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Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction
where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown
promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief
introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and
relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the
neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic
factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric
disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer’s disease, and diabetes.
Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
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INTRODUCTION
In this review, we begin by providing an overview of the
fundamentals of the transcranial magnetic stimulation (TMS)
technique and its various forms, with a focus on TMS protocols
that enable measures of brain plasticity, i.e., an intrinsic capacity
for use-dependent change that is essential for normal learning
and development [1]. We then focus on alterations of TMS-derived
plasticity measures in common neuropsychiatric disorders includ-
ing autism spectrum disorder, schizophrenia, depression, trau-
matic brain injury, Alzheimer’s disease, and diabetes. Our goal in
discussing these disorders and in the dedicated section on
therapeutics is not to cover the entire array of therapeutic TMS
studies in each disorder but to focus on the implications of TMS
measures of plasticity and brain states for diagnostic, predictive,
and therapeutic purposes. We anticipate that the reader will
appreciate how brain plasticity can be measured by TMS and the
potential neural substrates of TMS-derived indices of brain
plasticity. We will also review factors that can influence TMS
plasticity measures, how TMS can be combined with other
techniques such as EEG, and how the corresponding TMS
plasticity measures can be obtained in translational (preclinical)
studies in rodents.

FOUNDATIONS OF THE TMS TECHNIQUE
TMS is a non-invasive brain stimulation technique first proposed
by Barker et al. [2] based on the principles of electromagnetic

induction discovered by Faraday in the 19th century [3]: a brief
and rapidly changing, high-intensity electric current (the TMS
pulse) is passed through loops of conducting wire within a
protective case and held against a given area of the scalp. The
change in the electrical current induces a powerful fluctuating
magnetic field that readily penetrates the skull and can induce a
second electric current (in the opposite direction of the original
current) within the excitable tissues of the brain [4, 5]. When
delivered with sufficient intensity over the cortex, the induced
current depolarizes cortical neuronal assemblies located directly
underneath the coil as well as in nearby and remote brain regions,
thereby generating neurophysiological and behavioral effects
[6–9]. To evoke activity in the human brain, the initial current
typically needs to be in the order of 4–8 kA with a peak-to-peak
rate of change of 100–200 μs, which induces an electric current
perpendicular to the coil surface and in the order of 7–15mA/
cm−2 [3, 10]. The intensity of the induced current is proportional
to that of the original current and attenuates with distance by
bone, air, tissues, subdural and subarachnoid cerebrospinal fluid,
and alterations in the cortical structure [11, 12]. TMS is considered
safe when applied according to the recommended safety and
application guidelines endorsed by the International Federation of
Clinical Neurophysiology [13, 14].

Single-pulse and repetitive TMS
Single-pulse TMS (spTMS) protocols consist of discharges of single
pulses often separated by 4–8 s intervals. Applying a TMS pulse

Received: 31 May 2022 Revised: 1 September 2022 Accepted: 2 September 2022
Published online: 5 October 2022

1Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.
2F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 3Berenson-Allen Center for Noninvasive Brain Stimulation, Division of
Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 4Center for Neuroscience and Regenerative
Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. 5Department of Neurology, Harvard Medical School, Boston, MA, USA.
6Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA. 7Guttmann Brain Health
Institute, Institut Guttmann, Barcelona, Spain. ✉email: ali.jannati@childrens.harvard.edu; apleone@hsl.harvard.edu

www.nature.com/npp

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01453-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01453-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01453-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-022-01453-8&domain=pdf
http://orcid.org/0000-0003-0826-1275
http://orcid.org/0000-0003-0826-1275
http://orcid.org/0000-0003-0826-1275
http://orcid.org/0000-0003-0826-1275
http://orcid.org/0000-0003-0826-1275
https://doi.org/10.1038/s41386-022-01453-8
mailto:ali.jannati@childrens.harvard.edu
mailto:apleone@hsl.harvard.edu
www.nature.com/npp


over the primary motor cortex (M1) can activate the corticospinal
tract and associated neural circuits and cause a twitch in the
muscle(s) represented by the stimulated brain region [2, 15, 16].
The electrical activity associated with the muscle twitch can be
recorded in the form of a motor evoked potential (MEP) via surface
electromyography (EMG). Applying a TMS pulse to the primary
visual cortex can induce a percept such as a brief flash of light,
called phosphenes, in the location of the visual field retinotopically
represented by the stimulated visual cortex [17–19] or posterior
parietal cortex [20]. Higher cognitive functions such as attention,
memory, language, etc. can also be probed by applying TMS
pulses to higher cortices and associated networks, transiently
disrupting physiological processes and/or behavioral activities
subserved by the stimulated brain regions [8, 21–26]. Importantly,
beyond local effects, TMS can have remote neurophysiological or
behavioral effects in regions that have structural (white-matter)
connectivity [27, 28] or functional connectivity [29–33] with the
targeted brain region.
The motor cortex has been the most common targeted region

in TMS studies conventionally because of its objective and easily
obtainable neurophysiological output. The TMS-induced MEP is
often characterized by its amplitude and latency relative to the
onset of spTMS, reflecting the functional integrity of the
corticospinal tract. The magnitude of the MEP provides a measure
of motor cortical excitability, or the balance between cortical
excitation and inhibition (E:I), two opposing forces that control the
activity in the cortex [34, 35]. The latency of the MEP provides a
measure of conduction time along central corticospinal motor
pathways.

