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Genome-wide association studies (GWAS) have revolutionized our
ability to understand the genetic underpinnings of biomedical
traits; however, their extreme Eurocentric bias has exacerbated
health inequities. In this perspective, we highlight recent efforts to
address the imbalance of ancestral representation in genomics
research, including the formation of large collaborative efforts and
the development of novel statistical methods to improve
translation of genomic insights across ancestries. Using more
ancestrally diverse GWAS samples will improve our understanding
of the genetic architecture of complex diseases, not only for the
understudied populations, but for individuals of all ancestral
backgrounds.
GWAS have yielded a wealth of clues about the molecular

basis of many common human diseases [1]. Firstly, GWAS have
repeatedly identified associations with genes that are the
targets of existing and highly effective pharmacologic agents,
such as PCSK9 for cardiovascular health [2], and DRD2 for
schizophrenia [3], and may allow for the identification of
additional novel biological pathways. Secondly, GWAS have
revealed that virtually all traits are influenced by many variants,
each with small effect sizes, distributed throughout the genome.
Using GWAS results, we can combine the risk conferred by these
multiple variants into a single genetic liability score (i.e.,
polygenic score (PGS)), which may assist in risk prediction and
disease stratification [4], potentially contributing to precision
medicine. Despite these advances, there is a significant problem
with GWAS: most current well-powered GWAS are performed on
samples with a drastic overrepresentation of individuals of
European ancestry. This is problematic because genomic results
often do not fully transfer across ancestries [5]. Although it is
presumed that people of all ancestries share the same under-
lying biological disease mechanisms and causal variants, some
variants may be more frequent or more correlated in different
genetic backgrounds. As a result, variants may be statistically
correlated with a trait in one ancestral group but not another.
Similarly, while PGS might perform well within a specific
ancestry, their accuracy decreases when applied to others
[6–8]. This lack of diversity in gene discovery cohort composition
alongside a paucity of methods designed for diverse popula-
tions has resulted in reduced transferability of findings across
ancestries, which may exacerbate existing health disparities and
stigmatization [9, 10].

One way to address this problem is by generating GWAS
datasets in reference panels based on individuals from diverse
ancestries. Current efforts have been propelled by both academic
and direct-to-consumer genetic companies (e.g., All of Us, Million
Veterans Program, China Kadoorie Biobank, Biobank Japan,
TOPMed, 23andMe), alongside large-scale data aggregation
largely led by consortia (e.g., Latin American Genomics Con-
sortium, H3Africa, PAGE, Qatar Biobank, GenomeAsia 100k,
gnomAD). To support these massive efforts, it is of critical
importance to facilitate funding mechanisms. Of equal importance
are targeted outreach and education efforts (e.g., workshops,
community engagement, and development and distribution of
informational materials) that build trust in genomic research
among minority populations, ensuring they benefit maximally
from the research.
However, collecting the vast amounts of data needed to

diversify our datasets is an immense undertaking. Along with the
growing awareness that genomic studies need to include more
diverse populations, there is also a push to improve methods for
studying data from these populations. Some of the under-
represented populations that may fill this gap are genetically
heterogeneous and contain genetic components from multiple
continental ancestries, also known as “admixed”. For example,
Latin American and African American individuals are typically
admixed between two or three different continental ancestries.
Admixed populations have generally been excluded from GWAS
due to the difficulty of effectively accounting for their com-
plex genomic structure. One promising strategy to account for this
structure is the use of local ancestry (i.e., the particular ancestry of
each genomic segment of an individual). Early association efforts
in admixed cohorts utilized local ancestry via admixture mapping
and novel tools are being developed that build local ancestry into
GWAS [11], including Tractor [12]. Other recent works have
developed ancestry-aware methods that only require summary
statistics (e.g., Multi-Ancestry Meta-Analysis [13]). Applying these
multi-ancestry genomics methods to combine more samples will
consequently increase power to detect genetic factors for
complex traits shared across ancestries, and help localize signals
closer to causal variants (e.g. [14]). In addition to GWAS, other
polygenic methods are being actively developed to better
estimate heritability [15], generate cross-ancestry genetic correla-
tions [16], and improve the transferability of PGS across
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populations [17–20]. Along with other sources of omic data (many
of which are also currently Eurocentric), novel methods leverage
cross-population prediction at the level of gene transcript [21],
cell-type specific regulatory annotations [22], and even gene
network analyses.
Despite much progress, many current methods do not account

for the complex sociocultural experiences of individuals that may
impact health outcomes or disease prevalence [23]. When
ancestry-specific results arise, we must be cognizant that these
may reflect differences in case ascertainment as well as environ-
mental exposures, societal factors, and demographics (e.g., socio-
economic status, diet) that may be confounded by ancestry.
Special attention is needed to ensure that the phenotypes and
ancestry categorization in understudied groups are well-defined.
Beyond these efforts to generate more diverse data and

enhance methods for its analysis, other challenges remain to
increase equity in genomics research [5, 9, 10, 24]. To work toward
closing the diversity gap, it is important that there is sufficient and
sustained support for efforts to increase the diversity of scientists
through training programs and capacity building (e.g., https://
gingerprogram.org), and the promotion and recognition of local
researchers. Current and future consortium efforts should main-
tain equitable and ethical partnerships with low- and middle-
income countries (LMIC), ensuring that they represent full partners
and not data harvesters. There must also be an increased effort to
revise current publication and grantmaking policies to ensure that
they do not disadvantage researchers from underrepresented
communities. The success of these initiatives will require support
from funding agencies and scientific journals, for example, by
considering studies of all cohort sizes, encouraging replication of
findings in distinct ancestries, offering fee waivers for publication
and open access to journals, particularly in LMICs, and flexible data
sharing policies [25]. These efforts will ensure that the benefits of
genomics research are shared across populations, striving toward
global health equity.
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