

5 0.032 0.062 1711.0 0.520 0.603 0.704 0.898

6 −0.086 0.070 1705.9 −1.221 0.222 0.326 0.901

7 0.001 0.050 1670.6 0.023 0.982 0.982 0.916

Main effect of within-person age change

1 −1.382 0.032 1617.0 −42.812 <0.001 <0.001 0.909

2 −0.766 0.031 1615.5 −24.647 <0.001 <0.001 0.895

3 −1.373 0.037 1620.6 −37.328 <0.001 <0.001 0.897

4 −1.096 0.036 1618.4 −30.649 <0.001 <0.001 0.890

5 −0.956 0.025 1617.8 −38.644 <0.001 <0.001 0.898

6 −0.963 0.028 1616.1 −34.401 <0.001 <0.001 0.901

7 −0.241 0.020 1611.1 −12.166 <0.001 <0.001 0.916

Main effect of cohort-age

1 −0.702 0.069 658.5 −10.219 <0.001 <0.001 0.909

2 −0.396 0.067 657.2 −5.933 <0.001 <0.001 0.895

3 −0.826 0.073 659.7 −11.342 <0.001 <0.001 0.897

4 −0.672 0.071 657.4 −9.468 <0.001 <0.001 0.890

5 −0.596 0.049 657.1 −12.050 <0.001 <0.001 0.898

6 −0.638 0.057 656.0 −11.177 <0.001 <0.001 0.901

7 −0.127 0.049 656.9 −2.574 0.010 0.010 0.916

Note: the regression model is “y ~ cohort-age + within-person age change + drinking class + sex + ethnicity + SES+ family history of AUD density + life
trauma+ (1|participant ID)”. y is the mean cortical thickness of a pattern. β, fixed-effect regression coefficient; SD standard deviation, df degree of freedom; t, t
value; p, uncorrected p-value; q, FDR corrected p-value; Adj. R2, adjusted R2.
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The typical pattern of (within-person) age-related cortical thinning,
which is more rapid in younger cohorts than older cohorts in
moderate drinkers, is still more rapid in heavy drinkers. (Table 4,
Fig. 2). Greater frequency and intensity of alcohol use in older cohorts
coincided with powerful neurotoxic effects during early study visits
and/or more profound delays in brain maturation via pruning during
late visits [30]. By contrast, alcohol consumption in younger cohorts
coincided with delayed cortical maturation during early visits and/or
severe neurotoxic effects during late visits. Relatedly, Squeglia et al.
[6] reported faster grey matter reduction only in adolescents
engaged in heavy drinking. Studies using anatomically defined ROIs
obscured the underlying heterogeneity in age-related cortical
thinning associated with synaptic pruning, but were revealed by
unsupervised machine learning. Indeed, cortical areas that undergo
marked pruning during adolescence are particularly susceptible to
the effects of heavy alcohol consumption [49].

Through rapid remodeling of the brain, frontal- and parietal-
lobe gray matter reaches maximum size at 12 years in males and
10.2–11 years in females. The maximum size of other brain
regions, such as the temporal-lobe gray matter, is achieved at 16.5
years for males and 16.7 females. While new synaptic connections
are made, others are pruned, a process shaped by experience and
environment, to make the adolescent brain extraordinarily
versatile. In this context, while research in humans has established
cognitive, behavioral, and gross volume effects of alcohol on the
adolescent brain, only animal models have mapped the cellular,
synaptic, and molecular mechanisms underlying this maturation.
Although direct evidence of neurotoxicity in adolescents is lacking
in humans, the neurotoxic effects of alcohol on the adolescent rat
brain are found in frontal anterior, olfactory, and anterior
perirhinal cortices. Intermittent alcohol intake in rats produces
neuroinflammation, disrupted neurogenesis, and epigenetic

Table 4. Interaction effects among drinking class, within-person age change, and cohort-age per NMF-derived pattern.