TMS also has been used in other forms, including paired-pulse
(ppTMS) and repetitive TMS (rTMS) at specific intensities,
frequencies, and patterns or bursts of stimulation (Fig. 1) to
probe, modulate, or restore activity in the brain [8, 14]. rTMS
protocols involve combinations of more than two pulses or bursts
of stimulation delivered at a fixed frequency of 0.5–20 Hz, with or
without interruption by stimulation-free intervals, for durations
from several seconds up to 30–40min. rTMS can modulate cortical
excitability beyond the stimulation period and can be used in both
motor and non-motor brain regions, with local and remote effects
on brain activity [6, 8, 22, 36]. When applied to M1, high-frequency
(≥5 Hz) rTMS protocols often increase cortical excitability, as
measured by the increased size of induced MEPs within and
following the rTMS train [37, 38]. In contrast, low-frequency
(≤1 Hz) rTMS often decreases cortical excitability as measured by
the post-rTMS decrease in MEP size [38, 39]. However, it is
important to emphasize the substantial interindividual variability
of such modulatory effects of rTMS [40–42]. It is also critical to
recognize that the effects vary depending on the state of the
cortex at the stimulation time. Such state-dependency effects [43]
can in turn be used to increase the specificity of the rTMS
modulatory effects [44].

Paired associative stimulation
Paired associative stimulation (PAS) consists of repeated pairing
(e.g., 90–200 pairs) of stimuli, either peripheral-cortical (pcPAS) or
cortico-cortical (ccPAS). In pcPAS, a peripheral electrical pulse
delivered to a nerve of the hand (commonly the median nerve at
the wrist), which activates the primary somatosensory cortex (S1),
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Fig. 1 Common metrics of applying TMS to motor cortex. a Resting motor threshold (rMT) for the APB muscle is calculated by identifying
the minimum stimulus strength, measured in percent machine output (% MO), that evokes an MEP of a fixed amplitude (typically ≥50 μV) in
the APB at rest in a majority of trials. Stimulus strength is indicated in the left panel, with resulting MEPs shown in the right panel, where red
arrows indicate the time of stimulation and percent stimulator output is proportional to the arrow length. b ppTMS paradigms where a
subthreshold conditioning stimulus (short red vertical line) followed by a suprathreshold test stimulus (longer red vertical line). At short
interstimulus-intervals (ISIs) (1–5ms) short interval intracortical inhibition (SICI) is seen with inhibition of the test MEP by the antecedent
conditioning stimulus. At longer ISIs (10–20ms), test MEP amplitude is enhanced relative to the control MEP, such that ICF is seen. c Still longer
ISIs (50–300ms) are applied with two suprathreshold stimuli in LICI protocols where the MEP resultant from the test stimulus is predictably
lower in amplitude than the preceding MEP resulting from the conditioning stimulus. ICF intracortical facilitation, ISI interstimulus interval,
LICI long-interval intracortical inhibition, ppTMS paired-pulse transcranial magnetic stimulation, rTMS repetitive transcranial magnetic
stimulation, spTMS single-pulse transcranial magnetic stimulation (adapted from ref. [333]).
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is followed by delivering a single TMS pulse over the correspond-
ing hand representation in the contralateral M1 [45]. This S1-M1
coupling can modulate corticospinal excitability as reflected by a
change in MEP amplitude [45, 46]. The characteristics of pcPAS
modulatory effects are similar to those of Hebbian synaptic
plasticity [47], including the dependency of the direction of MEP
modulation on the interstimulus interval (ISI) between the
peripheral stimulation and the cortical TMS pulse. Following a
temporally asymmetric Hebbian rule [48], shorter intervals (e.g.,
ISI= 10ms or PAS10) typically induce MEP suppression, whereas
longer intervals (e.g., ISI= 25ms or PAS25) induce MEP facilitation
[45, 46, 48, 49]. The aftereffects of pcPAS develop rapidly (often
within 30 mins), are relatively long-lasting (up to 60 min post-PAS),
reversible, and cortically generated [45, 46, 50]. The effects of
PAS10 and PAS25 are believed to be mediated by LTD- and LTP-
like mechanisms of plasticity, respectively [45, 48, 50]. A variant of
PAS known as PASN20+ 2 commonly involves 225 pairs (at a rate of
0.25 Hz) of median-nerve stimulation followed by delivering a
single TMS pulse to the hand area of the contralateral M1 after an
ISI equal to the N20 latency of the individual somatosensory-
evoked cortical potential plus 2 ms [46, 51]. Similar interactions
between a peripheral and a cortical stimulus can be induced by
timing the interval between the two stimuli so that interaction
takes place at the spinal level rather than the somatosensory
cortex (spinal associative stimulation or SAS) [52].
In ccPAS, pairs of TMS pulses are delivered to two brain regions

at an appropriate ISI (e.g., 200 paired pulses with an ISI of 10 ms),
which can modulate inter-regional coupling according to spike-
timing dependent plasticity mechanisms, including LTP-like
plasticity [53, 54]. ccPAS can also induce behavioral changes in
motor and visual systems [55]. Given an appropriate ISI, the
plasticity effects of ccPAS follow the principles of Hebbian
plasticity [56]. The TMS pulse over the first targeted brain region,
e.g., the left dorsolateral prefrontal cortex (DLPFC), causes spikal
activity to reach a second, functionally connected brain region,
e.g., the left inferior parietal lobule (IPL). If a second TMS pulse is
delivered to the left IPL at an appropriate time, the DLPFC-IPL
connection is strengthened via an LTP-like mechanism. The
repeated pairing of such two TMS pulses reinforces the synaptic
efficacy between the two targeted brain regions, giving rise to the
ccPAS aftereffects. Beyond modulating inter-regional connectivity,
ccPAS can also be used to modulate network-to-network
connectivity [57].

