Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging synaptic density in depression

Abstract

Major depressive disorder is a prevalent and heterogeneous disorder with treatment resistance in at least 50% of individuals. Most of the initial studies focused on the monoamine system; however, recently other mechanisms have come under investigation. Specific to the current issue, studies show synaptic involvement in depression. Other articles in this issue report on reductions in synaptic density, dendritic spines, boutons and glia associated with stress and depression. Importantly, it appears that some drugs (e.g., ketamine) may lead to rapid synaptic restoration or synaptogenesis. Direct evidence for this comes from preclinical work. However, neuroimaging studies, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have become useful in assessing these changes in vivo. Here, we describe the use of neuroimaging techniques in the evaluation of synaptic alterations associated with depression in humans, as well as measurement of synaptic restoration after administration of ketamine. Although more research is desired, use of these techniques widen our understanding of depression and move us further along the path to targeted and effective treatment for depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parametric VT images for baseline and 24 hr post-ketamine scans for a representative participant with MDD and low baseline synaptic density levels.

References

  1. WHO: Depression. 2016.

  2. Cai H, Xie X, Zhang Q, Cui X, Lin J, Sim K, et al. Prevalence of suicidality in major depressive disorder: a systematic review and meta-analysis of comparative studies. Front Psychiatry. 2021. https://www.who.int/health-topics/depression#tab=tab_1.

  3. Diaz F, James D, Botts S, Maw L, Susce M, Leon JD. Tobacco smoking behaviors in bipolar disorder: a comparison of the general population, schizophrenia, and major depression. Bipolar Disord. 2009;11:154–65.

    PubMed  Google Scholar 

  4. Zisook S, Ganadjian K, Moutier C, Prather R, Rao S. Sequenced treatment alternatives to relieve depression (STAR*D): lessons learned. J Clin Psychiatry. 2008;69:1184–5.

    PubMed  Google Scholar 

  5. Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci. 2022;23:86–103.

    CAS  PubMed  Google Scholar 

  6. Abdallah C, Mason G. Novel approaches to estimate prefrontal synaptic strength in vivo in humans: of relevance to depression, schizophrenia, and ketamine. Neuropsychopharmacology. 2022;47:399–400.

    PubMed  Google Scholar 

  7. Yu Y, Herman P, Rothman D, Agarwal D, Hyder F. Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab. 2018;38:1339–53.

    PubMed  Google Scholar 

  8. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32:1222–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang J, Gohel S, Vachha B. Current methods and new directions in resting state fMRI. Clin Imaging. 2020;65:47–53.

    PubMed  PubMed Central  Google Scholar 

  10. Hennig J, Speck O, Koch M, Weiller C. Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging. 2003;18:1–15.

    PubMed  Google Scholar 

  11. Liang X, Connelly A, Calamante F. Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics. NeuroImage. 2014;87:265–75.

    PubMed  Google Scholar 

  12. Liang X, Zou Q, He Y, Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA. 2013;110:1929–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdallah C, Averill C, Salas R, Averill L, Baldwin P, Krystal J, et al. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:566–74.

    PubMed  PubMed Central  Google Scholar 

  14. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology. 2018;43:2154–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM. In vivo (13) C and (1) H-[(13) C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR Biomed. 2019;32:e4172.

    PubMed  Google Scholar 

  16. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, et al. Glutamate metabolism in major depressive disorder. Am J Psychiatry. 2014;171:1320–27.

    PubMed  PubMed Central  Google Scholar 

  17. Kassem M, Lagopoulos J, Stait-Gardner T, Price W, Chohan T, Arnold J, et al. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol. 2013;47:645–61.

    CAS  PubMed  Google Scholar 

  18. Bremner J, Randall P, Scott T, Bronen RA, Seibyl J, Southwick S, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1997;152:973–81.

    Google Scholar 

  19. Bremner J, Narayan M, Anderson E, Staib L, Miller H, Charney D. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157:115–8.

    CAS  PubMed  Google Scholar 

  20. Schmaal L, Hibar D, Samann P, Hall G, Baune B, Jahanshad N.Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

    CAS  PubMed  Google Scholar 

  21. Roddy D, Kelly J, Farrell C, Doolin K, Roman E, Nasa A, et al. Amygdala substructure volumes in major depressive disorder. NeuroImage Clin. 2021;31:102781.

    PubMed  PubMed Central  Google Scholar 

  22. Abdallah C, Jackowski A, Salas R, Gupta S, Sato J, Mao X, et al. The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology. 2017;42:1739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai D, Lacadie C, Holmes S, Cool R, Anticevic A, Averill C, et al. Ketamine normalizes the structural alterations of inferior frontal gyrus in depression. Chronic Stress. 2020;4:2470547020980681.

    PubMed  PubMed Central  Google Scholar 

  24. Nemati S, Abdallah C. Increased cortical thickness in patients with major depressive disorder following antidepressant treatment. Chronic Stress. 2020;4:2470547019899962.

    PubMed  PubMed Central  Google Scholar 

  25. Scheinost D, Holmes S, DellaGioia N, Schleifer C, Matuskey D, Abdallah C, et al. Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder. Neuropsychopharmacology. 2018;43:1119–27.

    PubMed  Google Scholar 

  26. Holmes S, Scheinost D, DellaGioia N, Davis M, Matuskey D, Pietrzak R, et al. Cerebellar and prefrontal cortical alterations in PTSD: structural and functional evidence. Chronic Stress. 2018;2:1177/2470547018786390.

