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What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent
more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human
and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the
circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that
characterize depression. The review also highlights complementary human and preclinical findings that classical and novel
antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These
findings offer a useful path forward for designing better antidepressant compounds.
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INTRODUCTION
Depression is a leading cause of mortality and morbidity, affecting
~5% of the US population. Its many devastating symptoms,
including persistent pathological deficits in mood, responses to
rewarding stimuli (i.e., anhedonia), motivation, and cognition, as
well as a greatly increased risk of suicide, make it essential to find
effective treatments. Most widely used therapeutics, which
potentiate monoaminergic neurotransmission, take 3–8 weeks to
relieve symptoms, complicating treatment optimization and
delaying relief, and are ineffective in one third of patients. Any
individual patient may present with a range of possible symptoms,
longitudinal time-course, and co-morbidities, as well responsive-
ness to antidepressants. It is hoped that a better understanding of
the underlying neurobiological deficits will allow for a more
effective personalized, targeted treatment plan [1, 2].
The etiology of depression involves both genetic and environ-

mental factors [3], with the latter accounting for roughly 60% of
risk [4]. Interestingly, pathway analyses from genome wide
association studies have implicated many genes involved in
synaptic function, axonal projections, and neurogenesis [5],
although each contributes only a small amount to overall risk. A
common environmental factor that increases the likelihood of
depressive episodes is stress. Depressed patients report more
stressful life events than non-depressed subjects, including
physical illness, troubled family relationships, and financial
difficulty [6]. Excessive rumination is common in depression and
represents a uniquely human form of psychosocial stress. Early life
adversity and traumatic childhood experiences are also a strong
predictor of whom is at risk for depression, undoubtedly by
triggering life-long lasting reprogramming events during particu-
larly sensitive developmental windows [7], including in cortico-
mesolimbic reward circuits [8]. Many of these long-lasting changes
are likely to be mediated by epigenetic and transgenerational
mechanisms that are beyond the scope of this review [9, 10].

Inflammation, often implicated in the genesis of depression, may
also increase the susceptibility of synapses and neurons to the
deleterious effects of stress [11].
Although acute stress is adaptive, persistently elevated levels of

stress are maladaptive. In this review, I will summarize the
abundant evidence that chronic stress damages brain function, to
a significant extent, through its deleterious effects on excitatory
synapses, thereby impairing the circuits underlying the brain’s
responses to rewarding and aversive stimuli, cognitive demand,
and mood. I will also discuss evidence that a critical mechanism
underlying antidepressant efficacy is restoration of the function of
stress-damaged synapses, particularly within these same reward
circuits. This topic has been reviewed extensively [12–16]. My goal
is to provide an up-to-date summary of the evidence of synaptic
dysfunction in depression and to discuss the impact of this cellular
pathology in the context of circuit-level and systems-level
interactions that together regulate mood, hedonic state and other
symptom domains characterizing depression.

STRESS, SYMPTOMS OF DEPRESSION, AND THE CIRCUITRY OF
REWARD AND EMOTION
The nature of the changes produced in the brain by chronic stress
that promote depression in susceptible individuals remains
unknown, but one of the most well-defined brain hallmarks of
chronic hyperactivation of the HPA axis and chronic elevation of
glucocorticoids is damage to excitatory synapses [16]. Glucocorti-
coids normally regulate neuronal survival, excitability, prolifera-
tion, metabolism, and memory but persistently high
glucocorticoid levels may promote depression by impairing these
processes [17].
The range of behaviors altered in depression suggests that

multiple synaptic circuits are adversely affected, with no one
synapse or circuit likely to be uniquely responsible for generating
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the entirety of the depressed phenotype. We can speculate that
different phenotypic symptom clusters may reflect anatomical
differences in the circuits compromised in these patient groups
[18]. The nucleus accumbens (NAc) is a critical link in cortico-
mesolimbic reward circuits, integrating information from the
prefrontal cortices (PFC), amygdala, and hippocampus to control
the release of dopamine from the ventral tegmental area (VTA)
back to the telencephalon [19–23]. There are also circuits involving
the lateral habenula that display a relatively selective processing
of negative valence stimuli and feed forward to the VTA. There is a
great deal of evidence of dysfunction in both cortico-mesolimbic
and habenular circuits in preclinical stress-based models of
anhedonic states, as will be reviewed below, with VTA activation
and dopamine release subject to bidirectional regulation by both
rewarding and aversive stimuli. Dysregulation of dopamine release
in motivating responses to rewarding and aversive stimuli, as well
as cognitive demand, is a plausible mechanistic cause that can
explain a range of depression symptoms [24–29].
Virtually all preclinical studies of utility for understanding

depression involve the production of a depression-like neurobe-
havioral state by exposure of laboratory animals to various forms
of chronic stress. Given the links between human depression and
stressful life events, it is generally agreed that such models have a
high degree of etiological construct validity, and many researchers
consider stress-based models to have the greatest utility for
depression research. Chronic stress-based models in rodents come
in several varieties, but the common factor is repeated (typically
daily) exposure to psychological and physiological stress beyond a
period lasting for several weeks [30–32]. Physical stressors include
mild unpredictable stressors (a rotating sequence of cage tilting,
wet bedding, forced swim, etc) or several hours of physical
restraint. One potential challenge is overcoming the habituation
to a single stressor after repeated exposure [33]. Psychosocial
stressors include social defeat stress and social isolation. Early life
stressors include fragmentated maternal care and social isolation
[34]. Chronic administration of exogenous corticosteroids (CORT)
also mimics many behavioral and physiological aspects of chronic
stress paradigms [35, 36].
These chronic stress models induce depressive-like behavioral

states, resembling the symptom domains of human depression,
and alter the putative underlying brain circuits in parallel with
functional imaging findings in depressed humans [18, 37–39].
Importantly, these preclinical changes are reversed by chronic, but
not acute, administration of classical monoaminergic antidepres-
sants, such as selective serotonin reuptake inhibitors (SSRIs)
[36, 40–44], presumably analogous to the delay for the therapeutic
response to SSRIs in humans. They also respond quickly to acute
administration of fast-acting antidepressant compounds like
ketamine [45]. These models thus demonstrate some degree of
predictive validity. Limitations of stress-based models include the
induction of several anxiety-related behaviors, perhaps mirroring
the co-morbidity and overlap of anxiety disorders and depression
and some of their respective symptoms.
All chronic stress protocols produce behavioral changes with