Integration of TMS with EEG to assess non-motor cortical
regions
Human electroencephalography (EEG) [58, 59] is another non-
invasive technique that enables the assessment of neural activity
with millisecond temporal resolution by recording electrical fields
from the scalp [60]. EEG reflects the activities of cortical neurons
aligned perpendicular and radial to the scalp. The spatial and
temporal summation of excitatory and inhibitory postsynaptic
potentials of those neurons give rise to the EEG signal. When one
or more large neuronal populations operate in synchrony, either
spontaneously or in response to an event or external stimulation, a
relatively strong electric field is generated and can be recorded via
scalp EEG [61].
The combination of TMS and EEG techniques (TMS-EEG) is a

powerful technique that enables non-invasive, in vivo assessment
and modulation of cortical excitability, connectivity, and plasticity
across motor and non-motor brain regions and networks [62–68].
One can also use the EEG oscillations to temporally coordinate the
TMS pulse with ongoing or evoked brain activity in an effort to
optimize brain states [69–71]. Thus, TMS-EEG can provide insights
into the functional dynamics of the brain and brain-behavior
relationships across the lifespan in healthy and clinical populations
[29, 30, 32, 57, 64, 65, 72–78]. TMS-EEG studies have shown great
potential for diagnostic, predictive, prognostic, and therapeutic

purposes in neurology and psychiatry [68, 77–85]. Before such
uses of this technique can become widespread, however, there
are important aspects of TMS-EEG that need to be clarified,
including to what extent TMS-evoked EEG potentials (TEPs) are
peripherally evoked rather than direct cortical responses to the
TMS pulse [86, 87].

Neuronavigated TMS for spatial precision
Neuronavigated TMS involves the use of magnetic resonance
imaging-(MRI-)based frameless stereotaxy for consistent and
reliable intra- and inter-session coil positioning that improves
the spatial precision and reliability of TMS delivery [88, 89]. The
use of neuronavigation can also improve the robustness of
behavioral and neurophysiologic effects of TMS in healthy and
clinical populations [90–92].

Theta-burst stimulation
A special form of patterned rTMS referred to as theta-burst
stimulation (TBS) mimics neural oscillations considered to be
associated with a type of non-Hebbian plasticity and typically
consists of 50 Hz bursts of triplet pulses repeated at 5 Hz for a total
of 600–1800 pulses [93, 94]. As with other forms of rTMS, TBS
protocols can be used to induce cortical plasticity in health and
disease and to modulate neural activity for research and clinical
purposes [95, 96].
The two commonly used variants of the TBS protocol include (1)

190 s of stimulation in a 2 s on, 8 s off pattern called intermittent
theta-burst stimulation (iTBS); and (2) 40 s of continuous stimula-
tion called continuous theta-burst stimulation (cTBS). Studies of
iTBS and cTBS of the primary motor cortex have found they
typically produce lasting increased and decreased cortical
plasticity, respectively, that often exceed those obtained with
standard rTMS protocols [97–99].

TMS-TBS MEASURES OF MECHANISMS OF PLASTICITY
Combining plasticity-inducing rTMS protocols such as TBS with
pre- and post-rTMS application of single TMS pulses allows for
investigating the mechanisms of brain plasticity [1]. Plasticity-
inducing protocols can have behavioral effects [6] and may be
utilized for therapeutic purposes [100–103]. When applied to M1,
iTBS can induce MEP facilitation by ~35% for up to 60min,
whereas cTBS can induce MEP suppression by ~25% for up to
50min post-TBS [97].
The facilitation and suppression of MEPs by iTBS and cTBS

protocols, respectively, are considered to involve mechanisms
similar to long-term potentiation (LTP) and long-term depression
(LTD), respectively (Fig. 2) [93, 104, 105]. As such, the return of
post-TBS MEP amplitudes to their baseline levels is considered a
neurophysiologic index of the efficacy of the mechanisms of
cortical plasticity [64, 98, 106–108]. However, as discussed below,
it is important in this context to consider the substantial inter- and
intraindividual variability of the modulatory effects of rTMS and
TBS, and their state-dependent effects [99].

Neural substrates of TMS-TBS measures of plasticity in
humans
Three main lines of evidence support the notion that aftereffects
of rTMS protocols involve mechanisms of synaptic plasticity. First,
pharmacological characteristics of rTMS-induced changes in MEP
amplitude are similar to those established for LTD or LTP of
glutamatergic synapses in animal studies and drugs that modulate
the function of critical receptors/channels for plasticity, e.g., N-
methyl-D-aspartate (NMDA) receptors and Ca2+ channels, modify
the TMS-induced plasticity effects [109]. Several pharmacological
studies have shown that TMS-TBS measures of plasticity involve
mechanisms of gamma-aminobutyric acid- (GABA-)ergic and
NMDA-type glutamatergic synaptic plasticity [104, 110–118].
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The second line of evidence comes from invasive epidural
recordings of efferent corticospinal neurons in patients with
implanted electrodes [119–123] (Fig. 3). A TMS-evoked corticospinal
volley is often composed of aD-wave produced by direct activation of
cortical layer-V pyramidal tract neurons (PTNs) and/or one or more I
waves, which reflect indirect (likely via presynaptic interneurons) and
synchronous activation of PTNs [16, 17, 124, 125]. These data have
given rise to different theoretical cortical models of TMS–brain
interactions [123, 126, 127]. cTBS has been shown to suppress the I1
wave while leaving the late I waves mostly unaffected [121],
suggesting that cTBS exerts its effects mainly on the synapse
between the inputs responsible for the I1 wave and the PTNs [123]. In
contrast, iTBS induces a selective enhancement of late I waves while
leaving the I1 wave unaffected [128], suggesting that iTBS selectively
modulates the bursting cells of layers 2 and 3 that project upon PTNs
and generate the later I waves [123]. The findings that TBS mainly
alters I waves rather than the D-wave indicate that TBS effects occur
trans-synaptically.
The third line of evidence in support of the role of synaptic

