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Our modern society suffers from both pervasive sleep loss and substance abuse—what may be the indications for sleep on
substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as
well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to
critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical
challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for
treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-
associated psychiatric diseases.
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INTRODUCTION
Sleep, as “the main course in life’s feast, and the most nourishing”
(—William Shakespeare, Macbeth), powerfully influences our emo-
tional well-being and motivational states. Why is this the case and
how does sleep do so? Decades of research in sleep as well as in
motivated behaviors have laid the foundation for us to begin to
understand the relationship between the two. Studies at circuit,
cellular, and molecular levels have lent us increasing insights into
their intricate interactions, which have profound implications for
questions such as: How does loss of sleep alter motivated
behaviors? How does acute sleep loss differ from chronic sleep
disturbance? And for our modern society suffering from both
pervasive sleep loss and substance abuse—what may be the
indications for sleep loss on the disease process of substance use
disorders (SUDs) and the individual variations? We will primarily
focus on sleep-cocaine interactions to demonstrate the relation-
ships and potential underlying mechanisms, then extend to other
substances. Reviews on sleep-opioid or sleep-cannabis interactions
can be found elsewhere [1–3].

SLEEP COMPOSITION, FUNCTION, AND ASSOCIATION WITH
PSYCHIATRIC DISORDERS
Sleep is a rapidly reversable and quiescent state characterized by
specific sleep postures, reduced response to stimuli, and increased
arousal threshold. During sleep, animals cannot forage, reproduce,
and are vulnerable to predators. Despite the potential maladaptive
nature and disadvantages associated with the prolonged immo-
bility, sleep has been preserved through evolution [4, 5].
Vertebrates such as mammals, birds, and reptiles sleep, and a
sleep-like state also exists in invertebrates [6–8]. Sleep can be
broadly divided into two main states: non-rapid-eye-movement
(NREM) sleep and rapid-eye-movement (REM) sleep (Box 1),

which are also preserved across mammalian and avian species
[9]. Following acute sleep deprivations (SD), both NREM and
REM sleep show rebounds in the duration or intensity during
recovery sleep, suggesting that they are under homeostatic
regulations [10, 11].
Sleep is important for maintaining various vital physiological

functions, including survival [12, 13], restoration of body and mind
[4, 14, 15], energy conservation [16], immune functions [17, 18],
brain development [19], brain metabolism and waste cleaning
[20–22], learning and memory [23], and regulation of emotion and
motivation [24, 25]. Good sleep is associated with positive affect
and psychophysiological well-being [26], while poor sleep quality
is often linked to negative valence and impaired regulation of
emotion [27].
Sleep disturbance is a common comorbidity in almost all

psychiatric disorders [28, 29]. Insomnia is often observed among
patients with mood disorders, anxiety, and SUDs, and thus,
chronic sleep disturbance often serves as a diagnostic checkmark
for these disorders [30]. In the context of SUDs, sleep problems
have been associated with the use or abuse of many substances,
including alcohol, nicotine, cannabis, opioids, cocaine, ampheta-
mines, and caffeine (reviewed in [31–33]). Psychostimulants, such
as cocaine, nicotine, and amphetamine, may cause sleep loss
acutely [33, 34]; narcotics such as opioids can both increase
sleepiness and impair sleep quality acutely, and the complex
effects with the specific contexts are reviewed elsewhere [1, 2, 35].
Chronic substance uses often lead to persistent sleep distur-
bances, including difficulty falling asleep, sleep fragmentation,
frequent awakenings, reduction of sleep time, poor sleep quality,
daytime sleepiness, and abnormalities or shifts in the timing of the
cyclic sleep architecture [3, 33, 34]. Following withdrawal or
detoxification from alcohol, psychostimulants, or narcotics, sleep
disturbances are prevalent [3, 33], with some notable differences.
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For example, patients with alcohol or cannabis use disorder have
higher incidence of sleep-onset insomnia, whereas patients with
cocaine or heroin use disorder frequently experience sleep-
maintenance insomnia [36]. The extent of sleep disturbances
further predicts subsequent use of illicit drugs and alcohol [37].
There have been animal models that recapitulate some of the
sleep abnormalities in SUDs, including intermittent ethanol vaper
exposure [38], opioid self-administration (SA) [39], and cocaine SA
in rodents [40] (Box 2).

