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Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and
molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and
responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit
types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive
functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-
GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study
investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a
racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73
exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces
immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild
stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood
symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS
after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic
mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with
anti-stress neurotrophic effects.
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INTRODUCTION
Chronic stress is a risk factor for psychiatric disorders including
Major Depressive Disorder (MDD), displaying mood and cognitive
symptoms [1–3]. Interventions to treat depression and other
stress-related psychopathologies have focused on the monoami-
nergic system [4] with limited efficacy on mood symptoms and no
efficacy on cognitive symptoms, highlighting unmet clinical
needs. Recent studies have focused on the glutamatergic system
[5], with promising effects on mood, cognition and cell structure
[6, 7]. Similar efficacies were reported with compounds targeting
the GABAergic system [8].
Mood and cognitive symptoms result from cellular dysfunctions,

altered communication between cells and neuronal atrophy [9–13].
Transcranial magnetic stimulation in MDD patients shows reduced
GABAergic function (i.e., cortical inhibition) [14, 15], contributing to
impaired excitation/inhibition balance in MDD [16, 17]. Reduced
GABA levels are reported in the occipital cortex [18–24], prefrontal
cortex (PFC) [25] and anterior cingulate cortex [18, 25–27]. In the
PFC, synaptic densities and expression of synaptic function-related
genes are reduced [12, 28]. Chronic stress-related disorders [13, 29]

and animal models report similar findings [30–32] and demon-
strate critical links between prefrontal and hippocampal functions
[33]. Chronic stress reduces dendritic length and spine density in
the PFC and hippocampus (HPC), likely contributing to cognitive
deficits. Of approved treatments, some monoamine-based inter-
ventions have reported structural plasticity and remodeling in
chronic stress models [34–36], and more recently the NMDA
receptor antagonist, ketamine, has shown efficacy at increasing
spine density and dendritic complexity in mice, along with
antidepressant properties [37]. The neurotrophic effects of
ketamine are hypothesized to act through BDNF-TrkB signaling
while its fast-acting antidepressant properties are suggested to be
initially mediated by activity on GABAergic neurons followed by
long-term GABA and glutamate changes [38], highlighting a
potential role for GABA in these therapeutic effects.
GABA signals through ionotropic GABAA receptors (GABAA-Rs)

and metabotropic GABAB receptors. GABAA-Rs are pentameric ion
channels, formed by a combination of 19 subunit subtypes [39].
Drugs acting on GABAA-Rs exist (benzodiazepines or imidazodia-
zepines), but their use is limited because of side effects (sedation)
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due to broad activity at several receptor subunits, including α1-
GABAA-Rs [40–42]. Studies demonstrated α2-GABAA-Rs, strongly
present in the amygdala [43–45] and HPC [43, 46, 47], are linked to
regulation of anxious phenotypes [48–52]. The role of α3-GABAA-
Rs are not fully characterized, but appear linked to behavioral
despair in mice [53]. Other studies link α5-GABAA-Rs with
cognitive performances [8, 54, 55], aligned with their preferential
expression in cognitive processing regions (HPC and mPFC)
[43, 56]. Our group and others showed targeting α5-GABAA-Rs
with a positive allosteric modulator (PAM) reverses stress- [55] and
age-[57, 58] related cognitive deficits, and chronically reverses
age-related neuronal atrophy [8]. Potentiation of α2- and α5-
GABAA-Rs, while limiting potentiation of α1-GABAA-R, is hypothe-
sized to improve mood and cognitive symptoms while reducing
side effects [40, 59], altogether suggesting potential for treatment
of symptomatic and morphological alterations in chronic stress
and MDD.
Previously, we showed the α5-PAM GL-II-73, has pro-cognitive

and anxiolytic properties, and reduces immobility in the forced
swim test (suggesting potential for antidepressant properties in
human) at 10mg/kg IP but not at 5 mg/kg IP [55], and
neurotrophic effects at 30 mg/kg PO [58] in mice. However, it
remained unknown if its enantiomer, GL-I-54, has similar or
complementary properties. Here, we investigated the similarities
and/or complementarities of receptor selectivity and behavioral
efficacy profile of GL-I-54 and GL-II-73 in stressed mice. We then
investigated the symptomatic and neurotrophic potentials of a
racemic mixture of both compounds in a mouse model of chronic
stress.

MATERIALS AND METHODS
Details provided in the supplementary material.

Compounds
GL-I-54 and GL-II-73 were synthesized as in [60], with >99% chemical and
optical purity. GL-RM is a 1:1 mix of each compound.