face validity to the symptom domains of human depression.
Diagnosis of major depressive disorder (MDD) in humans requires
two cardinal symptoms, persistent depression of mood and
persistent anhedonia, or loss of pleasure in all activities that
should be pleasurable. In addition, one or more other symptoms
may occur, including impaired cognition, concentration, and
attention; dysregulation of sleep; changes in appetite; fatigue;
feelings of worthlessness; and suicidal thinking. Many of these are
impossible to address in laboratory animals, particularly since
detection of most human symptoms is traditionally dependent
upon self-reporting by the patient. Tests of hedonic state and
cognition, however, are readily tested in rodents in a variety of
reward related and cognitive tasks. Impairment in these tasks is
consistently observed after chronic stress and is clearly

maladaptive. Other tests, with less obvious correspondence with
human depression symptoms include various measures of
‘behavioral despair,’ such as the forced swim test (FST) and the
tail suspension test. Somewhat easier to interpret are the learned
helplessness tasks, in which repeated delivery of an inescapable
negative stimulus, such as a foot shock, changes animals’ behavior
such that they will not escape even when given an opportunity.
Although widely used and sensitive to known and novel
antidepressants, their utility and interpretation is less clear [46]
and their use is discouraged by the National Institute of Mental
Health. Because they have been widely used, I will nevertheless
discuss them in this review. It is to be hoped that better, more
readily translatable, tests of reward behaviors will become more
widely used in preclinical studies [47–49] in order to improve the
selection of antidepressant compounds to take forward to clinical
development.
An advantage of using tests of hedonic state and cognition is

that the circuits underlying these behaviors are well known
[50–55]. We can thus direct our preclinical search for depression
relevant causative mechanisms and antidepressant relevant
responses to brain regions in which cellular and molecular
descriptions of pathology and treatment can be understood in
terms of the behavioral changes they are likely to cause.
A grossly oversimplified overview of these circuits is that the

prefrontal cortices and hippocampus are devoted to detecting
and decoding specific features of stimuli and the environment,
including the social environment, to guide decision-making and
ensure adaptive, flexible, and predictive responses to rewarding
stimuli, whereas the lateral hypothalamus-lateral habenula circuits
predominantly encode features of stimuli with negative emotional
valence. Both of these networks are then integrated in the NAc
and VTA to regulate the release of dopamine. The feedback
release of dopamine in these same regions than helps to reinforce
and sculpt subsequent responses to rewarding and aversive
stimuli.

THE HIPPOCAMPUS
An impaired ability to think and concentrate, which encompasses
deficits in memory, executive function, and attention, is one of the
major symptom categories used to diagnose MDD and contributes
significantly to the overall disability associated with depression
[56, 57]. The hippocampus is well known to be essential in
declarative and spatial memory formation from both animal
studies and humans. It is also known to be an important regulator
of the hypothalamic-pituitary axis, mediating negative feedback of
stress hormone secretion.
The role of the hippocampus in reward related behaviors is

becoming increasingly apparent [58]. Numerous changes in the
electrophysiological responses of hippocampal neurons related to
various aspects of reward have been described, including an
increase in firing rates as animals approach a reward location
[59, 60]. This is thought to result because the learning of reward
locations results in the reorganization of place fields so that areas
near those locations become overrepresented [61]. Hippocampal
ensemble firing patterns also help animals correctly predict which
direction they need to move in order to reach a chosen distant
goal [62]. Importantly, receipt of a reward triggers an increase in
the rate of spike-wave ripples [63], which are known to enhance
place field stability, and may thereby promote learning of reward
locations [64].
There are also strong, and psychologically impactful, interac-

tions between memory and emotions [65]. Excessive rumination
on memories of emotionally significant negative events from the
past is positively correlated with incidence of depression and
anxiety [66]. Dysfunction of the hippocampal–prefrontal circuits
that underlie extinction of emotional memories is postulated to
contribute to excessive negative rumination [67]. Proper ventral
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hippocampus-to-mPFC signaling is also necessary to recall social
memories [68].
McEwen and colleagues first discovered that chronic stress and

administration of exogenous corticosteroids lead to neuronal
death in the hippocampus in rodents, as well as atrophy of the
distal pyramidal cell dendrites and loss of dendritic spines [69–74].
These effects are consistent in all principal cell types and across
multiple forms of physical and social stress [75–77].
Hippocampal atrophy is also one of the most consistent

anatomical findings in imaging studies of human depression
[78–80]. Hippocampal volume loss in depressed patients is
correlated with memory dysfunction [81]. As in animal models,
human hippocampal atrophy can result solely from elevated
corticosteroid levels. Selective atrophy of the hippocampus is
observed in patients with Cushing’s Syndrome and other diseases
with chronically elevated cortisol levels, and these morphological
changes are reversed by treatments that lower cortisol levels [82].
These data suggest that chronic stress, either from traumatic life
events or psychosocial stressors, like excessive negative rumina-
tion, is the cause of the hippocampal atrophy in depression. There
is also evidence that early life trauma can cause lifelong decreases
in hippocampal volume [83], suggesting that preexisting hippo-
campal atrophy may predispose some people to the onset of
depression later in life. Treatment with conventional antidepres-
sants diminishes the atrophy in human depression [84], including
recent longitudinal studies in previously drug naïve patients
[85, 86], suggesting that the anatomical changes may underlie
functional improvements.
How might stress and elevated corticosteroids produce this

hippocampal dendritic atrophy and volume loss? Preclinical
studies have shown that chronic stress and exogenous corticos-
teroid administration decrease the expression of several neuro-
trophic factors and their receptors, notably brain derived
neurotrophic factor (BDNF) and its receptor tropomyosin receptor
kinase B (trkB)(for review see: [87]. Furthermore, hippocampal and
prefrontal cortical BDNF and trkB levels are decreased in
postmortem tissue taken from suicide victims compared to tissue
obtained from non-suicidal control brains [88]. The dentate gyrus
is a unique source of ongoing neurogenesis in the adult brain, at
least in nonhuman animals, and there is preclinical evidence that
the birth and maturation of new granule cells may play a role in
depression and antidepressant drug actions [89]. Preclinical
studies have shown that the genesis of new neurons in the
dentate gyrus from stem cells is impaired after chronic stress and
exogenous corticosteroid administration [90–92].
The link between these phenomena and the genesis of

depression was considerably strengthened with the finding that
conventional antidepressants promote BDNF expression [87, 93]
and neurogenesis [94–96]. A neurotrophic hypothesis of depres-
sion has been proposed, which posits that a decrease in
neurotrophic factor signaling as the root of dysgenesis of dentate
granule cells and atrophy of dendrites and synapses in depressed
brain [87, 97, 98]. This hypothesis is complementary to the
suggestion that stimulation of neurotrophic signaling and
neurogenesis by antidepressants explains their therapeutic actions
[99–101]. The explanatory power of neurogenesis in depression
and antidepressant drug effects is complicated by the fact that
neurogenesis is only observed in the dentate gyrus, putting a
severe limit on the possible depression symptom domains it can
impact, and by recent findings that neurogenesis may be very
limited or absent in humans [102]. Nevertheless, it is particularly
exciting that several slowly and rapidly acting antidepressant
compounds, including fluoxetine and other classical antidepres-
sants, and ketamine and its metabolites, have recently been
shown to bind directly to the trkB receptor and thereby promote
its activation by BDNF [103].
Beyond dendritic atrophy, there are dramatic alterations in