Pattern β SD df t p q Adj. R2

Drinking class x within-person age change interaction1

1 0.031 0.075 1615.1 0.416 0.678 0.790 0.909

2 −0.033 0.073 1613.5 −0.458 0.647 0.790 0.895

3 0.126 0.086 1618.6 1.475 0.140 0.327 0.897

4 0.096 0.083 1616.5 1.156 0.248 0.433 0.890

5 −0.002 0.058 1615.8 −0.033 0.973 0.973 0.898

6 0.162 0.065 1614.1 2.480 0.013 0.093 0.901

7 −0.073 0.046 1609.2 −1.592 0.112 0.327 0.916

Drinking class x cohort-age interaction2

1 0.237 0.036 1687.5 6.629 <0.001 <0.001 0.912

2 0.135 0.035 1686.5 3.887 <0.001 <0.001 0.896

3 0.238 0.041 1702.9 5.817 <0.001 <0.001 0.899

4 0.249 0.040 1700.3 6.271 <0.001 <0.001 0.893

5 0.134 0.028 1699.3 4.847 <0.001 <0.001 0.899

6 0.213 0.031 1693.4 6.867 <0.001 <0.001 0.903

7 0.031 0.022 1663.6 1.386 0.166 0.166 0.916

Within-person age change x cohort-age interaction3

1 0.161 0.012 1597.5 13.339 <0.001 <0.001 0.919

2 0.046 0.012 1596.8 3.757 <0.001 <0.001 0.896

3 0.167 0.014 1598.5 11.990 <0.001 <0.001 0.906

4 0.153 0.014 1596.5 11.233 <0.001 <0.001 0.898

5 0.106 0.009 1596.1 11.227 <0.001 <0.001 0.905

6 0.140 0.011 1595.1 13.340 <0.001 <0.001 0.910

7 0.012 0.008 1597.0 1.534 0.125 0.125 0.916

Drinking class x within-person age change x cohort-age interaction4

1 0.161 0.024 1621.7 6.810 <0.001 <0.001 0.912

2 0.065 0.023 1620.7 2.842 <0.001 <0.001 0.895

3 0.182 0.027 1626.5 6.786 <0.001 <0.001 0.900

4 0.166 0.026 1624.4 6.347 <0.001 <0.001 0.893

5 0.094 0.018 1623.9 5.152 <0.001 <0.001 0.899

6 0.163 0.020 1621.1 8.002 <0.001 <0.001 0.904

7 0.011 0.015 1614.6 0.725 0.469 0.469 0.915

Note: regression models are
1. y ~ cohort-age + within-person age change * drinking class + sex + ethnicity + SES+ family history of AUD density + life trauma+ (1|participant ID);
2. y ~ within-person age change + cohort-age * drinking class + sex + ethnicity + SES+ family history of AUD density + life trauma+ (1|participant ID);
3. y ~ within-person age change * cohort-age + drinking class + sex + ethnicity + SES+ family history of AUD density + life trauma+ (1|participant ID);
4. y ~ within-person age change: cohort-age: drinking class + sex + ethnicity + SES+ family history of AUD density + life trauma+ (1|participant ID).
y is the mean cortical thickness of a pattern. β, fixed-effect regression coefficient; SD standard deviation, df degree of freedom; t, t value; p, uncorrected p value;
q, FDR corrected p value. Adj. R2, adjusted R2.
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modifications, leading to neural death in the prefrontal cortex
with lasting behavioral consequences [50]. Indeed, some adoles-
cent neural disruptions persist into adulthood [30].
The NCANDA longitudinal design enabled us to investigate age-

related developmental changes during adolescence coupled with
the effects of alcohol use. Furthermore, the ALD permits more
rapid enrollment (larger pool of potential participants), faster
study completion (wider age range at baseline and each
timepoint), and suffers from less study dropout (shorter study
duration), than a single cohort design. The advantages of ALD are
accrued because all available individuals in the specified age-
range are accepted. By contrast, the single cohort longitudinal
design requires all participants are the same age. Random and
fixed cohort effects in our regression modeling addressed possible
bias introduced by multiple cohorts. However, inherent missing
data is a limitation of the design where each subject’s measure-
ment schedule covers only a part of the age-range of interest. This
may limit inferences if an age-cohort effect is present that leads to
systematic differences between subjects born at different times.
Our analysis of longitudinal vertex-wise data posed several

challenges in the context of NMF. The straightforward application
of NMF to 2D data (vertices, subjects) from a cross sectional study
posed challenges for the analysis of 3D data (vertices, subjects,
timepoints) from a longitudinal study. Namely, the factorization of
3D matrices is problematic because 3D space is a continuum,
which means the non-negative representation of 3D coordinates
is non-trivial [51]. An alternative approach was to reduce
dimensionality at each vertex by using the slope of the line fitted
to the longitudinal cortical thickness measurements. However, this
presented challenges to interpreting negative vs positive slopes,
and noise associated with a line fitted to only 4 data points. Thus,
we elected to use 2D matrix factorization to identify cortical
thickness patterns only at the baseline visit. Then the longitudinal
change in cortical thickness of these vertex patterns was assessed
in relation to age, alcohol use, and other regressors. A potential