Electrophysiology
Electrophysiological recordings used HEK-293T cell line transfected with
full-length cDNAs for human GABAA-R subtypes α(1/2/3/4/5)β3γ2 [61, 62].
PubMed Protein Sequence repository for GABAA-R subunits reports the
binding pocket formed by α1/2/3/5 and γ2 is 100% conserved between
mouse and human, predicting similar activity and selectivity across species.
Current recordings were performed in absence or presence (5 μM) of
GABA. GL-I-54 or GL-II-73 was applied at 0.033–33.33 μM concentrations.

Animals
Seven independent cohorts of 8-week old C57BL/6 mice (50% female)
were obtained from Military Medical Academy (Belgrade, Serbia) or
Jackson Laboratories (Stock#000664; MA, USA), measuring: pharmacoki-
netics (#1; n= 25), individual enantiomers on elevated plus maze and
forced swim test (#2; n= 24), effect of GL-I-54 on Y-maze (#3; n= 42), GL-I-
54 side effects in the rotarod (#4, n= 18), and acute (#5; n= 36) and
chronic (#6; n= 36) efficacy of GL-RM and supplementary maximum
tolerated dose of GL-I-54 (#7; n= 18). Animals were individually housed
and maintained on a 12 h light/dark cycle (7:00 ON, 19:00 OFF), with ad
libitum food and water.

Ethical statement
All animal work was completed in accordance with Ontario Animals for
Research Act (RSO 1990, Chapter A.22), Canadian Council on Animal Care
(CCAC), Ethical Council for the Protection of Experimental Animals of the
Ministry of Agriculture, Forestry and Water Management of the Republic of
Serbia, and was approved by the Institutes’ Animal Care Committees.

Drug administration
GL-I-54 (1, 3, 5, 10, 30mg/kg), GL-II-73 (5 mg/kg) or GL-RM (10 mg/kg) were
diluted in vehicle solution (85% distilled H2O, 14% propylene glycol (Sigma

Aldrich) and 1% Tween 80 (Sigma Aldrich)) and administered intraper-
itoneal (IP), 30 min before testing. For oral administration, GL-RM was
prepared in tap water (30mg/kg) and given through drinking water,
considering 6 mL average daily fluid intake/animal.

GL-I-54 pharmacokinetics
Mice were treated IP with 3mg/kg GL-I-54 and euthanized at different
time points (5–720min post-injection) for brain and plasma quantification
of ligand by ultraperformance LC-MS/MS (cassette dosing) [63]. In vitro
hydrolytic plasma stability of GL-I-54 was tested in vitro at 37 °C,
utilizing blank mouse plasma spiked with GL-I-54 and internal standard,
as in [64].

Plasma protein and brain tissue binding studies
A rapid equilibrium dialysis assay determined the free fraction of GL-I-54 in
mouse plasma and brain tissue as in [65]. GL-I-54-free brain concentrations
were calculated by multiplying the total brain concentrations with the
appropriate free fractions determined by rapid equilibrium dialysis.

Liver microsomal assay
Metabolic stability was tested in C57BL/6 mouse liver microsomes at
2 µM and 0.5 mg/mL of matrix concentration, as in [66]. NADPH
solution, Microsomes/S9 and compounds were added to assay plates.
Plates were quenched at T0, 30, 60, and 120 min and assessed in
refrigerated LC-MS/MS autosampler. Intrinsic hepatic clearance calcula-
tions used 45 mg microsomes/g of liver and 87.5 g liver/kg of body
weight for mouse.

Stress paradigms
Two stress paradigms were utilized. The first, chronic restraint stress (CRS),
was used with cohorts #2 and #3, consisting of placing mice in a 50mL
Falcon™ Tube for 1 hr twice daily for 1 week. This paradigm consists of a
strong stressor that is commonly used for early drug screens. Due to the
stress CRS applies, this test is not appropriate for longer (chronic) studies.
Therefore, cohorts #5 and #6 were subjected to Unpredictable Chronic
Mild Stress (UCMS), a stress paradigm that relies on milder stressors, has
slower onset and typically better relates to disease state. These study
designs also allow for replication between two different stress paradigms.
We used randomized mild stressors (Light modification, cage tilt, predator
odor, reduced space, reduce space with odor, restraint, wet bedding, new
bedding, no bedding exchange mice or forced bath) twice daily over
6 weeks. Weeks with behavioral testing applied one stressor per day after
the behavioral testing (2 weeks). CRS and UCMS animals were housed in a
separate room from controls, without environmental enrichment to
exacerbate effects of other stressors.