synaptic structure and function in animal models based on

chronic stress [104], including altered synaptic currents [105],
deficits in synaptic plasticity in CA1 and DG [106], and impaired
local circuit function [107]. In the hippocampus, several types of
chronic stress cause a loss of distal apical dendritic branches in
CA3 and CA1 pyramidal cells and a loss in the size and number of
dendritic spines [71, 74, 108]. Nevertheless, the evidence of stress-
induced changes in excitatory synaptic transmission in hippo-
campal pyramidal cells is somewhat mixed. In this regard, it is
important to recognize that the effects of acute stress are
generally adaptive and very different from the maladaptive
consequences of chronic stress [104]. In area CA3, chronic stress
enhances synaptic currents mediated by NMDARs but has no
effect on AMPARs [109]. In contrast, chronic stress has no effect on
basal synaptic strength at Schaffer collateral (SC) synapses in area
CA1, although it does impair SC-CA1 long-term potentiation (LTP)
[106, 110]. In contrast, at the temporoammonic (TA) synapses
formed by entorhinal cortical afferents to the distal dendrites of
CA1 pyramidal cells, where atrophy is most apparent, AMPAR-
mediated basal synaptic transmission is impaired by chronic stress
or exogenous corticosteroid administration, but LTP is unaffected
[36, 110]. The functional consequence of stress-weakened TA-
CA1 synaptic transmission is an impairment of spatial memory
consolidation [36, 110]. Chronic social defeat stress also induces
dendritic spine atrophy in CA1 pyramidal cells [111]. There may
also be lasting, life-long consequences of early life chronic stress.
Chronic adolescent stress in female rats caused a decrease in
hippocampal SC-CA1 synaptic strength in adults, accompanied by
impaired cognitive flexibility [112].
The mechanisms underlying the ability of chronic stress and

exogenous corticosteroid administration to decrease excitatory
synaptic function are presumably related to anatomical loss of
dendritic spines and decreased expression of AMPARs. For
example, GluA1 expression is decreased by 50% in the distal
dendrites of area CA1 by chronic stress and glucocorticoid
elevation [36, 110]. It is possible that these changes in glutamate
expression and function, if occurring at multiple brain regions
within reward circuits, are sufficient to cause depression-relevant
behavioral phenotypes. Global deletion of the gene for the
GluA1 subunit of the AMPAR, for example, results in a depression-
like phenotype in the learned helplessness test [113]. Mice in
which the GluA1 gene cannot be phosphorylated by calcium/
calmodulin-dependent kinase (CaMK), thereby impairing their
insertion into synapses, display altered behavior in the sucrose
preference and novelty suppressed feeding tests, identical to
those produced by chronic stress [44].
It has also been suggested that the ability of allostatic load to

affect excitatory synaptic function may influence susceptibility to
depression. In the chronic social defeat model, for example, stress
susceptible mice had larger decreases in GluA1 expression in area
CA1, compared to resilient mice [114]. The authors further
examined genetic polymorphisms in genes encoding
GluA1 subunits and found a single nucleotide polymorphism that
correlated with vulnerability to stress. How this compares to
human GluA1 gene SNPs was not described, but this evidence
converges with human data implicating AMPARs [115]. Gene
clusters associated with excitatory synaptic function are also
commonly identified in genetic screens in suicide and depression
[116–118] and in preclinical studies [119].
On a network level, chronic stress deceases the spatial tuning of

hippocampal cell discharges, as well as the power of gamma
oscillations in local field potentials [120]. The power of gamma
oscillations contributes to working memory capacity, is reduced in
patients with MDD, and is normalized with symptomatic remission
[121]. GABAergic inhibition is also affected by chronic stress [122]
and may contribute to the altered balance of excitation and
inhibition as well as defects in ensemble activity. These results
suggest that chronic stress-induced changes in synaptic function
impair local network function and thereby impair the neural
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computations underlying cognitive processing. Together these
data make a strong argument that disruption of hippocampal
glutamatergic transmission, specifically AMPAR function, accom-
panies and may cause the depression-like behavioral state seen in
preclinical models.
A common feature of all known antidepressants and many

antidepressant treatments under development is their ability to
reverse the effects of stress on synaptic structure and function,
although they may produce this effect through various mechan-
isms. Serotonin increases phosphorylation of AMPA receptors and
increases their delivery to the cell surface [123], an effect that is
mimicked by the tricyclic antidepressant imipramine [124] and by
chronic administration of the SSRI fluoxetine [125]. Chronic, but
not acute, administration of conventional antidepressants also
reverses stress-induced dendritic atrophy in rodents [126].
We have observed that chronic, but not acute, administration of

fluoxetine restores the strength of stress-weakened TA-CA1
excitatory synapses, concomitant with the recovery of normal
hedonic behavior [44, 120]. We observed that this restoration of
synaptic strength and hedonic behavior was absent in mice with
genetically modified GluA1 subunits that are incapable of being
phosphorylated by calcium/calmodulin-dependent protein kinase
(CaMK). We concluded that the antidepressant actions of SSRIs are
mediated, in part, by a rapid insertion of AMPARs into synapses,
due to 5HT1BR-dependent activation of CaMK and phosphoryla-
tion of GluA1 subunits at serine 831, a mechanism shared with
canonical NMDAR-dependent long-term potentiation, as well as a
slower restoration in GluA1 expression levels. Similarly, fluoxetine
normalizes stress-induced changes in dendritic spine and
glutamate receptor expression in the amygdala [127]. Fluoxetine
also produces rapid disinhibition in hippocampal brain slices [128],
which could also contribute to a net increase in excitation in vivo.
Restoration of stress-impaired excitatory synaptic function also

appears to be a fundamental mechanism underlying the actions of
known fast acting antidepressant drugs and potential therapeutic
compounds. Extensive experience with human patients has
established that ketamine exerts rapid, robust antidepressant,
antianhedonic, and antisuicidal actions within two hours of
administration that are sustained for at least seven days in
patients with major depression following a single infusion or
intranasal administration [129–133]. Ketamine’s antidepressant
effects compared to placebo controls are further supported by
several thorough meta-analyses [134–136]. Ketamine also exerts
strong antidepressant-like actions in preclinical models, including
restoration of reward behavior in chronically stressed animals,
promotion of dendritic spine formation, restoration of synaptic
strength, and promotion of expression of pro-synaptic genes [45].
Three classes of mechanism have been proposed to account for
these therapeutic actions on the basis of preclinical work, all of
which involve plasticity of excitatory synapses.
The first hypothesis might be called the ‘glutamate surge’ or