plasticity in rTMS aftereffects comes from the observed interaction
between the effect of TMS protocols and learning that is compatible
with the common rules of synaptic plasticity, including (a)
metaplasticity, i.e., modulation of synaptic plasticity by prior synaptic
activity [129] and (b) reversal of previously induced synaptic
plasticity [130]. Studies using priming stimulation by TMS have
found evidence for Bienenstock-Cooper-Munro (BCM) homeostatic
metaplasticity [131], i.e., reductions of corticospinal excitability by
one TMS protocol causing stronger facilitatory effects by a
subsequent protocol, in TBS [132, 133] and between different
non-invasive brain stimulation protocols [134, 135]. The findings
that rTMS aftereffects interact between protocols and motor- and

cognitive learning indicate that rTMS effects are involved in motor
and cognitive processes related to plasticity [109].
However, it is worth remembering that LTP and LTD refer to

very specific neurophysiologic phenomena at the level of
individual synaptic connections, and the changes induced by
TMS or TBS are certainly not limited to specific individual synaptic
terminals. Rather, the modulatory effects of rTMS or TBS likely
involve neurons and glia, along with intracortical and cortico-(sub)
cortical loops [123, 136–139].

Variability of TMS-TBS measures of plasticity
In recent years, there has been an increased focus on the degree
of inter- and intraindividual variability in TMS-TBS measures of
plasticity and the factors contributing to such variability
[94, 99, 140–156].
Some of the factors identified as potential contributors to the

interindividual variability in TBS measures of plasticity include
differentially activated intracortical networks [144], functional
connectivity in the motor system [94, 148], state-dependent
factors and genetic polymorphisms [98], stimulation intensity
[153], the target muscle, and baseline MEP amplitude [99].
Several factors can potentially influence the intraindividual

variability of TBS measures of plasticity including age [156],
genetic polymorphisms [151, 153], phase of the menstrual cycle
across visits [157, 158], changes in the blood glucose levels and
caffeine intake across visits [159–161], amount and quality of sleep
the night before each visit [162, 163], intensity and duration of
exercise before each visit [164, 165], the intervisit interval [151],
the time of day [166], the use of neuronavigation [88, 89], changes
in baseline MEP amplitude across visits [99, 151], the use of robotic
arms such as the TMS-Robot (Axilum Robotics, Schiltigheim,
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Fig. 2 cTBS and iTBS measures of plasticity. Evaluation of corticospinal excitability by comparing MEPs recorded from the peripheral muscle
in response to a single pulse to M1. TBS involves applying triplet pulses at 50 Hz repeated at intervals of 200ms. MEPs are recorded at baseline
and following either cTBS or iTBS, providing an index of local cortical plasticity. Following iTBS, MEPs typically show increased amplitude for
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iTB intermittent theta-burst stimulation, LTD long-term depression, LTP long-term potentiation, M1 primary motor cortex, MEP motor evoked
potential, TBS theta-burst stimulation (adapted from ref. [106]).
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France), which can reduce trial-to-trial variability of MEP amplitude
[167], and the use of closed-loop systems that time the delivery of
TMS pulses based on EEG-derived indices of brain states [69–71].
Recent studies indicate that the modulatory effects of TBS may be

overestimated [140, 154, 168]. One possible reason for this lack of
reliable effects may be applying TBS at intensities that are insufficient
to induce consistent plasticity across individuals. TBS is commonly
applied at a subthreshold intensity, i.e., 80% of individual activemotor
threshold (aMT). There is some evidence suggesting that determining
the TBS intensity based on the individual resting motor threshold
(rMT), e.g., 70% of rMT, may enhance the consistency of TBS
aftereffects [169]. However, in that context, it is important to
remember that the modulatory effects of TBS depend on whether
or not there is a contraction of the target muscle before the onset of
the stimulation [170]. Moreover, recent clinical studies have found
robust therapeutic TBS effects at substantially higher stimulation
intensities, i.e., at 90–120% of individual RMT to the left DLPFC for
treatment of major depressive disorder [171, 172]. Determining the
precise role of stimulation intensity and other potential factors
influencing the robustness of TBS aftereffects within and across
individuals requires further systematic investigations.

Effects of age in TMS-TBS measures
A cross-sectional study of individuals aged 19–81 found that cTBS-
induced motor cortical plasticity linearly declined across the

lifespan, suggesting that the efficiency of cTBS-induced LTD-like
plasticity in the motor cortex is progressively reduced with aging
[173]. In contrast, iTBS-induced LTP-like plasticity was generally
found to be less impacted by aging [128, 174]. Enhanced priming
of iTBS aftereffects with preceding cTBS was observed in younger
adults but not older adults, indicating reduced homeostatic
metaplasticity with aging [175].
A longitudinal study of the effects of aging on iTBS-induced

plasticity as measured by changes in resting-state functional
connectivity (rsFC) of the default-mode network (DMN) found
younger adults (age ≤ 30 yrs) showed iTBS increased rsFC in distal
DMN regions whereas iTBS aftereffects in older adults (age ≥ 60
yrs) were more local and limited to proximal DMN regions [176].
Importantly, older adults with “young-like” functional responses to
iTBS had greater structural integrity in the brain (as measured by
diffusion tensor imaging), higher education, and superior cogni-
tive performance at baseline as well as less cognitive decline after
3 years [176]. These results suggest that iTBS measures of plasticity
as measured by changes in rsFC can provide an index of the
brain’s resilience in aging and enable the assessment of network
plasticity, which may constitute a neurophysiological substrate of
cognitive reserve [177, 178].
A large-scale analysis of individual participant data from several

TBS studies found a small, non-significant linear attenuation of
iTBS- and cTBS-induced plasticity with age [99]. However, age had
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a significant non-linear effect, with young participants exhibiting
increased iTBS-induced facilitation, and older adults exhibiting a
steady drop-off in facilitation [99]. Because the data used in that
analysis included very few participants in the 35–50 age group,
further systematic investigations of changes in TBS measures of
plasticity across the lifespan with adequate sampling from all age
groups are warranted.