limitation of our approach is that age of alcohol use may impact
regions outside the vertices contained in the 7 patterns that we
interrogated. Furthermore, our results for the regressors sex,
cumulative trauma, self-identified ethnicity, SES, and family history
of AUD were negative within the 7 patterns, it is possible these
regressors may be significantly associated with vertices outside
these 7 patterns. Other NCANDA studies found that baseline PTSD
symptoms, predicted a longitudinal course of moderate to heavy
drinking [52] and cumulative lifetime trauma and adolescent
alcohol use interact to affect the volume and trajectory of
hippocampal and amygdala subregions [22]. It is possible that
specific variables in adolescent drinkers, such as sex and trauma
have stronger effects on cortical volume, surface area, and
subcortical volume [22] than on cortical thickness. Studies
reported thicker cortices in adolescent female binge drinkers
(n= 14) than female controls (n= 15), while thinner cortices in
adolescent male binge drinkers (n= 15) than male controls
(n= 15) in frontal pole, pars orbitalis, medial orbital frontal, and
rostral anterior cingulate areas [13], and thinner medial and lateral
rostro-frontal and superior parietal cortices in adolescents with a
family history of AUD (n= 93) than controls (n= 95), especially
among the youngest adolescents [53]. Interactions between
alcohol consumption and sex [13], or family history of AUD [53]
in relatively small samples with specific clinical and demographic
attributes may not generalize to our much larger and more
representative sample. Large-scale studies of adolescent cortical
development that assess the role of alcohol with other environ-
mental insults such as childhood trauma, poverty, drug use,
neighborhood deprivation, and education may prove to be
informative.

Strengths and limitations
The first limitation is that no global minimum of the cost function
is guaranteed with NMF because only local minima are provided
[54]. Consequently, several NMF runs are necessary to avoid

Fig. 2 Three-way interactions between drinking class, cohort-age and within-person age change. The rates of within-person age-related
cortical thickness declines are similar across age cohorts in no/low drinkers, faster in the younger cohort and slower in the older cohort in
moderate drinkers, and fastest in the younger cohort and slowest in the older cohort in heavy drinkers for all patterns (β-values= 0.065–0.182,
t-values= 2.842–8.002, q-values < 0.01) except for pattern 7 (β-value= 0.011, t-value= 0.724, q-value= 0.469). The x-axis represents the within-
person age change in years.
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getting stuck in a local minimum. Second, although cannabis use
occurred at extremely low levels in our sample, it is associated
with accelerated cortical thinning, but we did not control for
cannabis use [55]. Third, we analyzed the first four years of
NCANDA data, but another time point became available as we
concluded data analyses. Adding this data will temporally expand
the observation of each developmental cohort and may help
define longer-term sequelae. Fourth, the association of brain
changes with specific cognitive or behavioral impairments that
accompany adolescent alcohol use were not investigated. Fifth,
while we did not correlate the NMF patterns with cognitive and
behavioral measurements directly, the behavioral and cognitive
impairments associated with drinking in this sample are well
documented. A detailed account is available in Sullivan et al. [56].
Briefly, the heavy drinking group from NCANDA performed
significantly below the no/low-drinking group on balance
accuracy (postural stability), general ability (vocabulary, math
calculation, word reading), attention, episodic memory, emotion
(recognition), faster motor speed at the expense of diminished
accuracy, and delay discounting performance, which showed poor
impulse control in the heavy drinkers regardless of age. Finally, our
analysis was limited to cortical thickness data, but did not examine
cortical surface area or white matter. Future studies that apply
multi-modal imaging may discover novel effects of alcohol in the
adolescent brain to inform treatment development.
Our study has several strengths relative to previous investiga-

tions. First, we applied unsupervised machine learning to achieve
clustering, feature extraction, source separation, and data dimen-
sion reduction, all of which enhanced statistical power. Second,
we investigated three times more participants than any previous
study. Third, we utilized ComBat to harmonize cortical thickness
measurements across five NCANDA sites to preserve variance
associated with neurobiologically and behaviorally relevant
variables [25, 57]. Finally, we leveraged longitudinal data with
four yearly timepoints, which is extraordinarily rare among
neuroimaging studies of psychiatric conditions.

CONCLUSIONS
Unsupervised machine learning capable of feature extraction and
source selection can identify spatial patterns of vertex-level cortical
thickness variation. Age-related cortical thinning, which is typical
of the adolescent neurodevelopment process, occurs more rapidly
in younger individuals and less rapidly in older individuals who
engage in heavy alcohol consumption as compared to low/non-
drinking adolescents. Early adolescent binge drinking is negatively
associated with profoundly consequential processes of neuroma-
turation. Future studies are certain to elucidate their effects on
wide-ranging processes of cognitive, emotional, and social
learning.
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