‘activity-dependent plasticity’ model. Based on early microdialysis
measurements of increased extracellular glutamate release after a
single administration of a therapeutic dose of ketamine [137], it is
now known that ketamine produces increased synchronous
neuronal activity in the prefrontal cortex and hippocampus,
particularly in the gamma frequency band (30–80 Hz) in preclinical
studies and in humans [138–141]. These oscillations are likely to
result from disinhibition produced by a selective block of NMDARs
on GABAergic interneurons [142, 143]. These high frequency
oscillations lead to activation of endogenous activity-dependent
synaptic strengthening mechanisms [144], including (paradoxi-
cally) NMDA-receptor dependent LTP, increases in dendritic spine
number [145], and promotion of BDNF-trkB signaling [146], as we
and others have speculated [13, 14, 147, 148].
Indeed, this potential mechanism may be shared by almost all

other compounds exerting rapid antidepressant actions in clinical
and/or pre-clinical studies, such as AZD6765 [149], mGluR2/3

antagonists [150], alpha5 subunit-selective GABAAR-NAMs
[151, 152], and the ketamine metabolite (2 R,6 R)-HNK [153], all
of which enhance EEG power in the gamma frequency band.
The second explanation for ketamine’s actions on excitatory

synapses is the synaptic scaling hypothesis [154]. This hypothesis
posits that ketamine restores stress-impaired excitatory synapses
by blocking a subset of NMDARs that are preferentially activated
by spontaneous glutamate release. When these receptors are
inhibited, postsynaptic Ca2+ influx is also inhibited, decreasing the
activity of the calcium/calmodulin-dependent protein kinase and
eukaryotic elongation factor 2 kinase (eEF2K). Activated eEF2K
phosphorylates and inhibits eEF2, an elongation factor that
promotes global translation of mRNAs. Reduced eEF2K activity
thus de-suppresses eEF2 and thereby promotes protein transla-
tion. Among the proteins whose synthesis is promoted are GluA1
receptors and BDNF [155–158]. As a result, synaptic AMPAR
expression is increased [154, 159]. As predicted, acute inhibition of
eEF2K increases mEPSC amplitude in cultured hippocampal cells
and occludes the actions of ketamine on mEPSC amplitude [159].
This hypothesis cannot be readily applied to other fast acting
antidepressant compounds that do not target NMDARs. It is also
difficult to reconcile with findings that other NMDAR antagonists
that do not appear to have antidepressant activity. Finally, it was
observed that five days of treatment with the monoaminergic
antidepressant citalopram failed to produce antidepressant
behavioral effects in mice but did decrease phosphorylation of
eEF2 levels [160]. It remains to be determined whether reduced
eEF2 phosphorylation is necessary and sufficient for the actions of
rapidly acting antidepressants other than ketamine.
Lastly, there is an exciting recent hypothesis that ketamine may

exert its antidepressant actions not by blocking NMDARs, but
rather by its neuroactive metabolites, particularly the hydroxy-
norketamines (HNKs). Zanos et al. [153] reported that the
behavioral actions of ketamine in mice could be eliminated by
deuterating the molecule to greatly reduce its rate of hydrolysis,
suggesting that ketamine’s inhibition of NMDARs is not sufficient
for its antidepressant actions. Direct administration of HNKs
mimicked the behavioral actions of ketamine in mice, promoted
EEG gamma oscillations, promoted expression of AMPARs and
BDNF, and decreased phosphorylation of eEF2 levels in the
hippocampus, providing plenty of mechanisms that could be
triggered independently from NMDAR inhibition. Acute applica-
tion of HNKs to hippocampal brain slices also produces a direct
potentiation of SC-CA1 synaptic transmission [153], mediated by
an increase in the probability of presynaptic glutamate release
[161].
Perhaps the most direct evidence of the critical role that

plasticity of excitatory synaptic transmission plays in the treatment
of depression comes from preclinical studies of positive allosteric
AMPAR modulators (i.e., AMPAkines) [162]. Antidepressant rele-
vant effects reported for AMPAkines include decreased immobility
in the FST, promotion of BDNF expression, amplification of
ketamine effects, and increased neurogenesis in the dentate gyrus
[163–166]. One AMPAkine failed to restore sucrose preference in
chronically stressed mice, however [165].

THE PREFRONTAL CORTICES
Prefrontal cortical regions act in concert with the hippocampus, to
which they are coupled by direct synaptic projections. For
simplicity in this review, I will refer to the dorsal and ventral
prefrontal cortices, the infralimbic cortex, and the orbitofrontal
cortex as prefrontal cortex (PFC), but it is important to recognize
that there is strong evidence that their functions are not identical
and may display sex differences [167].
An essential adaptive skill of all animals is to learn to associate a

rewarding experience with the sensory cues and actions in the
environment that can be used to predict their future occurrence.
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This learning skill allows us to make optimal decisions and take
appropriate approach and consummatory actions. In order to do
this, we need an internal representation of the environment and
of expected rewards that are based on prior experiences and
predictive cues. These cognitive maps of rewards underlie all goal-
directed behaviors, providing an adaptive benefit of permitting
flexible decision-making optimized for both interoceptive state
and environmental availability. Similarly, it is essential to have
experience-dependent, up-datable knowledge about where dan-
ger lurks or what foods are unpalatable in the environment. There
is excellent evidence that these positively and negatively valenced
functions take place within the PFC [168–170].
It is becoming increasingly apparent that not only is the

physical environment represented within the prefrontal cortices,
but also the social environment. Our own experiences tell us that
the social environment may be even more dynamic than the
physical environment and certainly more arbitrary. Included in the
social environment are various features such as cooperativity,
competition, and social affiliation that are strongly correlated with
the triggers and symptoms of depression. Loneliness, for example,
is caused by perceived social isolation and absence of companion-
ship and is associated with increased risk for depression and
suicide [171]. On the other hand, social support is one of the
strongest predictors of resilience and increasing social support can
provide a beneficial component of effective therapeutic
approaches [172].
The cellular mechanisms underlying the PFC’s ability to perform

