Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ensemble recruited by α2a-adrenergic receptors is engaged in a stressor-specific manner in mice

Abstract

α2a-adrenergic receptor (α2a-AR) agonists are candidate substance use disorder therapeutics due to their ability to recruit noradrenergic autoreceptors to dampen stress system engagement. However, we recently found that postsynaptic α2a-ARs are required for stress-induced reinstatement of cocaine-conditioned behavior. Understanding the ensembles recruited by these postsynaptic receptors (heteroceptors) is necessary to understand noradrenergic circuit control. We utilized a variety of approaches in FosTRAP (Targeted Recombination in Active Populations) mice to define an ensemble of cells activated by the α2a-AR partial agonist guanfacine (“Guansembles”) in the bed nucleus of the stria terminalis (BST/BNST), a region key to stress-induced reinstatement of drug seeking. We define BNST “Guansembles” and show they differ from restraint stress-activated cells. Guanfacine produced inhibition of cAMP-dependent signaling in Guansembles, while chronic restraint stress increased cAMP-dependent signaling. Guanfacine both excited and inhibited aspects of Guansemble neuronal activity. Further, while some stressors produced overall reductions in Guansemble activity, active coping events during restraint stress and exposure to unexpected shocks were both associated with Guansemble recruitment. Using viral tracing, we define a BNST Guansemble afferent network that includes regions involved in the interplay of stress and homeostatic functions. Finally, we show that activation of Guansembles produces alterations in behavior on the elevated plus maze consistent with task-specific anxiety-like behavior. Overall, we define a population of BNST neurons recruited by α2a-AR signaling that opposes the behavioral action of canonical autoreceptor α2a-AR populations and which are differentially recruited by distinct stressors. Moreover, we demonstrate stressor-specific physiological responses in a specific neuronal population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Guanfacine activates a heterogeneous cell population in the BNST.
Fig. 2: Guanfacine decreases PKA and increases calcium activity in BNST Guansembles.
Fig. 3: Guansemble neuronal activity filtered by stress exposure.
Fig. 4: Guanfacine leads to an overall increase in ex vivo calcium activity in Guansembles.
Fig. 5: Anatomical and functional characterization of BNST Guansembles.

Similar content being viewed by others

References

  1. Buffalari DM, Baldwin CK, See RE. Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats. Psychopharmacol (Berl). 2012;223:179–90.

    Article  CAS  Google Scholar 

  2. Gowing L, Farrell M, Ali R & White JM. Alpha2 adrenergic agonists for the management of opioid withdrawal. in Cochrane Database of Systematic Reviews (ed. The Cochrane Collaboration) CD002024.pub2 (John Wiley & Sons, Ltd, 2004). https://doi.org/10.1002/14651858.CD002024.pub2.

  3. Simpson TL, et al. A pilot trial of prazosin, an alpha-1 adrenergic antagonist, for comorbid alcohol dependence and posttraumatic stress disorder. Alcohol Clin Exp Res 2015;39:808–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simpson TL, et al. Double-blind randomized clinical trial of prazosin for alcohol use disorder. Am J Psychiatry. 2018;175:1216–24.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pergolizzi JV, Annabi H, Gharibo C, LeQuang JA. The role of lofexidine in management of opioid withdrawal. Pain Ther. 2019;8:67–78.

    Article  PubMed  Google Scholar 

  6. Milivojevic V, Angarita GA, Hermes G, Sinha R, Fox HC. Effects of prazosin on provoked alcohol craving and autonomic and neuroendocrine response to stress in alcohol use disorder. Alcohol Clin Exp Res. 2020;44:1488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harmon RJ, Riggs PD. Clonidine for posttraumatic stress disorder in preschool children. J Am Acad Child Adolesc Psychiatry. 1996;35:1247–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sinha R. The role of stress in addiction relapse. Curr Psychiatry Rep. 2007;9:388–95.

    Article  PubMed  Google Scholar 

  9. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacol (Berl). 2001;158:343–59.

    Article  CAS  Google Scholar 

  10. Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N. Y Acad Sci. 2008;1141:105–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erb S, Stewart J. A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. J Neurosci. 1999;19:RC35–RC35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mantsch JR, et al. Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology. 2010;35:2165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fox H & Sinha R. The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals. in Advances in Pharmacology vol. 69 217–65 (Elsevier, 2014).

  14. Fox HC, Morgan PT, Sinha R. Sex differences in guanfacine effects on drug craving and stress arousal in cocaine-dependent individuals. Neuropsychopharmacology. 2014;39:1527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fox HC, et al. Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings. J Psychopharmacol (Oxf). 2012;26:958–72.