  27. Kraus C, Mkrtchian A, Kadriu B, Nugent AC, Zarate CA, Jr, Evans JW. et al. Evaluating global brain connectivity as an imaging marker for depression: influence of preprocessing strategies and placebo-controlled ketamine treatment. Neuropsychopharmacology. 2020;45:982–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Dai Z, Peng H, Tan L, Ding Y, He Z, et al. Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Hum Brain Mapp. 2014;35:1154–66.

    PubMed  Google Scholar 

  29. Murrough J, Abdallah C, Anticevic A, Collins K, Geha P, Averill L, et al. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum Brain Mapp. 2016;37:3214–23.

    PubMed  PubMed Central  Google Scholar 

  30. Abdallah C, Dutta A, Averill C, McKie S, Akiki T, Averill L, et al. Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients. Chronic Stress. 2018;2:2470547018796102.

    PubMed  PubMed Central  Google Scholar 

  31. Abdallah C, Averill L, Collins K, Geha P, Schwartz J, Averill C, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42:1210–19.

    CAS  PubMed  Google Scholar 

  32. Nemati A, Akiki T, Roscoe J, Ju Y, Averill C, Fouda S, et al. A unique brain connectome fingerprint predates and predicts response to antidepressants. iScience. 2020;23:100800.

    PubMed  Google Scholar 

  33. Abdallah C, Averill C, Ramage A, Averill L, Goktas S, Nemati S, et al. Salience network disruption in U.S. army soldiers with posttraumatic stress disorder. Chronic Stress. 2019;3:2470547019850467.

    PubMed  PubMed Central  Google Scholar 

  34. Abdallah C, Averill C, Ramage A, Averill L, Alkin E, Nemati S, et al. Reduced salience and enhanced central executive connectivity following PTSD treatment. Chronic Stress. 2019;3:2470547019838971.

    PubMed  PubMed Central  Google Scholar 

  35. Abdallah C, Wrocklage K, Averill C, Akiki T, Schweinsburg B, Roy A, et al. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Transl Psychiatry. 2017;7:e1045.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anticevic A, Brumbaugh M, Winkler A, Lombardo L, Barrett J, Corlett P, et al. Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol Psychiatry. 2012;73:565–73.

    PubMed  PubMed Central  Google Scholar 

  37. Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:595–05.

    PubMed  Google Scholar 

  38. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999;56:1043–7.

    CAS  PubMed  Google Scholar 

  39. Sanacora G, Mason G, Rothman D, Hyder F, Ciarcia J, Ostroff R, et al. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry. 2003;160:577–9.

    PubMed  Google Scholar 

  40. Price R, Shungu D, Mao X, Nestadt P, Kelly C, Collins K, et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009;65:792–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193–200.

    CAS  PubMed  Google Scholar 

  42. Abdallah C, Mason G, DellaGioia N, Sanacora G, Jiang L, Matuskey D, et al. mGluR5 and glutamate involvement in MDD: a multimodal imaging study. Biol Psychiatry. 2017;2:449–56.

    Google Scholar 

  43. Gosnell S, Meyer M, Jennings C, Ramirez D, Schmidt J, Oldham J, et al. Hippocampal volume in psychiatric diagnoses: Should psychiatry biomarker research account for comorbidities? Chronic Stress. 2020;4:2470547020906799.

    PubMed  PubMed Central  Google Scholar 

  44. McMillan R, Sumner R, Forsyth A, Campbell D, Malpas G, Maxwell E, et al. Simultaneous EEG/fMRI recorded during ketamine infusion in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109838.

    CAS  PubMed  Google Scholar 

  45. Abdallah C, Krystal J. Ketamine and rapid acting antidepressants: Are we ready to cure, rather than treat depression? Behav Brain Res. 2020;390:112628.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdallah C, Averill L, Akiki T, Raza M, Averill C, Gomaa H, et al. The neurobiology and pharmacotherapy of posttraumatic stress disorder. Annu Rev Pharm Toxicol. 2019;59:171–89.

    CAS  Google Scholar 

  47. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529.

    PubMed  PubMed Central  Google Scholar 

  48. Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Molecular Psychiatry. 2022;10:1–9.

    Google Scholar 

  49. Deschwanden A, Karolewicz B, Feyissa A, Treyer V, Ametamey S, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [11 C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168:727–34.

    Google Scholar 

  50. Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11 C] ABP688 and PET imaging study in depression. Mol Psychiatry. 2018;23:824–32.

    CAS  PubMed  Google Scholar 

  51. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000;101:11–20.

    CAS  PubMed  Google Scholar 

  52. Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, et al. Comparison of [(11)C]UCB-J and [(18)F]FDG PET in Alzheimer’s disease: a tracer kinetic modeling study. J Cereb Blood Flow Metab. 2021;41:2395–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding support was provided by the Veterans Affairs National Center for PTSD (IE), National Institute of Mental Health (NIMH) Grant R01MH104459 (IE).

Author information

Authors and Affiliations

Authors

Contributions

SH prepared PET imaging portions of the manuscript and contributed to the overall flow. CA prepared the MR imaging portions of the manuscript and contributed to the overall flow. IE designed the project and oversaw manuscript preparation.

Corresponding author

Correspondence to Irina Esterlis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, S.E., Abdallah, C. & Esterlis, I. Imaging synaptic density in depression. Neuropsychopharmacol. 48, 186–190 (2023). https://doi.org/10.1038/s41386-022-01368-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01368-4

Search

Quick links