Effects of genetic variability in TMS-TBS measures
Genetic factors clearly influence the effects of TMS [179]. Brain-
derived neurotrophic factor (BDNF) is one of the most important
neurotrophins critically involved in the NMDA-type glutamate
receptor-dependent LTP [180] and LTD [181]. The common single-
nucleotide polymorphism (SNP) Val66Met in the BDNF gene
influences the intracellular transport and packaging of the LTD-
associated precursor peptide of BDNF (pro-BDNF), while the
regulated secretion of the mature (m)BDNF protein is involved in
LTP [182, 183].
Several studies have shown the effects of BDNF Val66Met

polymorphism on TMS measures of plasticity in humans, including
reduced training-dependent facilitation of MEPs [184, 185],
reduced cTBS-induced suppression [141, 153], and reduced iTBS-
induced facilitation of MEPs [141, 143, 185, 186]. Mori et al. [187]
reported that individuals carrying the G allele in the GRIN2B
rs1805247 SNP of the NR2B subunit gene of the NMDA receptor
showed greater iTBS-induced cortical plasticity.
Other genetic influences on TMS measures of plasticity include

reduced efficacy of the mechanism of cortical plasticity due to the
presence of the ε4 allele in the apolipoprotein E (ApoE) gene
[188–191] and reduced cTBS-induced suppression of MEPs in
healthy older adults with the Val158Met SNP in the catechol-O-
methyltransferase (COMT) gene [192]. The results from these small
studies need to be replicated in larger studies before they can be
considered reliable genetic determinants of TBS-induced plasticity.

TMS PLASTICITY MEASURES IN DISEASE
Autism spectrum disorder
Rodent models of autism spectrum disorder (ASD) and studies on
genetic syndromes with a high prevalence of ASD symptoms in
humans indicate altered mechanisms of synaptic plasticity, includ-
ing use-dependent changes in synaptic strength [193–198] and
aberrant LTP and LTD of excitatory synaptic strength [199–206].
Studies in adults with ASD have found greater and longer-

lasting TBS-induced changes in MEP amplitude in adults with ASD
compared to neurotypical (NT) adults, indicating an exaggerated,
hyperplastic response to TBS in ASD [107, 133, 207]. Similarly,
children and adolescents with high-functioning ASD (HF-ASD)
show abnormally greater facilitatory responses to cTBS than
typically developing children [208]. Moreover, children and
adolescents with HF-ASD show a maturational trajectory of cTBS
measures of plasticity, in which the extent or the maximum
amount of cTBS-induced suppression of MEPs increases linearly
with age [208, 209]. These findings indicate the utility of cTBS
measures of cortical plasticity as diagnostic biomarkers for
individuals with ASD across the lifespan [210].

Schizophrenia
A pilot M1 cTBS study on five early-onset, first-episode,
antipsychotic-naive schizophrenia patients found the duration of
cTBS-induced aftereffects was noticeably shorter in patients with
schizophrenia compared with their age- and gender-matched
counterparts [211]. This finding suggested that the efficacy of the
mechanisms of cortical plasticity is already reduced in the early
stages of schizophrenia. A more recent study [212] compared M1
cTBS aftereffects in 10 schizophrenia patients under treatment by
antipsychotics with 10 healthy controls and found fewer schizo-
phrenia patients exhibited the expected plasticity response

induced by cTBS compared to healthy controls. These results
suggest the reduced efficacy of the mechanism of plasticity
induced by cTBS among patients with schizophrenia [212].

Depression
TMS studies in patients with depression have found evidence of
decreased cortical excitability in the frontal cortex [213–219],
interhemispheric imbalances in prefrontal and motor cortices in
the form of reduced excitability in the left hemisphere
[213–216, 219] or increased excitability in the right hemisphere
[220]. One study found that 1-Hz rTMS applied to the left M1
expectedly reduced cortical excitability in that hemisphere, but
did not modulate the excitability in the right hemisphere,
indicating loss of normal interhemispheric modulation in depres-
sion [221]. Subsequent studies found applying high-frequency
rTMS to the left prefrontal cortex would increase cortical
excitability (as indexed by lowered rMT) in the ipsilateral hemi-
sphere [222] or reduce the interhemispheric difference in
excitability [216] and was associated with lasting clinical
improvements [223].
rTMS studies have found evidence of reduced modulation of

cortical plasticity in patients with major depressive disorder
(MDD), including reduced post-exercise MEP facilitation
[224, 225], and reduced plasticity induced by PAS [226], both in
the motor cortex [227] and in the prefrontal cortex [228].
Consistent with these findings, drug-free patients with MDD
showed reduced iTBS-induced facilitation of MEPs compared to
healthy controls, suggesting that LTP-like mechanisms mediated
by the glutamatergic NMDA receptor pathway are impaired in
patients with MDD [229].
Interestingly, recent studies have found that the extent of MEP

modulation induced by 10-Hz rTMS applied to M1 predicts the
clinical response to the standard 10-Hz rTMS treatment applied to
the DLPFC in depressed patients [230, 231]. If confirmed in larger
multisite studies, these findings can help stratify patients with
depression based on their likelihood of positive response to 10-Hz
rTMS, support physicians in choosing the best therapeutic
approach, and assist TMS clinics in prioritizing and allocating their
resources. Accelerated protocols using iTBS instead of 10-Hz rTMS
can alleviate some of these concerns, allowing for more eligible
patients to be treated within the same time period and using
comparable human and equipment resources [171, 172]. For
example, the Stanford Accelerated Intelligent Neuromodulation
Therapy (SAINT) protocol delivered iTBS at 90% rMT in 10 daily
sessions over 5 consecutive days to an individually targeted region
in the left DLPFC based on the strongest resting-state functional
connectivity (negative correlation) with the subgenual anterior
cingulate cortex and found remission in 90% of patients [172].