    Article  Google Scholar 

  16. Krupitsky E, et al. Naltrexone with or without guanfacine for preventing relapse to opiate addiction in St.-Petersburg, Russia. Drug Alcohol Depend. 2013;132:674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horrigan JP. Guanfacine for PTSD nightmares. J Am Acad Child Adolesc Psychiatry. 1996;35:975–6.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson J, Wang C, Zaidi A, Rice T, Coffey BJ. Guanfacine as a treatment for posttraumatic stress disorder in an adolescent female. J Child Adolesc Psychopharmacol 2020;30:398–401.

    Article  CAS  PubMed  Google Scholar 

  19. Davis LL, et al. A placebo-controlled trial of guanfacine for the treatment of posttraumatic stress disorder in veterans. Psychopharmacol Bull 2008;41:8–18.

    PubMed  Google Scholar 

  20. Connor DF et al. Effects of guanfacine extended release on oppositional symptoms in children aged 6–12 years with attention-deficit hyperactivity disorder and oppositional symptoms: a randomized, double-blind, placebo-controlled trial. CNS Drugs. 1 (2010) https://doi.org/10.2165/11537790-000000000-00000.

  21. Perez RE, et al. α2A-adrenergic heteroreceptors are required for stress-induced reinstatement of cocaine conditioned place preference. Neuropsychopharmacology. (2020) https://doi.org/10.1038/s41386-020-0641-z.

  22. Harris NA, et al. Dorsal BNST α2A-adrenergic receptors produce HCN-dependent excitatory actions that initiate anxiogenic behaviors. J. Neurosci. 0963–18 (2018) https://doi.org/10.1523/JNEUROSCI.0963-18.2018.

  23. McElligott ZA, Winder DG. Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wenzel JM, et al. Noradrenergic β-Receptor antagonism within the central nucleus of the amygdala or bed nucleus of the stria terminalis attenuates the negative/anxiogenic effects of cocaine. J Neurosci. 2014;34:3467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shields AD, Wang Q, Winder DG. α2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuroscience. 2009;163:339–51.

    Article  CAS  PubMed  Google Scholar 

  26. Vranjkovic O, Pina M, Kash TL, Winder DG. The bed nucleus of the stria terminalis in drug-associated behavior and affect: A circuit-based perspective. Neuropharmacology. 2017;122:100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pina MM, Young EA, Ryabinin AE, Cunningham CL. The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology. 2015;99:627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeNardo LA, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luchsinger JR, et al. Delineation of an insula-BNST circuit engaged by struggling behavior that regulates avoidance in mice. Nat Commun. 2021;12:3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fetterly TL, et al. α2A -Adrenergic receptor activation decreases parabrachial nucleus excitatory drive onto BNST CRF neurons and reduces their activity. Vivo J Neurosci 2019;39:472–84.

    Article  CAS  PubMed  Google Scholar 

  32. Jaramillo AA, Williford KM, Marshall C, Winder DG, Centanni SW. BNST transient activity associates with approach behavior in a stressful environment and is modulated by the parabrachial nucleus. Neurobiol Stress. 2020;13:100247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salimando GJ, Hyun M, Boyt KM, Winder DG. BNST GluN2D-containing NMDA receptors influence anxiety- and depressive-like behaviors and modulatecell-specific excitatory/inhibitory synaptic balance. J Neurosci. 2020;40:3949–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park Y-G, et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol. 2019;37:73–83.

    Article  CAS  Google Scholar 

  35. Hedde PN, Gratton E. Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech. 2018;81:924–8.

    Article  CAS  PubMed  Google Scholar 

  36. Dean KM, Roudot P, Welf ES, Danuser G, Fiolka R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys J. 2015;108:2807–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ch’ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:108–25.

    Article  PubMed  Google Scholar 

  38. Giardino WJ, Pomrenze MB. Extended amygdala neuropeptide circuitry of emotional arousal: waking up on the wrong side of the bed nuclei of stria terminalis. Front Behav Neurosci. 2021;15:613025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmiter RD. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 2018;41:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD. Elucidating an affective pain circuit that creates a threat memory. Cell. 2015;162:363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Girasole AE, et al. A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron. 2018;97:787–795.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xing B, et al. A subpopulation of prefrontal cortical neurons is required for social memory. Biol Psychiatry. 2021;89:521–31.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Saulnier JL, Yellen G & Sabatini BL. A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front. Pharmacol. 2014;5:56.