Behavioral tests
Side effects were measured in the rotarod test in cohort #4, assessing
locomotor coordination on latency to fall off an accelerating rod over 6
trials and in a maximum tolerated dose-clinical observation study
(Supplementary Materials Fig. 4). Mice in cohorts #2 were tested in the
elevated plus maze (EPM), measuring avoidance of open arms for 10
min as a proxy of anxiety [67], and in the forced swim test (FST),
measuring time spent immobile for 6 min. In cohort #3, mice were
exposed to CRS to induce a working memory deficit in the Y maze test,
and to test the capacity of reversal of GL-I-54. In cohorts #5 and #6, mice
were subjected to UCMS, and each animal’s coat state was scored (0=
well-groomed, smooth coat, 1=soiled coat or bald patches) weekly for
seven coat regions, as in [68]. Behavioral screen included: anxiety-like
avoidance behavior (EPM, open-field, OF; Novelty Suppressed Feeding,
NSF; and the Phenotyper Test [67], PT), Sucrose Consumption; (SC),
immobility in the FST and cognitive function (Y-maze alternation
task [55, 58, 69]).

Tissue collection and golgi staining
Cohort #6 was euthanized by cervical dislocation 24 h after last behavioral
test. Brains were immersed in Golgi-Cox staining solution, and assigned a
unique identifier (4 brains/group). Brains were shipped to NeuroDigiTech
(San Francisco CA, USA) for sectioning (100 µm thickness), mounting and
blind quantification of basal and apical dendrites of PFC and CA1
pyramidal cells using NeuroLucida v10 software. Neurons (n= 6/animal)
were analyzed for dendritic length, spine number and spine density [70].
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Statistics
Statistical analyses used GraphPad Prism 9. Electrophysiology data and
compounds activity at GABAA-R subunits were compared to 100% using
t-tests. Other analyzes used two-way ANOVA with concentration and
subunit as co-factors, and Bonferroni post-hoc tests. Behavioral analyzes

used one-way or two-way ANOVA, and repeated measure ANOVA as
relevant. Fishers PLSD tests were used for post-hoc analyses.
Z-scores were calculated to assess consistency of behavioral phenotypes

across tests, referred to as z-emotionality using averaged z-scores of
behavioral tests as in [71]. Full calculations in supplementary.
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RESULTS
Statistical significances are provided in Supplementary Tables.

GL-I-54 and GL-II-73 exhibit different GABAA-R potentiation
profiles but similar metabolic stability
Both enantiomers were confirmed PAMs, not agonists (Supple-
mentary Fig. 1 and Fig. 1A, B), acting only in the presence of GABA.
GL-I-54 significantly increased potentiation at α2-GABAA-Rs
(>0.03 µM), α3-GABAA-Rs (>0.33 µM), α1-GABAA-Rs (>1 µM) and
α5-GABAA-Rs (0.03, 0.33 and 3.33 µM; Fig. 1A), with preferential
activity at α3- and α2- over α1-, α4- and α5-GABAA-Rs
(Supplementary Table 1A).
GL-II-73 significantly increased potentiation at α5-GABAA-Rs

(>1 µM), α2-GABAA-Rs (3.33 µM), α3-GABAA-Rs (33.33 µM) and α1-
GABAA-Rs (33.33 µM; Fig. 1B), with preferential activity at α5-
GABAA-Rs over α1-GABAA-Rs (>0.3 µM), α2-GABAA-Rs (between
3.3 and 10 µM), α3-GABAA-Rs (between 1 and 10 µM) and α4-
GABAA-Rs (>0.33 µM) (Supplementary Table 1B), confirming data
previously published [55].

Pharmacokinetic profile, brain penetrance and stability
Pharmacokinetic profile of GL-I-54 dosed at 3 mg/kg in mice is
represented in Fig. 1C (statistical analyses in Supplementary
Table 2). Accounting for the doses administered in respective
studies, GL-I-54 and GL-II-73 exhibit comparable pharmacokinetic
patterns. As a representative example, 20 min after the 3mg/kg
dose, GL-I-54 achieved 311.75 ± 6.72 ng/g, while GL-II-73 reached
264.61 ± 38.22 ng/g (Supplementary Fig. 2). After appropriate
adjustments (for the 5mg/kg dose, free fraction, brain tissue
density and unit), these close-to-maximum concentrations achiev-
able in the mouse brain correspond to the 0.100–0.330 μM
concentration range in electrophysiological recordings (calcula-
tion in Supplementary Fig. 2). This implies that, in acute behavioral
experiments with 5 mg/kg dose, GL-I-54 likely potentiates α1, α2,
α3 and α5 GABAA-Rs, however, α1 potentiation is mild. 5 mg/kg of
GL-II-73, on the other hand, is fairly silent on all GABAA-Rs, with
the potential to mildly activate α2 and α5 receptors; on α1 and α3
receptors, nevertheless, it behaves as a null modulator. Plasma
and brain free fractions of GL-I-54 were 22.57% and 11.49%,
respectively, while, as previously reported for GL-II-73 were
20.39% and 12.14% [55], respectively. Brain to plasma ratio (Kp)
evaluates brain penetrance (penetrant when Kp > 0.04). GL-I-54 is
brain penetrant (Kp= 0.20), similarly to GL-II-73 (Kp= 0.30), which
is further supported by the ratio of unbound brain to unbound
plasma ligand concentrations values, Kp,uu (0.10 vs 0.18, respec-
tively). GL-I-54 displayed high in vitro metabolic stability, although
lower compared to GL-II-73; after 4 h of incubation in mouse