these functions are recently becoming clearer. It appears that the
PFC acts as a choice option comparator during reward-guided
decision making. Electrophysiological activity in the PFC encodes
potential choice options and computes their comparison in the
currently relevant environment. PFC output then turns these
computations into actual actions [170]. In the human brain,
activity increases as cues and stimuli become relevant to
decisions, with the magnitude of this increase directly propor-
tional to the outcome and reliability of the decision [173].
Modeling studies suggest that these comparisons are performed
by two competing populations of neurons, each representing one
option, which compete in a winner-take-all manner for choice via
mutual recurrent excitatory synapses and reward-dependent
synaptic plasticity [174, 175]. Deficits in PFC synaptic excitation
and imbalances between excitation and inhibition would have
obvious impact on these calculations.
The PFC is also an important site at which cognitive evaluations,

such as the controllability of a stressor [176] or the valence of
sensory stimuli [177], can influence affect and reward directly. It
also regulates the negative ruminative thinking that can indirectly
have an adverse impact on cognition and mood [178]. For
example, cognitive control of responses to emotionally laden
stimuli activates lateral regions of the PFC in human subjects [179].
Measured with fMRI, the PFC of depressed patients displays

evidence of reduced volume, activity, and connectivity. Activity in
the human PFC is increased by ‘happy’ stimuli to a greater extent
than it is for ‘sad’ stimuli and these responses are altered in
depressed and anhedonic patients [180–182], consistent with
alterations in PFC circuit function. Hypoactivation of these regions
is observed in MDD patients when performing tasks that require
ignoring negative valence distracters [183]. Similarly, Liston et al.
[184] tested heathy subjects in a PFC-dependent attention-shifting
task before and one month after exposing them to psychosocial
stress. Compared to a group of unstressed control subjects, stress
selectively impaired subjects’ attention and disrupted functional
connectivity within a frontoparietal cortical network. Comparable
effects are seen in a decision-making task, in which stress favors
habitual choices.
In animal models, chronic stress impairs attentional set-shifting

tasks that are mediated by the PFC and decision making in
reward-based tasks [185], mimicking the human deficits seen in

MDD patients [184]. Chronic stress also results in a ca. 20%
reduction in the length of apical dendrites in pyramidal neurons in
the PFC and a ca. 30% decrease in the density of axospinous
synapses on apical dendrites, along with corresponding decreases
in the expression of synaptic genes [186–189]. Longitudinal two-
photon microscopic imaging of fluorescently labeled dendritic
spines in the PFC revealed that chronic elevation of CORT leads to
an increase in dendritic spine turnover and an abnormal loss of
stable spines that had been formed early in life [190].
Loss of dendritic spines suggests a loss or dysfunction of

excitatory synapses. Indeed, consistent with spine loss, chronic
stress decreases the synaptic excitation of pyramidal cells in the
PFC [191]. Both AMPAR- and NMDAR- components of the EPSP
were equally affected, unlike in the NAc [192, 193] and
hippocampus [110]. In parallel to these physiological findings,
expression of GluA1 and GluN1 proteins was decreased due to
ubiquitination and proteosomal degradation. There was no
change in expression of the postsynaptic density protein PSD95,
however. Consistent with the decrease in excitation, expression of
several immediate early genes and genes associated with synaptic
function are decreased in the PFC of depressed humans and in
rodent models [194, 195].
There is strong evidence that treatments that reverse the

symptoms of depression also reverse deficits in the PFC. Stress
induced decision-making deficits in MDD patients are reversible:
after one month of reduced stress, subjects were indistinguishable
from controls [196]. Treatment of MDD patients with classical
monoaminergic antidepressants also restores normal activation of
the PFC in attention tasks and restores the volume of the PFC
[197–199].
There is also strong preclinical evidence that increases in PFC

activity mimic the actions of antidepressants. For example,
optogenetic stimulation of the mPFC in a bursting pattern, not
unlike that occurring during ketamine-induced gamma oscilla-
tions, in mice subjected to chronic social defeat drives changes in
immediate early gene expression like those seen in the PFC of
human patients medicated with antidepressants and has an
antidepressant-like effect in sucrose and social interaction
preference tests [194]. These findings are currently being
translated into novel clinical therapies in which invasive deep
brain stimulation or noninvasive transcranial magnetic stimulation
targeted to the PFC or its descending output pathways is used to
treat patients with depression [200, 201].
Ketamine and other fast-acting antidepressant candidates all

produce a rapid restoration of dendritic spine density in the PFC in
stressed and unstressed animals with the same rapid time course as
its behavioral actions [145, 187, 202, 203], implying the restoration of
synaptic and circuit function, too. Considerable progress has been
made in identifying the cellular signaling mechanisms underlying
these effects. One strong candidate is the activation of mammalian
target of rapamycin (mTOR), a central regulator of cellular growth
[202]. Ketamine triggers not only its activation, but also the
activation of many of its downstream targets, within minutes-to-
hours, in unstressed rats. Furthermore, co-administration of the
mTOR inhibitor rapamycin prevented the induction of dendritic
spines by ketamine, as well as ketamine’s actions in the FST and
other behaviors [202]. Use of synaptic vesicle PET ligands has
recently revealed that ketamine produces similar synapse-
promoting effects in the PFC in human depression [204].
Immunohistochemical analysis of interneurons and transcripts of

interneuron-associated proteins are decreased within the PFC and
anterior cingulate cortex in human MDD brain tissue and in
chronically stressed rats, suggesting that deficits in GABA levels
may contribute to the symptoms of depression [205–208].
Somatostatin- and parvalbumin-expressing GABAergic interneurons
are particularly affected in chronically stressed rats [209]. There is also
evidence that the antidepressant effects of ketamine occur via
inhibition of GABA interneurons. As in the hippocampus, ketamine
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inhibits the discharge of interneurons in the PFC and reduces
spontaneous IPSCs in pyramidal cells acutely [210], while restoring
inhibition at later timepoints corresponding to its behavioral actions
[211]. Furthermore, knock-down and deletion of critical ketamine-
sensitive NMDARs from either somatostatin- or parvalbumin-
expressing interneurons alters baseline behaviors in the FST and
other tasks and eliminates the ability of ketamine to change these
behaviors in unstressed mice [210]. The effects of the deletion on the
ability of ketamine to produce electrophysiological disinhibition
were not tested, unfortunately. Similarly, chemogenetic inhibition of
either somatostatin- and parvalbumin-expressing interneurons in the
mPFC mimicked the effects produced by antidepressants in the FST
and other tasks, suggesting that transient inhibition of GABAergic
interneurons contributes to the actions of rapidly acting antidepres-
sants [212].
As discussed above, inhibition of interneurons may promote the

kinds of high frequency oscillatory activity in pyramidal cells that
underlies gamma oscillations, as seen in human and rodent EEGs,
and, in turn, promotes endogenous activity-dependent mechan-
isms that strengthen stress-impaired excitatory synapses, such as
LTP and BDNF-trkB signaling. Indeed, ketamine and GABAA

receptor negative allosteric modulators share an ability to
promote gamma oscillations in the PFC at doses that reverse
the behavioral consequences of chronic stress [152, 153]. Many of
these forms of activity-dependent plasticity are likely to be
NMDAR-dependent, as supported by the antidepressant-like
actions of the NMDAR positive allosteric modulator GLYX-13
(rapastinel) in preclinical models [213]. Ketamine’s disinhibitory
action in dendrites also promotes dendritic Ca2+ influx [214],
providing an additional mechanism to drive endogenous activity-
dependent synaptic strengthening mechanisms.