  44. Lee SJ, Chen Y, Lodder B, Sabatini BL. Monitoring behaviorally induced biochemical changes using fluorescence lifetime photometry. Front Neurosci. 2019;13:766.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lemberger T, et al. Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci. 2007;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Joffe ME, Turner BD, Delpire E, Grueter BA. Genetic loss of GluN2B in D1-expressing cell types enhances long-term cocaine reward and potentiation of thalamo-accumbens synapses. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol 2018;43:2383–9.

    Article  CAS  Google Scholar 

  47. Gong S, et al. Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt, KT et al. Stress-induced alterations of norepinephrine release in the bed nucleus of the stria terminalis of mice. http://biorxiv.org/lookup/doi/10.1101/335653 (2018) https://doi.org/10.1101/335653.

  49. Cecchi M, Khoshbouei H, Morilak DA. Modulatory effects of norepinephrine, acting on alpha1 receptors in the central nucleus of the amygdala, on behavioral and neuroendocrine responses to acute immobilization stress. Neuropharmacology. 2002;43:1139–47.

    Article  CAS  PubMed  Google Scholar 

  50. Joffe, ME et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons. Neuron. S0896627321010448 (2022) https://doi.org/10.1016/j.neuron.2021.12.027.

  51. Hu P, et al. Chronic stress induces maladaptive behaviors by activating corticotropin-releasing hormone signaling in the mouse oval bed nucleus of the stria terminalis. J Neurosci. 2020;40:2519–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Agarwal A, Halvorson LM, Legradi G. Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. Mol Brain Res. 2005;138:45–57.

    Article  CAS  PubMed  Google Scholar 

  53. Shalev U, Highfield D, Yap J, Shaham Y. Stress and relapse to drug seeking in rats: studies on the generality of the effect. Psychopharmacol (Berl). 2000;150:337–46.

    Article  CAS  Google Scholar 

  54. Shaham Y, Stewart J. Stress reinstates heroin-seeking in drug-free animals: An effect mimicking heroin, not withdrawal. Psychopharmacol (Berl). 1995;119:334–41.

    Article  CAS  Google Scholar 

  55. Erb S, Shaham Y, Stewart J. Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacol (Berl). 1996;128:408–12.

    Article  CAS  Google Scholar 

  56. Lu L, Liu D, Ceng X. Corticotropin-releasing factor receptor type 1 mediates stress-induced relapse to cocaine-conditioned place preference in rats. Eur J Pharmacol 2001;415:203–8.

    Article  CAS  PubMed  Google Scholar 

  57. Lu L, Zhang B, Liu Z, Zhang Z. Reactivation of cocaine conditioned place preference induced by stress is reversed by cholecystokinin-B receptors antagonist in rats. Brain Res. 2002;954:132–40.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou P, et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife. 2018;7:e28728.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pnevmatikakis EA, Giovannucci A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J Neurosci Methods. 2017;291:83–94.

    Article  CAS  PubMed  Google Scholar 

  60. Krawczyk M, et al. Double-dissociation of the catecholaminergic modulation of synaptic transmission in the oval bed nucleus of the stria terminalis. J Neurophysiol 2011;105:145–53.

    Article  CAS  PubMed  Google Scholar 

  61. Arnsten AFT, Ramos BP, Birnbaum SG, Taylor JR. Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol Med 2005;11:121–8.

    Article  CAS  PubMed  Google Scholar 

  62. Bernabeu R, et al. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci. 1997;94:7041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dwivedi Y, Pandey GN. Elucidating biological risk factors in suicide: Role of protein kinase A. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:831–41.

    Article  CAS  PubMed  Google Scholar 

  64. Wang M, et al. α2A-adrenoceptors strengthen working memory networks by Inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007;129:397–410.

    Article  CAS  PubMed  Google Scholar 

  65. Armario A, Vallès A, Dal-Zotto S, Márquez C, Belda X. A single exposure to severe stressors causes long-term desensitisation of the physiological response to the homotypic stressor. Stress. 2004;7:157–72.

    Article  CAS  PubMed  Google Scholar 

  66. Kim S-Y, et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature. 2013;496:219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahrens S, et al. A central extended amygdala circuit that modulates anxiety. J Neurosci 2018;38:5567–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kash TL, et al. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells. 2015;38:1–13.

    Article  PubMed  Google Scholar 

  69. Flavin SA, Matthews RT, Wang Q, Muly EC, Winder DG. 2A-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014;34:9319–31.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Holland PC. Different roles for amygdala central nucleus and substantia innominata in the surprise-induced enhancement of learning. J Neurosci 2006;26:3791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han J-S, Holland PC, Gallagher M. Disconnection of the amygdala central nucleus and substantia innominata/nucleus basalis disrupts increments in conditioned stimulus processing in rats. Behav Neurosci. 1999;113:143–51.