plasma, the fraction of remaining intact ligand was 78.41% (vs
98.88% of GL-II-73 [55]). In the liver microsomal assay, GL-I-54
showed a 198min half-life with 70% remaining after 2 h. Intrinsic
hepatic clearance was 27.6 mL/min/kg. GL-II-73 showed a longer
half-life, 256min, with 75.6% remaining after 2 h. Intrinsic hepatic
clearance was 21.3 mL/min/kg.

Acute administration of GL-I-54 displays anxiolytic effects and
reverses spatial working memory deficits in the chronic
restrain stress model with locomotor side effects at higher
dose
In mice subjected to CRS, GL-I-54 (5mg/kg) and GL-II-73 (5mg/kg)
were tested for their effects on anxiety-related avoidance in the
elevated plus maze (EPM), and on immobility in the forced swim
test (FST). Effects on spatial working memory were tested in the
Y-maze (5mg/kg and 10mg/kg). After CRS, GL-I-54 and GL-II-73 had
no effect on percent time in open arms of the EPM or percent
entries into open arms (Fig. 1D, E; and Supplementary Table 2). In
the FST, CRS increased time spent immobile, which was significantly
reversed by GL-I-54 (Fig. 1F), suggesting GL-I-54 reverses stress-
induced increase in immobility in this test. Interestingly, GL-I-54
given in non-stressed animals at the dose of 5mg/kg showed a
trend at increasing time in the open arm in the EPM, and
significantly reduced time spent immobile in the FST (Supplemen-
tary Fig. 3). In the Y-maze, CRS induced an alternation rate deficit
that was reversed by GL-I-54 at 10mg/kg but not 5mg/kg (Fig. 1G),
suggesting the capacity of reversing spatial working memory
deficits. Locomotor side effects of GL-I-54 at 10mg/kg were tested
in the rotarod (Fig. 1H, and Supplementary Table 2) to support
previous finding from a maximum tolerated dose-clinical observa-
tion study demonstrating sedative properties of GL-I-54 (Supple-
mentary Fig. 4). Decreasing latency to fall 60min after injection was
found, suggesting sedation at this dose.

Acute administration of GL-RM reverses spatial working
memory deficits in the UCMS model
Based on the selective effects observed with acute administration
of GL-I-54 or GL-II-73 alone at 5 mg/kg, we tested potential
additive effects and low side effects using a 1:1 racemic mixture of
5 mg/kg each, called GL-RM, in the UCMS model (Fig. 2A; and
Supplementary Table 3), with a final GL-RM dose of 10 mg/kg.
Weekly monitoring showed UCMS deteriorated coat state, not
reversed by acute treatment, weight gain remained unaffected
(Supplementary Fig. 5). Using the Phenotyper, no locomotor
activity differences were detected between groups with GL-RM
injection supporting its lack of sedative effects (Supplementary
Fig. 6).