THE NUCLEUS ACCUMBENS
The nucleus accumbens in the ventral striatum is an essential
integrator of input pathways from the prefrontal cortex, hippo-
campus, and amygdala and is critical for determining motivating
and reinforcing responses to rewarding stimuli and avoidance
responses to aversive stimuli [215–217]. The NAc is divided into
two histologically distinct subregions, the core and the shell,
which have unique patterns of inputs and outputs [218, 219] and
are thought to serve distinct, but similar functions [177]. The NAc
consists primarily of GABAergic medium spiny neurons (MSNs),
which can be distinguished into two primary populations based
on their largely non-overlapping expression of dopamine recep-
tors. As originally described in the dorsal striatum, MSNs
expressing D1-type dopamine receptors, canonically considered
the ‘direct’ pathway, project to and inhibit GABAergic interneurons
within the VTA that, in turn, inhibit VTA dopamine releasing cells.
Activation of D1-expressing MSNs thereby promotes activation of
dopamine projections back to the forebrain by disinhibiting them
[220]. In contrast, MSNs expressing D2-type dopamine receptors,
canonically considered the ‘indirect’ pathway, project to GABAer-
gic cells within the ventral pallidum, that then project to the
interneurons within the VTA. Activation of D2-expressing MSNs
thereby inhibits activation of dopamine projections back to the
forebrain by disinhibiting the interneurons that silence them.
More recent findings have established that these neat divisions do
not apply as simplistically to the ventral striatum [221, 222].
Nevertheless, activity in D1 MSNs is more likely to be associated
with motivation, reward, and positive responses [193, 223–225]
and resilience to stress [226]. Conversely, a decrease in the ability
of D1 MSNs to drive dopamine release from the VTA, due to
decreased excitation and/or increased activity of D2 MSNs, may
contribute to the loss of the rewarding properties of normally
rewarding stimuli characterizing anhedonia and lack of motivation
in the depressed state.

Activation of inputs to the NAc from the hippocampus and PFC
is rewarding and reinforcing of rewarding stimuli [227, 228].
Excitatory synapses in the NAc in these pathways display activity-
dependent plasticity. Much like canonical hippocampal LTP, high
frequency stimulation of hippocampal afferents to the NAc elicits
a rapid and persistent NMDAR-triggered, Ca2+- and CaMK-
dependent increase in postsynaptic AMPAR responses in D1 and
D2 MSNs [193]. Dopamine receptor activation is not required for
this potentiation but may be modulatory under physiological
conditions [229]. Activity-dependent LTP in vivo was both
necessary and sufficient to induce a conditioned place preference
lasting for at least 24hrs [193]. Silencing hippocampal inputs to the
NAc prevented formation of a place preference following social
interactions, as assayed one day later, but did not prevent the
rewarding properties of the social interaction itself. Similarly,
establishment of cocaine place preferences is accompanied by a
potentiation of hippocampal-NAc synaptic excitation [230]. Con-
versely, weakening inputs to the NAc can reverse previously
established reward responses to addictive drugs [231, 232].
In response to chronic stress, rodent NAc MSNs display an array

of plastic changes that act in concert to alter forebrain
dopaminergic release from the VTA and, thereby, alter the
responses to rewarding and aversive stimuli [233]. As such they
are heavily implicated as central players in the genesis of
depression. Susceptibility to chronic social defeat stress is
accompanied by atrophy of MSN dendrites, specifically in D1
MSNs and not D2 MSNs, and a corresponding loss of dendritic
spines [226, 234, 235]. Consistent with the anatomical findings, the
frequency of miniature EPSCs is decreased without a change in
amplitude. Similarly, evoked AMPA receptor-mediated excitatory
synaptic currents are reduced by chronic stress in D1, but not D2,
MSNs [236], including in response to afferents from the
hippocampus [193]. These decreases in the excitation of D1 MSNs
may be sufficient, in and of themselves, to mediate an anhedonic
loss of reward behavior. Lim et al. [236] demonstrated that
preventing stress-induced AMPA receptor loss in D1 MSNs was
sufficient to prevent stress-induced loss of hedonic responses in
sucrose preference and cocaine-induced place preference
(although not the FST).
Chronic stress also impairs hippocampal – NAc LTP in D1 MSNs,

but not D2 MSNs. This differential effect suggests a possible stress-
induced biasing of NAc responses from D1 MSN towards D2 MSN
activation, hence favoring negative valence responses over
positive valence. Neuromodulators, including dopamine itself,
serotonin, and enkephalins are also likely to play a significant role
in gating synaptic strength and the balance between D1 and D2
MSN activity [217, 233, 237]. The intrinsic excitability of NAc MSNs
is also affected by stress. Susceptibility to social defeat stress is
accompanied by an increase in input resistance and firing in
response to depolarizing currents pulses in D1 MSNs, but not D2
MSNs [226, 234].
Although receiving less attention than cortical plasticity, there is

evidence that known and novel potential antidepressant com-
pounds exert some of their therapeutic benefits via actions within
the NAc. Chronic, but not acute, administration of fluoxetine to
stressed mice restores the strength of hippocampal excitatory
synapses in D1 MSNs and their ability to undergo LTP,
concomitant with restoration of sucrose preference [193].
Consistent with these synaptic findings, the probability of action
potential firing of neurons in the NAc in response to stimulation of
hippocampal afferents is increased by escitalopram administration
[238]. The net effect of these synaptic changes is to restore the
function of the NAc- VTA circuit. Chronic treatment with
escitalopram restores the ability of rewarding stimuli to trigger
DA release within the NAc in chronically stressed rats [239]. Almost
nothing is known about the mechanisms underlying the
restorative actions of SSRIs in the NAc.
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Ketamine also has effects on NAc synaptic function, including a
direct potentiation of PFC-NAc synapses. Ketamine also restores
the ability to induce LTP in the hippocampus-accumbens pathway
in stressed animals [240]. Restoration of synaptic function is
accompanied by restoration of circuit function. Ketamine restores
a stress-induced decrease in VTA dopaminergic cell firing [240]
and increases extracellular levels of dopamine in the nucleus
accumbens [241]. The mechanisms underlying these effects
remain unknown. Like the effects of ketamine in the cortex,
ketamine increases the power of high-frequency oscillations of
local field potentials in the NAc in unanesthetized mice [242],
suggesting a potential role for activity-dependent synapse
strengthening mechanisms. Given the lack of local excitatory
interactions within the NAc, it is likely that this high frequency
synchronized activity is projected onto the NAc via afferents from
the PFC and hippocampus. As elsewhere in the brain, elevated
BDNF – trkB signaling may be crucial within these mesolimbic
circuits [243]. Finally, local infusion of ketamine into the NAc
reversed stress-induced decreases in the phosphorylation of
GluA1 AMPARs at serines 831 and 845, which is known to
promote their insertion into synapses, suggesting a direct
mechanism for the potentiation of NAc synapses [244].
Increases in resolution and increased use of reward-based tasks