Traumatic brain injury
Traumatic brain injury (TBI) can cause several neurological
symptoms including chronic pain [232], mood and sleep
disturbances [233, 234], as well as increased susceptibility to
seizures and post-traumatic epilepsy [235, 236], which can be
attributed to impaired cortical inhibition. This notion is supported
by animal studies that have found a post-TBI shift of cortical E:I
ratio toward excess excitation due to loss of GABA-mediated
synaptic inhibition and reduction in GABA-synthesizing enzymes
in the cortical inhibitory synapses [237–239]. Evidence for loss of
such cortical inhibitory tone after TBI was obtained in vivo in a rat
fluid percussion injury model [240] using a form of ppTMS known
as long-interval cortical inhibition (LICI) [241] that is an index of
cortical GABA-mediated inhibition [242, 243]. The results showed a
reduction in LICI for up to 6 weeks following TBI [241]. Various
studies using different ppTMS measures of intracortical inhibition
have reported heterogeneous results including facilitation, sup-
pression, and no effect on MEPs following mild traumatic brain
injury (mTBI) [244].

A. Jannati et al.

196

Neuropsychopharmacology (2023) 48:191 – 208



Support for altered cortical plasticity after mTBI has been
obtained by rTMS measures of plasticity. In one of the first rTMS
studies in humans with mTBI, 1-Hz rTMS-induced irregular shape
alterations in the MEP waveform at 2 weeks after injury, which was
normalized in 9 out of 15 patients when re-tested after 3 months
[245]. Bashir et al. [246] used cTBS to assess changes in cortical
plasticity following mTBI and found that, unlike control subjects,
mTBI patients exhibited paradoxical MEP facilitation at week 2, at
0, 5, 10, and 20min post-cTBS. The cTBS response in mTBI patients
returned to the expected inhibition at week 6 post-injury [246].
Another evidence for abnormal TMS measures of plasticity in mTBI
was reported in a proof-of-principle study [108], in which cTBS did
not induce a significant suppression of MEPs 2 weeks after injury,
but cTBS response was normalized at 6 weeks post-injury when
most patients became asymptomatic.
Further evidence for altered mechanisms of cortical plasticity as

measured by M1 cTBS was obtained in a TMS-EMG-EEG study [244],
where patients with mTBI showed greater suppression of MEPs at
30min post-cTBS relative to the controls. Moreover, mTBI patients
exhibited significant inhibition of TMS-evoked EEG potentials (TEPs)
P30 and N45 at 30min post-cTBS, while the corresponding TEPs in
the control subjects were unaffected. These results provide
evidence for enhanced cTBS-induced LTD-like plasticity up to
~4 months post-injury among patients with mTBI [244].

Alzheimer’s disease
In Alzheimer’s disease (AD), synaptic degeneration is strongly
correlated with cognitive decline and plays a critical role in the
development of dementia [247]. The results of preclinical studies
have shown that soluble Aβ oligomers can block hippocampal LTP
[248], which is an electrophysiological index of learning and
memory [249] but enhance LTD [250]. These aberrations in the
mechanisms of plasticity can induce conformational changes in the
tau proteins, resulting in pathological consequences in synaptic
plasticity and cognition [251, 252]. Because iTBS-induced LTP-like
plasticity is likely mediated by the strengthening of glutamatergic
synapses via NMDA receptor, α-amino-3-hydroxy-5-methyl-4- iso-
xazolepropionic acid (AMPA) receptor, and calcium channel [110],
iTBSmeasures of M1 plasticity can be used as a tool for investigating
alterations in cortical plasticity in early AD [253].
In a large group of newly diagnosed AD patients, Koch et al.

found evidence for impaired iTBS-induced LTP-like cortical
plasticity—with a paradoxical LTD relative to healthy controls—
and impaired short-latency afferent inhibition (SAI), which is
considered an index of central cholinergic impairment [254].
Based on the fact that impairment of cortical plasticity was not
correlated with age of onset, it was argued that impairment in
cortical LTP is a central mechanism of AD pathophysiology that is
independent of the age of onset [255]. A study on the
reproducibility of iTBS aftereffects in patients with AD [151] found
that reproducibility was higher in AD patients than in individuals
with healthy aging, which was attributed to the pathological
rigidity of neurophysiological systems in AD.
Importantly, paradoxical LTD-like cortical plasticity in response

to iTBS has been found to be associated with high tau in the
cerebrospinal fluid and more rapid cognitive decline [256]. A
subsequent study from the same group found the impairment in
LTP-like plasticity was associated with less efficient verbal memory
but not with other cognitive functions [257]. The association
between reduced LTP-like cortical plasticity and faster cognitive
decline in patients with AD was replicated in another study on 60
newly diagnosed patients [258], which found iTBS aftereffects had
excellent accuracy for differentiating between AD patients and
healthy controls. A separate study on mostly medicated AD
patients found the extent of M1 iTBS-induced plasticity at baseline
predicted the change in patients’ cognition following treatment
with 10-Hz rTMS [259]. These findings collectively support the
crucial role of synaptic degeneration in the pathophysiology of