Fig. 1 Electrophysiological, pharmacokinetic and behavioral profiles of GL-II-73 and GL-I-54. Electrophysiological recordings were
obtained from HEK-293T cells transfected with full-length cDNA for human GABAA receptor subtypes α1β3γ2, α2β3γ2, α3β3γ2, α4β3γ2 or
α5β3γ2, in presence of GL-I-54 (A) or GL-II-73 (B), and in the presence of GABA in the medium (5 μM). Pharmacokinetic profile of GL-I-54 was
also examined (C). Plasma, brain and free brain concentration-time profile of GL-I-54 after intraperitoneal cassette administration of 3 mg/kg
dose in male C57BL/6 mice (n= 3 per time point). Cmax, maximum concentration in plasma or brain; Tmax, time of maximum concentration in
plasma or brain; AUC0–720, area under the plasma or brain concentration-time curve from 0 to 720min; AUC0-∞, area under the plasma or brain
concentration-time curve from 0 to extrapolated infinite time; t1/2, elimination half-life from plasma or brain; β, elimination constant rate from
plasma or brain; Kp, brain-to-plasma partition coefficient (Kp= AUC0-∞, brain/AUC0-∞, plasma); Kp,uu, ratio of unbound brain to unbound
plasma drug concentrations (Kp,uu= Kp × unbound fraction in brain/unbound fraction in plasma). GL-I-54 and GL-II-73 were then tested in the
elevated plus maze and forced swim test at the dose of 5mg/kg, in mice previously exposed to chronic restraint stress (CRS). Drugs were
administered IP, 30min prior to testing. Percent time spent in the open arms (D) and percent entries into open arm (E) showed no difference
between groups. Time immobile (F) showed more time spent immobile in the CRS-Vehicle group, and less time immobile in animals receiving
GL-I-54, compared to CRS-Vehicle. GL-II-73 did not show an effect. GL-I-54 was tested in the Y-maze task, assessing working memory (G).
Animals subjected to CRS and receiving vehicle showed a significant decrease in alternation rate, suggesting a working memory deficit.
Animal subjected to CRS and receiving the highest dose of GL-I-54 showed significant increase in alternation rate, suggesting reversal of
working memory deficits induced by CRS. Finally, independent mice were tested in the rotarod (H; N= 5 Control Vehicle and N= 6 GL-I-54).
Mice were trained to maintain themselves on a rotating rod (rotarod) for 3 trials. Then, they were injected with GL-I-54 at 10mg/kg, and tested
5min, 20min and 60min past injection time. Latency to fall from the rod was recorded, and showed significant reductions in latency to fall in
mice receiving GL-I-54. All values are represented as mean ± standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001 compared to 100%
in A, B) or to Control, Control/Vehicle in D-G. θp < 0.05 compared to CRS-Vehicle.
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In the EPM, there was no effect of UCMS or treatment on
percent time in open arms (Fig. 2B). There was a trend level effect
of stress reducing the percent of entries into open arms but no
effect of treatment (Fig. 2C). NSF latency to approach found a
significant interaction between UCMS and treatment, due to

reduced latency in UCMS+ GL-RM treated animals compared to
Control+GL-RM and compared to UCMS+ vehicle (Fig. 2D),
suggesting anxiolytic properties through reduced avoidance.
Latency to bite was unaffected by UCMS or treatment (Fig. 2E).
Phenotyper test and associated measure of residual avoidance
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used in Prevot et al. [67] assess anxiety-related avoidance weekly.
The residual avoidance score captures the time spent in the
shelter, after a 1 h-light challenge, measuring residual avoidance
of the previously-lit zone. Prior to UCMS, there was no group
difference (Supplementary Fig. 7A, B). Upon UCMS, residual time
spent in the shelter following an acute light challenge was
increased (Fig. 2F, G; Supplementary Fig. 7C–G). On week 6, acute
GL-RM treatment did not affect time in the shelter after the light
challenge (Fig. 2F). Sex-dependent analyses showed males spent
more time in the shelter than females (data not shown).
At week 6, sucrose preference was significantly reduced by

UCMS but unaffected by GL-RM (Fig. 2H, and Supplementary
Table 3), suggesting a lack of effect from treatment at reversing
UCMS-induced reduced sucrose preference. In the FST, UCMS
increased time immobile, which was reduced by GL-RM (Fig. 2l).
Z-scoring of behavioral emotionality, integrating behavioral out-
comes in a single readout confirmed the effect of UCMS, and a
limited efficacy of acute GL-RM treatment (Fig. 2J). In contrast, the
Y-maze spatial working memory deficit induced by UCMS was
significantly reversed by acute GL-RM treatment (Fig. 2K).
Altogether, these results showed that acute administration of

GL-RM mainly overcomes spatial working memory deficits
induced by UCMS, while having reduced efficacy on emotionality.

Chronic GL-RM conserves spatial working memory benefits in
the UCMS model
The effects of chronic GL-RM administration were investigated in
mice subjected to UCMS (Fig. 3A). Altered coat state and reduced
weight gain with UCMS was significant from week 1–6, with no
effect on chronic GL-RM (Supplementary Fig. 8).
There was no effect of UCMS or treatment in the EPM, OF and

NSF latency to approach (Fig. 3B–F, and Supplementary Table 4).
Latency to bite found an effect of UCMS and treatment.
Unexpectedly, UCMS+ GL-RM mice compared to Control + GL-
RM mice showed decreased latency to bite (Fig. 3G). In the
Phenotyper test (Fig. 3H and Supplementary Fig. 9), UCMS
increased residual avoidance in the shelter zone, while chronic
GL-RM was trending to decrease it.
Sucrose preference was unaffected by UCMS, but chronic GL-

RM increased preference (Fig. 3I). In the FST, the time spent
immobile was unaffected by UCMS or treatment (Fig. 3J). UCMS
significantly increased z-emotionality, with a trend level effect of
chronic GL-RM reducing z-emotionality (Fig. 3K).
In the Y-maze, UCMS decreased percent alternation rate

(Control+ Vehicle vs UCMS+ Vehicle) and chronic GL-RM sig-
nificantly increased percent alternation rate between UCMS+
vehicle and UCMS+ GL-RM groups (Fig. 3L), confirming efficacy at
reversing stress-induced spatial working memory deficits.
Results suggest that chronic GL-RM may contribute to reducing

z-emotionality, with discrete effects on individual outcomes, and
confirm its effect at reversing UCMS-induced spatial working
memory deficits.