that correlate with preclinical studies have enhanced the ability to
resolve the NAc in human functional imaging studies and allowed
for new insights into the role its plasticity plays in reward deficits
in human depression. There is evidence that the NAc is activated
by reward anticipation and both motivational and hedonic aspects
of reward processing [245]. Defects in hippocampal – NAc
coupling have been observed to correlate with reward processing
deficits [246]. Unmedicated MDD patients show deficits in reward
learning, reduced responses in the ventral striatum for positive
prediction errors in a reward task, and reduced NAc- VTA
connectivity [247, 248]. There is limited evidence of the effect of
antidepressants on these measures of reward circuit function, but
it has been shown that improvements in self-reported depression
severity and negative affective bias are improved with chronic
SSRI administration in depressed patients and are strongly
correlated with increases in NAc activity and NAc- PFC con-
nectivity [249]. Similar increases in NAc-PFC connectivity correlate
with reduced symptom severity and quality-of-life measurements
in SSRI-responsive patients compared to unresponsive controls
[250]. More studies are clearly needed. In particular, direct before-
and-after comparisons of patients receiving fast-acting antide-
pressants would be of great interest. For example, Sterpinich et al.
[251] observed that ketamine increased responses in a reward task
and caused an accompanying increase in activity in the
orbitofrontal cortex, ventral striatum, and the ventral tegmental
area. Importantly, these effects persisted for up to a week after a
single ketamine administration, strongly supporting an important
role for plasticity in the cortico-mesolimbic circuitry in the genesis
and treatment of depression.

THE LATERAL HABENULA
The habenula is an epithalamic nucleus comprised of medial and
lateral subregions. The lateral habenula (LHb) is another key node
in regulation of reward behaviors that has been implicated in the
genesis of depressive symptoms and reward dysregulation [252].
It integrates glutamatergic inputs from the lateral hypothalamus
[253] and from the anterior cingulate and medial prefrontal
cortices [254]. Excitatory synapses onto LHb cells are characterized
by a high ratio of AMPAR- to NMDAR-mediated synaptic responses
[255], indicative of low levels of NMDAR expression. LHb neurons
also receive feed-forward and feedback GABAergic inhibition
[253, 255]. The glutamatergic neurons of the LHb have three
primary targets, the dopaminergic cells of the VTA, the
serotonergic neurons of the nucleus raphe, and the GABAergic

neurons of the rostromedial tegmental nucleus (RMTg). RMTg
neurons, in turn, project to the VTA and are largely responsible for
the predominantly inhibitory action of LHb projections onto VTA
dopaminergic neurons [256].
Activity of LHb neurons is generally correlated with aversive and

negative affective behaviors. LHb neurons fire in response to both
aversive stimuli and the absence of an expected reward [257–260].
Conversely, reward delivery decreases LHb discharge [257].
Optogenetic activation of LHb neurons via projections from the
lateral hypothalamic nucleus (LH) triggers avoidance and escape
behaviors, whereas optogenetic or pharmacological inhibition of
LHb cell discharge impairs avoidance and escape in response to
aversive stimuli [258–260]. With regard to behaviors typically used
to study depression and antidepressant drugs, acute physical
restraint, foot shock, tail suspension, forced swimming, and social
defeat are all accompanied by strong LHb activation [258, 260].
The consequences of LHb activity are largely mediated by its
output to the RMTg [261]. Importantly, activation of LHb inputs to
the RMTg reduced motivation to work for a rewarding sucrose
solution in an operant task, without reducing its rewarding
hedonic properties [262].
There have now been several demonstrations that chronic

stress results in changes in LHb discharge and synaptic function.
Mechanisms include both changes in the intrinsic excitability of
LHb neurons and plasticity of their synapses. Stress-induced
increases in firing are attributed to decreased function of
G-protein coupled K+ channels in LHb neurons [263]. Increased
burst discharges [264] are attributed to dysregulation of the
astrocytic K+ channels that regulate extracellular K+ concentra-
tions, thereby promoting hyperpolarization of LHb neurons [265],
although this hyperpolarization was not shown. Increased
numbers of burst-firing LHb neurons were observed in vitro and
in vivo in both a rat strain with congenital learned helplessness
and in wild type rats after chronic restraint stress, although no
overall change in membrane potential was reported [266].
Bursting in LHb cells is mediated by T-type voltage-dependent
Ca2+ channels and NMDA receptors. Surprisingly, bursting was
largely unaffected by AMPAR antagonists, suggesting that
synaptic activity does not drive bursting. Optogenetically induced
increases in burst firing in LHb neurons increased mobility in the
FST and decreased sucrose preference [266], like the effects of
chronic stress.
Chronic stress potentiates excitatory transmission onto LHb

cells in parallel with altered excitability. An increased probability of
presynaptic glutamate release in the LHb accompanies learned
helplessness and chronic restraint stress [255, 260]. Some forms of
chronic stress also increase the amplitude of spontaneous
excitatory synaptic responses [260]. Selective activity-dependent
potentiation of synapses formed by axons of LH neurons with LHb
neurons promoted LHb discharge and was sufficient to induce
mimic the behavioral effects of chronic stress in the forced swim
and sucrose preference tests [260, 267].
These behavioral results, although demanding to demonstrate,

can be predicted from previous evidence that LHb firing is
aversive. So, does the increase in LHb bursting drive behavioral
changes in response to chronic stress? Lesioning or pharmacolo-
gically silencing the LHb can normalize learned helplessness
responses [266, 268], including inhibition of NMDAR-mediated
LHb bursting [264]. Evidence that chemo- or optogenetic silencing
of LHb neurons can prevent pathological behaviors in a chronic
stress paradigm is lacking. Viral knockdown of beta-CaMK, the
enzyme underlying the stress-induced presynaptic potentiation of
LHb excitatory synapses, prevented forced swim and learned
helplessness behaviors in congenitally learned helpless rats [267].
Whether prevention of activity-dependent potentiation of LH-LHb
synapses would block behavioral changes in response to chronic
stress remains to be demonstrated. Nevertheless, the evidence is
plentiful and strong that the LHb is an important mediator of
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aversive behavioral responses via its outputs to the VTA and that
its behavior is profoundly increased in a variety of chronic stress
conditions used to model depression relevant behaviors in
rodents (for excellent further reviews, see: [252, 269, 270]).