dementia [260] and indicate the diagnostic and predictive utility
of rTMS measures of plasticity in assessing the AD pathophysiol-
ogy and predicting clinical response to rTMS treatment [260].
It should be noted, however, that AD-related alterations in LTP-

like plasticity as indexed by iTBS are not necessarily uniform across
all stages of the disease. For example, Buss et al. [261] used iTBS to
assess LTP-like cortical plasticity in patients with amnestic mild
cognitive impairment (aMCI), which is considered a prodromal
stage of AD [262, 263]. The patients with aMCI showed a lack of
LTP-like plasticity unrelated to the quantitative Aβ burden on
positron emission tomography. Unexpectedly, greater LTP-like
response to iTBS was associated with worse memory function in
aMCI patients, underlining the complexity of alterations in
neuroplasticity in the prodromal stages of AD [261].

Diabetes
Rodent models of type-2 diabetes mellitus (T2DM) show aberrant
synaptic plasticity in the hippocampus resulting in cognitive
deficits [264] and less likelihood of post-stroke recovery due to
impaired neuroplasticity [265]. Consistent with those findings,
individuals with T2DM showed reduced iTBS-induced plasticity,
indicating altered efficacy of neuroplastic mechanisms in the
cortex [266]. Interestingly, those alterations were associated with
cognitive impairment as indexed by lower learning scores on the
Rey auditory verbal learning test (RAVLT) and fewer correct trials
of the Digit Span Backwards test [266]. Those results were in line
with mouse models of T2DM that showed impaired object
discrimination, hippocampal LTP, and impaired spatial memory
[267–269].
Considering that iTBS aftereffects, RAVLT, and working memory

performance in humans have all been shown to be NMDA-
dependent [104, 270–273], the association between reduced
verbal learning and working memory and reduced LTP-like
plasticity in T2DM may be due to a brain-wide reduction in the
density or efficacy of NMDA receptors [266]. A subsequent study
found that reduced iTBS measures of cortical plasticity in T2DM
patients were already present in individuals with prediabetes, and
reduced corticomotor plasticity in T2DM, but not in prediabetes,
was associated with lower cortical glutamate concentration [274].

TRANSLATIONAL STUDIES OF TMS-TBS MEASURES—INSIGHTS
AND CHALLENGES
In each of the sections above on specific disease states, we have
cited the key evidence from animal models that form a foundation
for investigating pathophysiological changes in plasticity using
human rTMS measures. Here, we summarize some of the parallel
TMS-TBS studies in animal models that can be translated to
human studies using the same protocols (Fig. 4).
LTP as a use-dependent enhancement of excitatory synaptic

strength was first identified in the hippocampus of an anesthe-
tized rabbit in 1973 [275] and subsequently replicated in rodent
brain slices [276, 277]. LTD as a homeostatic mechanism was first
identified in rat hippocampal slices in 1992, is reliably reproducible
in vitro in numerous laboratories, and appears to be due to the
reversal of the LTP-related molecular mechanisms [278]. Transla-
tional research in this field ideally involves in vivo experimental
rTMS [279]TBS studies in animals that can help elucidate the
mechanisms of TBS-induced plasticity in humans.
Extrapolating from animal LTP/LTD studies to human brain

stimulation protocols is not without challenges. For instance, the
rate at which synaptic plasticity matures varies in different regions
of the rodent brain [280, 281]. Similarly, the capacity for LTP in
mice varies by age; it is greater in the visual cortex of adult mice
(older than 6 months) than in 4–5-week-old mice [282]. In
contrast, younger rats exhibit a lower threshold for LTD induction
and a greater magnitude of hippocampal LTD than older rats
[282, 283].
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An iTBS study in rats found functional modification of cortical
GABAergic parvalbumin-positive (PV+) interneurons only after
32 days of life (human age: 4–11 years), which peaked by
postnatal day 40 (human age: 12–18 years). This result may be due
to a lack of enough synaptic connections in immature PV+ cells
that prevents them from receiving the level of excitatory input
required to be influenced by iTBS [284].
Another important issue to consider when extrapolating from

results of in vitro studies of synaptic plasticity is that most of the
results of those studies are obtained by precise electrical
stimulation of isolated pathways, whereas in vivo brain stimulation
protocols such as TMS have much coarser localization and lower
spatial resolution, and activate entire neuronal networks and their
supporting glial cells [278].
A major challenge of implementing translational rTMS studies in

rodent models is the low focalization of stimulation due to the
large size of the coil relative to the rodent’s brain. To overcome
this challenge, Hsieh et al. developed a cortical electrical
stimulation (CES) technique for iTBS and cTBS protocols in rats
[285], which is both less invasive and has higher accuracy and
spatial resolution than TMS for targeting a specific area of the
motor cortex. The authors used direct CES over the motor cortex
using conventional iTBS and cTBS patterns and found CES-TBS
protocol induced both LTP- and LTD-like plasticity effects for at
least 30 min post-TBS, similar to those obtained in human TBS
studies [285]. Because the rats were under anesthesia to suppress
major stress, the stimulation intensity was set to 80% of rMT,
instead of the lower intensity of 80% of active aMT commonly
used in human TBS protocols. The facilitation of MEPs by CES-iTBS

and suppression of MEPs by CES-cTBS were replicated in a
subsequent study [286]. These results indicate that CES-TBS animal
models can be useful for investigating the mechanisms of cortical
plasticity and bridging the human and animal studies for
establishing new diagnostic and therapeutic applications for
neurological disorders [285, 287–290].