Chronic GL-RM administration reverses neuronal morphology
deficits induced by UCMS
We quantified morphological changes in apical and basal
dendrites of PFC pyramidal neurons (Fig. 4A–C, and Supplemen-
tary Fig. 10). Dendritic length was not affected by UCMS or
treatment, but spine count and spine density were significantly
lower in UCMS compared to control mice (Fig. 4D, E, and
Supplementary Fig. 10). Such decreases were reversed by chronic
GL-RM in basal and apical segments, with spine density in apical
PFC dendrites of GL-RM treated UCMS animals being significantly
higher than UCMS animals and not significantly different from
controls (Fig. 4D).
Similarly, significant UCMS effects on spine density and reversal

by chronic GL-RM treatment were observed in CA1 pyramidal
neurons (Fig. 4E, and Supplementary Fig. 11).
Improved cognitive functions might be related to improved

spine density and overall neuronal morphology (Supplementary
Table 5 and Supplementary Fig. 12), although studies with larger
sample size are required to confirm this hypothesis.

DISCUSSION
This work is based on observations that patients with psycho-
pathologies related to chronic stress exposure experience mood
and cognitive deficits, while current treatments display moderate-
to-no efficacy for mood and cognition [1–3, 9]. We investigated
the efficacy of two enantiomers with activity at α3-, α2-, α5-
GABAA-Rs (GL-I-54) and α5-GABAA-Rs (GL-II-73) separately, and in
combination (GL-RM) at alleviating such symptoms and neuronal
atrophy in CRS and UCMS models. GL-I-54 reduced immobility in
the FST, did not show efficacy in the EPM, nor reversed stress-
induced working memory deficits at low dose (5 mg/kg). GL-I-54
required a higher dose (10 mg/kg) to reverse working memory
deficits though while causing slight sedation. GL-II-73 previously
showed no effect on working memory at doses lower than 10mg/
kg [55]. Acute and chronic treatment of a racemix combination of
both enantiomers (GL-RM) improved stress-induced working
memory deficits. Acute GL-RM only decreased immobility in the
FST, suggesting inconclusive results on emotionality. Finally,
chronic GL-RM treatment reversed the UCMS-induced reduction
in spine densities in the PFC and CA1 of UCMS mice, with
morphological measures correlating with improvement of emo-
tionality and working memory.

Racemic mixtures have therapeutic relevance by harnessing
different enantiomer GABAA-R specificities
Therapeutic development often favors pure substances over
racemic mixtures due to superior selectivity and reduced off-
target activities [72, 73]. Racemic development becomes justified if
therapeutic benefits of each enantiomer are similar, complimen-
tary or devoid of side-effects and toxicity [74]. GL-RM harnessed
the similar, yet unique selectivity profiles of GL-I-54 and GL-II-73 to

Fig. 2 Effect of acute treatment of GL-RM on anxiety, emotionality and working memory deficits in mice subjected to chronic stress.Male
and female mice were tested at baseline in the Y-maze, the phenotyper and the sucrose consumption test prior to being subjected to 6 weeks
of UCMS (A). Weekly, mice were tested in the phenotyper test, the sucrose consumption and their weight and coat state were measured. After
6 weeks of UCMS, acute injections were performed 30min prior to behavioral testing. In the elevated plus maze, time spent (B) and entries (C)
in the open arms were measured, with no significant effect of UCMS, treatment or interaction. In the novelty suppressed feeding test, latency
to approach (D) and latency to bite (E) were assessed. Statistical analyses showed that acute GL-RM treatment reduces latency to approach in
mice subjected to UCMS. In the phenotyper test (F), mice were placed in the box overnight, where a stressful stimulus was applied at 11 pm,
for 1 h. Time spent in the shelter zone showed that mice subjected to UCMS spent more time in the shelter than control mice. Calculating a
residual avoidance score (G), statistical analyses showed a significant increase in residual avoidance in mice subjected to UCMS. In the sucrose
consumption test (H), mice subjected to UCMS showed a significant decrease in preference to sucrose. In the forced swim test (I), mice
subjected to UCMS showed increased immobility, while mice treated with GL-RM showed a reduction in immobility. Combining the individual
score into a global z-score (J), statistical analyses confirmed a significant impact of UCMS, with reduced effect of GL-RM. Finally, mice were
tested in the Y-maze (K), where statistical analyses showed altered alternation with UCMS, which is reversed by acute GL-RM treatment. *p <
0.05, **p < 0.01, ***p < 0.001 effect of UCMS, #p < 0.05, ##p < 0.01 effect of GL-RM.
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target the GABAA-Rs known to be involved in anxiety, depression
and cognition. GL-I-54 displays activity at α3-, α2-, α5-, α1-GABAA-
Rs while GL-II-73 confirmed preferential activity at α5-GABAA-Rs
[55], likely reflecting different interactions of each compound’s
conformation in the binding pocket.