    Article  CAS  PubMed  Google Scholar 

  73. Holland PC, Gallagher M. Amygdala circuitry in attentional and representational processes. Trends Cogn Sci. 1999;3:65–73.

    Article  CAS  PubMed  Google Scholar 

  74. Wilson DA, Kadohisa M, Fletcher ML. Cortical contributions to olfaction: Plasticity and perception. Semin Cell Dev Biol. 2006;17:462–70.

    Article  PubMed  Google Scholar 

  75. Li W, Howard JD, Parrish TB, Gottfried JA. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science. 2008;319:1842–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kadohisa M, Wilson DA. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci. 2006;103:15206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Báez-Mendoza R & Schultz W. The role of the striatum in social behavior. Front Neurosci. 2013;7:233.

  78. Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci. 2016;19:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–9.

    Article  CAS  PubMed  Google Scholar 

  80. Groenewegen HJ, Berendse HW. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 1994;17:52–7.

    Article  CAS  PubMed  Google Scholar 

  81. Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev. 2015;56:315–29.

    Article  PubMed  Google Scholar 

  82. Matzeu A, Weiss F, Martin-Fardon R. Transient inactivation of the posterior paraventricular nucleus of the thalamus blocks cocaine-seeking behavior. Neurosci Lett 2015;608:34–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamlin AS, Clemens KJ, Choi EA, McNally GP. Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci. 2009;29:802–12.

    Article  PubMed  Google Scholar 

  84. James MH, Charnley JL, Flynn JR, Smith DW, Dayas CV. Propensity to ‘relapse’ following exposure to cocaine cues is associated with the recruitment of specific thalamic and epithalamic nuclei. Neuroscience. 2011;199:235–42.

    Article  CAS  PubMed  Google Scholar 

  85. Hua R, et al. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr Biol. 2018;28:3948–3959.e4.

    Article  CAS  PubMed  Google Scholar 

  86. Levine OB, et al. The paraventricular thalamus provides a polysynaptic brake on limbic CRF neurons to sex-dependently blunt binge alcohol drinking and avoidance behavior in mice. Nat Commun. 2021;12:5080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Centanni SW, et al. Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence. Neuropsychopharmacology. 2019;44:526–37.

    Article  CAS  PubMed  Google Scholar 

  88. Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59:11–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46:1167–80.

    Article  CAS  PubMed  Google Scholar 

  90. Flavin SA, Winder DG. Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology. 2013;70:324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Silberman Y & Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry. 2013;4:42.

Download references

Acknowledgements

We would like to thank Dr. Bernardo L. Sabatini, Harvard University, for the FLEX-FLIM-AKAR virus. Microscopy was performed in part through the use of the Vanderbilt Cell Imaging Shared Resource and the assistance of Dr. Robert Matthews. We also would like to thank Elana Milano, Bridget Morris, Laith Kayat, and Megan Altemus for assistance with mouse colony maintenance and genotyping.

Funding

This work was supported by the following funding sources: Howard Hughes Medical Institute Gilliam Fellowship (Grant No. GT10823 [JAB]), National Institute on Drug Abuse (Grant No. R01-DA042475-06A1[DGW]).

Author information

Authors and Affiliations

Authors

Contributions

JAB and DGW designed the project and experiments, and DGW supervised the project. JAB ran all in vivo experiments, including GCaMP fiber photometry, PKA sensor fluorescence lifetime imaging microscopy, and optogenetics. JAB analyzed and graphed all data. JAB ran all in vivo optogenetic experiments using equipment from SP. SWC ran preliminary PKA sensor experiments on D1-Cre and FosTRAP animals. NP ran, analyzed, and graphed all ex vivo calcium imaging. JAB and AYJ ran and analyzed all immunohistochemistry experiments. HJY and SAC ran all shock experiments, supervised by ESC. JRL imaged initial FosTRAP light sheet microscopy with equipment from RBS. MNB assisted with light sheet imaging and analysis, supervised by RBS. JAB and DGW wrote first draft of manuscript with editing and reviewing by NP, SWC, JRL, MNB, RBS, and ESC. Funding was acquired by JAB and DGW.

Corresponding author

Correspondence to Danny G. Winder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, J.A., Petersen, N., Centanni, S.W. et al. An ensemble recruited by α2a-adrenergic receptors is engaged in a stressor-specific manner in mice. Neuropsychopharmacol. 48, 1133–1143 (2023). https://doi.org/10.1038/s41386-022-01442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01442-x

Search

Quick links