FUTURE RESEARCH DIRECTIONS: PUTTING IT ALL TOGETHER
The work cited above, describing results from both preclinical and
human studies, provides compelling evidence, first, that pro-
longed stress, both physical and psychosocial, affects the
structure, protein composition, and function of excitatory
synapses in every area of the brain devoted to the processing of
reward related stimuli and cognitive, learning, and memory
processes. These plastic changes appear maladaptive. Excitatory
synapses generally become reduced in number and weaker in
areas devoted to directing attention and making decisions about
cues and stimuli and stronger in the pathways processing
negative valence stimuli. These synapses are the working
elements of the circuits they are embedded in and hence are
could be the cause of significant changes in the function of those
circuits. In general, the synaptic changes result in a weakening of
pathways that promote dopamine release by activating cells in the
VTA, such as the direct and indirect weakening of excitatory drive
of D1 MSNs in the NAc, and potentiation of pathways inhibiting
dopamine secretion, such as those within the LH-LHb-RMTg.
These concerted changes in synapses in response to chronic

stress have been found in essentially every circuit in every reward
pathway, providing a mechanistic explanation for the wide range
of symptoms that together constitute the clinical definition of
depression. As summarized above, there is strong evidence from
imaging and functional connectivity studies of human patients to
suggest that analogous changes occur in human MDD. Of course,
not all patients display the same combination of symptoms.
Perhaps the relative prevalence of individual symptoms in a given
MDD patient arises from the relative degree to which any
particular synapses and circuits are affected in that patient.
Considering emotional dysregulation [271], for example, an
overactive LHb circuit may favor an increase in negative affect.
In contrast, hypoactive PFC circuits might be more heavily affected
in patients with more prevalent cognitive and decision-making
symptoms. A better understanding of the function of these reward
circuits in preclinical models and human subjects and their
dysfunction in depression may thus help to distinguish between
subtypes of depression [2]. Because not all circuits and symptoms
may respond in the same manner to all antidepressants, a better
understanding may also guide the choice of antidepressant
therapies to employ. For example, increased negative affective
bias in depressed subjects was shown to respond rapidly to a
norepinephrine reuptake inhibitor, even though patients reported
no overall improvement in their overall depression [272]. The
distributed nature of these changes also complicates experimental
efforts to identify a single synapse or circuit as the unique ‘cause’
of a given behavioral deficit, given their highly interconnected
nature. Driving the LHb may overpower counterbalancing NAc
inputs to the VTA, for example, regardless of whether they are fully
functional or dysfunctional.
An underlying assumption of all preclinical models is that the

forms of chronic stress we produce experimentally in our animals
provides a realistic model of human depression. On the one hand,
the evidence of the etiological relevance of stressful life events to
human depression, either acutely or during critical developmental
windows, is very strong. On the other hand, environmental factors
are believed to account for only 60% of risk for MDD. Preclinical
studies are largely done on experimental animals with a relatively
homogenous genetic background, obscuring the important
contributions of genetics to susceptibility and resilience. Given
the likelihood that overall genetic risk results from small
differences in large numbers of genes, each with small

contributions to overall risk, this blind spot represents a particular
short coming in our current understanding and significant
experimental challenge for future progress.
Supporting the hypothesis that synaptic and circuit dysfunction is a

major cause of depression, there is increasing evidence that
restoration of the function of synapses and circuits is a common
mechanism of action underlying a wide range of known and novel
antidepressants. Those antidepressants that restore synaptic strength
slowly, such as SSRIs, restore synaptic strength slowly, whereas fast
acting antidepressants do so rapidly. Further supporting this
hypothesis of antidepressant action, these substances do not
necessarily share the same mechanisms of action. Although there is
overlap, some favor activity-dependent synaptic strengthening
mechanisms, such as ketamine and ketamine metabolites, whereas
others, such as SSRIs, favor neurotrophic growth factor signaling.
Nevertheless, all strengthen synapse function. The search for novel
antidepressants should be focused on a search for compounds that
share this mechanism of action. For example, we hypothesized that
negative allosteric modulators of GABAA receptors containing
alpha5 subunits would promote a transient, ketamine-like increase
in high frequency, synchronized oscillations in the PFC and
hippocampus and would therefore produce a ketamine-like rapid
antidepressant response. Subsequent preclinical experiments sup-
ported this hypothesis [152, 273].
One of the most exciting developments in the treatment of

depression and other psychiatric disorders has been the recent
findings that a single administration of psilocybin produces a
rapid and persistent improvement in self-reported depression
symptoms in patients resistant to conventional antidepressants
(e.g., [274]). There is also robust preclinical evidence that
psilocybin can restore both reward behaviors and synapse
structure and function. In the hippocampus, stress-impaired
reward behaviors are restored to baseline levels 24 h after a
single administration of psilocybin [275], exactly as seen with
other fast-acting antidepressants. Taking hippocampal brain slices
from these same mice revealed that psilocybin also restored the
strength of the stress-sensitive TA-CA1 synapses, concurrent with
the restoration of reward behavior, again much like other fast-
acting antidepressants. Similarly, in the PFC, psilocybin adminis-
tration to unstressed mice leads to an increase in the net
formation of new dendritic spines in pyramidal cells, persisting for
over one month, which is accompanied by an increase in the
frequency of spontaneous mEPSCs [276]. These preclinical
findings are paralleled by human functional imaging findings
that psychedelics change connectivity in reward- and emotion-
relevant brain regions in a persistent manner [277]. Surprisingly,
both studies suggested that the actions of psilocybin were
independent of the serotonin 2 A receptor that mediates the
mind-altering properties of psychedelics, raising the possibility of
dissociating the ‘trip’ from the antidepressant benefits of
psychedelics. Because of the expense and time-consuming nature
of current psychedelic therapies, involving multiple clinic visits
and a full day with one or more therapists, this could considerably
lower barriers to widespread use. An active current area of
research is to define the expression mechanisms underlying the
persistent increases in synaptic strength. Many of the same
processes described above are likely to be involved, including
neurotrophin signaling and enzymatic cascades promoting
receptor trafficking and process outgrowth [278]. It will be of
great interest to further identify and refine the beneficial
properties of these powerful compounds and determine whether
their promise is mediated by promoting plasticity of synapses and
reward circuits.
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