Racemic mixtures are not uncommon in the treatment of MDD
[75, 76]. Fluoxetine [75, 77], citalopram [78] or ketamine [37] are
clinically used racemic antidepressants [75, 79, 80]. Racemic R,S-
ketamine has more efficacy than non-racemic S-Ketamine [81].
Racemic therapies can harness broader selectivity profiles to
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address multiple pathophysiological mechanisms but have the
added risk of off-target side effects. In vivo, considering estimated
free concentrations in the brain after a 5 mg/kg dose, we found
that concentration is slightly above 100 nM. At this concentration,
GL-I-54 may act as a PAM at non-α1 GABAARs, while GL-II-73
would mainly have only slight PAM activity at α2- and α5-GABAA-
Rs, and be a null modulator at α1-GABAA-Rs. When combined
together, low concentrations of GL-II-73 may be effective as an
“on-site softener” of activity of GL-I-54, especially at α1-GABAA-Rs,
limiting binding of GL-I-54 in the binding pocket and therefore
limiting negative effects observed when potentiating this subunit,
further suggesting GL-RM as an intervention for a more complete
treatment of depression symptomatology.

Targeting α2-, α3-, α5-GABRA-Rs with GL-RM displays superior
efficacy on spatial working memory at lower concentrations
than individual enantiomers
Reconciling potentiation profiles with behavioral results, we
compared GL-I-54 and GL-II-73 alone at 5 mg/kg or 10 mg/kg
after CRS to GL-RM 10mg/kg (each enantiomer at 5 mg/kg) after
UCMS. At 5 mg/kg, GL-I-54 reduced immobility in the FST.
Previously reported, GL-II-73 only reduced immobility at 10 not
5 mg/kg [55]. Acute GL-RM reduced UCMS-exposed animal
immobility in the FST suggesting GL-RM retains this effect likely
due to GL-I-54 activity. GL-RM also reduced immobility in non-
stressed animals showing effects at baseline and in the absence of
UCMS. Neither enantiomer showed significant efficacy on
avoidance behavior, separately or in combination (GL-RM).
Interestingly, GL-RM combined the efficacy of both enantiomers

for pro-cognitive effects, specifically spatial working memory.
While neither enantiomer elicited pro-working memory effects at
5 mg/kg alone, their combined activity in GL-RM improved
working memory deficits. This could be the result of an additive
effect of the two compounds at GABAA-Rs, or a reduction of a
putative amnestic effect caused by α1-GABAA-R null potentiation
[82] with the use of a low GL-II-73 dose. Nevertheless, this finding
demonstrates a clinical advantage for using GL-RM over either
pure enantiomer at low concentrations, avoiding side effects and
benefiting from combined profiles.

Chronic GL-RM administration has neurotrophic effects
As in MDD, chronic stress leads to reduced synchronicity between
the PFC and HPC, and dysfunctional information processing within
cortical and hippocampal structures [83]. Dendritic length and
spine density are reduced in the PFC and HPC of MDD patients
and stressed mice [84], contributing to cognitive deficits. Our
findings are consistent with other UCMS studies reporting
neuronal atrophy and working memory deficits [85–87]. We
previously showed that chronic administration of GL-II-73 alone
remedies age-related spine loss in pyramidal neurons, through α5-
GABAA-R modulation was confined to apical dendrites [58], where
α5-GABAA-Rs are primarily located [88–90], and consistent with
GL-II-73 preferentially potentiating α5-GABAA-Rs. With GL-RM,

neurotrophic effects were extended to basal segments in both
PFC and HPC, suggesting a potential role of α2- and/or α3-GABAA-
Rs in this neurotrophic effect. Previously, α5- and α2-GABAA-Rs
have been implicated in dendritic outgrowth, spine maturation
and synapse formation [91–93], thus their modulation by GL-RM
may be responsible for spine density restoration at apical and
basal dendrites.
While showing spine count improvements, it remains unclear

whether spines are prevented from shrinking, or if they are
generated de novo. Ketamine showed ability to overcome stress
hormone-induced spine loss by a combination of restored spines
and de novo spines, with some preference for de novo [94]. A
similar combination may also be the case for GL-RM. Evidence that
GL-RM has an effect at a pathophysiological level (not only
symptomatic levels) is substantially valuable for translational
efficacy within humans.