THERAPEUTIC IMPLICATIONS OF TMS MEASURES OF
PLASTICITY AND BRAIN STATE
As reviewed above, at a system level, rTMS modulates excitability
and plasticity in a targeted cortical region [6, 291–293] and exerts
broader effects across networks connected to that region
[30, 294–297]. Additionally, the putative mechanism of action of
the therapeutic effects of rTMS is thought to be the modulation of
dysfunction within and between functional networks [298–301].
Thus, targeting the rTMS based on structural and/or functional
networks has become a prominent focus for optimizing the
efficacy of rTMS for therapeutic purposes. That being said, the
stimulation location is only one factor influencing the clinical and
physiological impact of rTMS. The therapeutic benefit of such
neuromodulation is also impacted by how the stimulation is
received and processed in the brain. In other words, the impact of
applying a pulsed magnetic field to an electrically charged region
of the cortex is influenced by both the degree and direction of the
magnetic field itself as well as the state of excitability of the
targeted cortical region and the broader functional network
[43, 179, 302, 303] (Fig. 5). Thus, to optimize the induced changes
in plasticity and modulation of the putative mechanism
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underlying the clinical symptom, it is important to characterize the
current brain state in terms of local cortical excitability and
network connectivity in order to determine the optimal treatment
protocol for a given patient.

Impact of pharmacology on brain state
For both safety and feasibility, most rTMS treatments have allowed
participants to continue their current medications [304]. Safety
reviews suggest that rTMS in those receiving stable doses of
antidepressant medication does not increase the risk of adverse
events [13] but nonetheless increases within-group variability in
neurochemical state and decreases statistical power. To control for
variability due to medications, investigators could enroll only
participants who have been withdrawn from all psychotropic
medications; however, withdrawing symptomatic patients from
their medications introduces safety concerns of increased suicidal
ideation and withdrawal-related side effects, and it demands close
medical monitoring. A more feasible approach would be to
require participants to maintain a steady medication dose and to
apply a within-subject model controlling for baseline severity as
the primary outcome measure. While this would not eliminate
variability across participants, it reduces the effects of neuro-
chemical brain state on the primary outcome measure. Combining
rTMS and pharmacological treatment is another novel multimodal
intervention being developed in adults and adolescents with
depression [305, 306].

Impact of concurrent behavioral task on brain state
To increase the tolerability of rTMS sessions (especially those that
may last several minutes to hours, in the case of long research
study visits), clinics and research studies have allowed patients to
read, watch TV, or listen to music during rTMS sessions. However,
factors such as attention, arousal, and mood state have been

shown to affect the modulation of excitability by rTMS
[55, 307–309]. The difference in behavioral engagement/arousal
this causes is another potential source of within-group variability
and suboptimal therapeutic efficacy. To control and optimize brain
state, some studies have the participant watch or listen to specific
stimuli or engage in a behavioral or cognitive task that engages
the same brain networks as the rTMS target, thus amplifying the
impact of the rTMS on the targeted network [303]. Studies of rTMS
for post-traumatic stress disorder (PTSD), smoking cessation, and
obsessive-compulsive disorder (OCD) have shown increased
treatment response when the participant’s symptoms were
provoked (e.g., by asking questions about thoughts, images, or
impulses related to their obsessions or compulsions or asking the
patient to perform a task related to their symptoms [310]
immediately before rTMS stimulation [311–313]. Others are
beginning to pair rTMS with concurrent behavioral interventions
such as cognitive-behavioral therapy (CBT) [314]. This is a
burgeoning field with many groups seeking to harness the power
of plasticity provided by the rTMS and appropriately guide it
toward the ultimate functional network and clinical target (Fig. 6).

Individualizing rTMS protocols based on brain state
The degree of modulation at the brain network level can be
quantified using functional magnetic resonance imaging (fMRI) as
well as quantitative EEG. Previous research has shown that high-
frequency rTMS (as is often used for therapeutic protocols in
depression and other neuropsychiatric disorders) leads to
synchronization of EEG activity primarily in alpha and beta
frequency bands, both at the targeted site as well as distant
areas [63, 315–324]. It has been proposed that rTMS may act
through triggering and inducing long-term entrainment of
oscillations to the stimulation frequency. In doing so, rTMS may
reset cortical and thalamocortical oscillators and facilitate more
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stable intrinsic oscillatory activity [315, 317, 318]. Alpha frequency
(8–13 Hz), in particular the upper alpha band (10–12 Hz), seems to
be well-suited to coordinating activities over distance in the brain
both at the cortical and the cortico-subcortical (e.g., thalamic) level
[325, 326]. Standard rTMS protocols often apply stimulation at a
standard 10-Hz frequency, but there is large variability in
response, perhaps partially due to interindividual variability in
intrinsic alpha frequency and its proximity to 10 Hz [327]. There is
some evidence to support that individualizing the frequency of
stimulation to match the individual’s intrinsic alpha frequency
results in better clinical efficacy for both schizophrenia and
depression [328–331].
Most recently, in this area of research, “closed-loop EEG-rTMS”

devices have been developed to record EEG and process it in real-
time such that rTMS pulses can be applied not only at a specific
frequency, but also at a specific time-point within the oscillation
[70, 71]. Using this device, Zrenner et al. found that TMS applied at
the trough (or negative peak) of the alpha rhythm induced greater
LTP-like facilitation in the primary motor cortex than pulses
applied at the positive peak of the alpha rhythm [70]. They
extended these findings to DLPFC and found that closed-loop
rTMS applied at the trough of the individual’s alpha rhythm,
compared to random alpha phase stimulation, leads to reduced
left frontal resting-state alpha power and increased TMS-induced
beta oscillations over medial frontocentral EEG channels [71]. The
therapeutic potential of closed-loop EEG-rTMS has yet to be
established, however, and a clinical trial is ongoing [332].
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