Limitations
In our primary drug screening, the lack of a non-stress group
receiving GL-I-54 does not allow us to know baseline effects of GL-
I-54 in the Y maze. However, non-stressed animals perform at 80%
accuracy, which leaves very little room for improvement, so other
tests should be considered for baseline testing. In the GL-RM
studies, we see that GL-RM administered in non-stressed animals
does not have an effect, and previous studies from our group
showed that GL-II-73 alone does not have an effect in the Y maze
[55]. Therefore, we can anticipate that GL-I-54 does not have an
effect alone, in non-stressed mice, but testing or validation in
other tests would confirm this. In addition, we tested GL-RM on a
single cognitive domain, but cognitive deficits in depression
extend beyond spatial working memory and exploring others is
needed for future experiments. Regarding neurotrophic effects,
we investigated the PFC and HPC for their regulation of stress-
related and depressive symptoms. It could be valuable to
investigate how GL-RM modulates connectivity in subnuclei of
the amygdala, potentially decreasing the hyperactivity/increased
connectivity reported after chronic stress [95, 96]. We used chronic
stress models because they recapitulate behavioral and cellular
changes observed in human depression [97–100]. While using the
most commonly reported stressors [101], variability in anxiety-
related outcomes limited clear conclusions on procedure and
treatment, not uncommon in behavioral studies [67, 102]. The
Phenotyper test measuring context anxiety [67] provided insight
to anxiolytic properties of GL-RM with better consistency. The
discrepancy between EPM/NSF and Phenotyper results highlight
potential biases from hands-on behavioral assays versus auto-
matized approaches [103].
To conclude, the therapeutic relevance of a targeted PAM

approach at GABAA-Rs is reinforced and the role of α5-GABAA-Rs
in cognition is supported. At low-to-moderate dose, both
compounds, used together, show promising effects for the
treatment of mood and cognitive symptoms, as well as
morphological changes in disorders such as MDD.

Fig. 3 Effect of chronic treatment of GL-RM on anxiety, emotionality and working memory deficits in mice subjected to chronic stress.
Male and female mice were tested at baseline in the Y-maze, the phenotyper and the sucrose consumption test prior to being subjected to
6 weeks of UCMS (A). After 3 weeks of UCMS, chronic treatment with GL-RM in the drinking water was initiated, for a total of 4 weeks. Weekly,
mice were tested in the phenotyper test, the sucrose consumption and their weight and coat state were measured. After 6 weeks of UCMS,
and 3 weeks of treatment, mice were tested in the elevated plus maze. Time spent (B) and entries (C) in the open arms were measured, but did
not show statistical differences. Mice were also tested in the open field for the time spent (D) and number of entries (E) in the inner zone.
Again, statistical analyses did not reveal any effect of UCMS nor treatment. In the novelty suppressed feeding test, latency to approach (F) and
latency to bite (G) were assessed. Mice were tested in the Phenotyper weekly, and the residual avoidance scores from week 3 to 6 were
analyzed, since the treatment was onboard during these testing periods (H). In the sucrose consumption test (I), mice receiving chronic GL-RM
showed a significant increase in preference to sucrose. In the forced swim test (J), statistical analyses did not reveal significant differences
between groups. Combining the individual score into a global z-score (K), statistical analyses confirmed a significant impact of UCMS at
increasing emotionality, with a trend level effect ofchronic GL-RM reducing emotionality. Finally, mice were tested in the Y-maze (L), where
statistical analyses showed altered alternation with UCMS, which is reversed by acute GL-RM treatment. *p < 0.05, **p < 0.01, ***p < 0.001 effect
of UCMS, #p < 0.05, ###p < 0.001 effect of GL-RM.
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Fig. 4 Chronic treatment with GL-RM reverses chronic-stress induced spine density reduction in the PFC and the CA1. After completion of
the behavioral screening, mice were euthanized and brains were stained with Golgi-Cox solution. Pyramidal neurons (N= 6 per mouse) from 4
mice per group (A–C) were analyzed for dendritic length, spine counts and spine density. Basal and apical spine densities were measured in
the PFC (D) and the CA1 of the hippocampus (E). ANOVA in the basal and apical segments revealed significant differences between groups, in
both brain regions. This difference was explained by a decrease in spine density in mice subjected to UCMS compared to Control mice that
was partially reversed by chronic treatment with GL-RM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to “Control”; $$p < 0.01,
$$$p < 0.001, $$$$p < 0.0001 compared to “UCMS”. Scale bar in (A–C) represents 50 µm.
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