SLEEP-MEDIATED REGULATION OF REWARD-SEEKING
BEHAVIORS
In generally healthy populations, acute sleep loss is often
associated with an increase in reward-seeking behaviors. In
human adolescents, shorter sleep duration is associated with
more snacking and over-consumption of high-calorie food [41].
Pregnant women with poor sleep quality are more likely to have
stronger and more frequent food cravings, together with higher
hedonic hunger [42]. In young adult males, one night of SD
increases the desire for high-calorie foods [43]. Other than food
reward, overnight SD increases smoking in healthy cigarette
smokers [44], shifts economic preferences toward higher gains
[45], and promotes risk taking for higher gains [46]. Similar
phenomena have also been observed in animals. Sleep dis-
turbance animal models (Table 1) are often used to examine the
impact on a variety of reward-seeking behaviors, including natural
and drug reward. In male mice, acute SD (zeitgeber time: ZT0-6,
gentle handling) increases the seeking and consumption of
sucrose reward but not lab chow [47]. Chronic sleep restriction
in male rats (ZT2-6, gentle handling, 4 h/day × 7 days) increases
voluntary alcohol consumption [48]. Acute SD (ZT0-4/8, novel

object exploration) in male rats increases the rate and efficiency of
cocaine infusion during a motivational test, without changing the
perceived value of cocaine [49]. Chronic sleep restriction (EEG-
based disk-treadmill method, ~25% reduction in baseline sleep
over 8 days) in male rats increases the perceived value of cocaine
selectively in high drug-taking rats [50]. Chronic REM SD (flower-
pot-over-water) in rats lowers the threshold for intra-cranial self-
stimulation for reward sensation [51]. While increasing reward
seeking during sleep loss may have adaptive values such as
consuming calories to sustain energy expenditure, it can also be
maladaptive—increasing chances for developing obesity [52, 53],
risk taking, and substance use. Meanwhile, the widespread
increase in reward-seeking behaviors across species and reward
modalities following sleep disturbance also suggests potential
common underlying neural substrates.

The brain reward circuitry—composition and functional
interaction with sleep
The mesolimbic reward pathway is an interconnected neurocircuit
that regulates reward-cue encoding, reward evaluation, and
execution of reward seeking. The nucleus accumbens (NAc) resides
in the ventral striatum and serves as a limbic-motor interface that
integrates and prioritizes emotional and motivational inputs for
motor outputs [54–57]. The NAc receives convergent glutamatergic
inputs from the medial prefrontal cortex (mPFC), hippocampus,
amygdala, among other regions, which carry various information on
reward-associated cues, context, and executive controls. Moreover,
the NAc is an important target of the mesolimbic dopamine (DA)
projection, which carries information on reward-cue salience and
reward prediction error [58, 59]. In addition, NAc neurons express a
rich repertoire of neuropeptide receptors, including opioid,
hypocretin/orexin (Hcrt), and melanin-concentrating hormone
(MCH) receptors and many more, relaying information from the
hypothalamus, thalamus, midbrain, brain stem, etc. to influence
various reward-associated behaviors [60]. Thus, the NAc is a
converging hub where top-down controls from the cortex interact
with a variety of bottom-up emotional and motivational drives
(Fig. 1a). Increasing evidence suggests that the reward circuit
presents multi-layered targets for sleep and sleep disturbance to
regulate reward-associated emotional and motivational responses.
The NAc-interconnected reward circuit has substantial anato-

mical overlap with the sleep-regulatory network (Table 2; details
reviewed in [1, 61]). Some regions regulate both reward and sleep,
including the PFC, NAc, ventral tegmental area (VTA), habenula
(Hb), and lateral hypothalamus (LH); most of them are known to
be affected by sleep disturbance in various ways (Table 2). How
these regional changes induced by sleep disturbances may
orchestrate to produce behavioral outcome is not fully under-
stood. One example comes from human functional MRI studies.
Following acute SD, the medial frontal cortex shows reduced
coupling with the amygdala and NAc in response to pleasure-
evoking stimuli, suggesting reduced top-down controls, whereas
amygdala, NAc, and VTA activities show increase to various reward
stimuli, suggesting increased bottom-up drives [62]. Thus, the
overall compromised top-down controls combined with increased
bottom-up drives may synergize to result in biased reward
processing favoring risk taking and reward seeking after acute SD
[63]. This notion would be consistent with (1) increased impulsivity
and decreased inhibitory control sometimes observed after acute
SD [64–67]; and (2) increased subjective value of the reward or
reward-associated cues following acute sleep disturbances. In rats
and mice, acute SD increases the preference to contextual cues
associated with cocaine or amphetamine experience [68, 69]. In
humans, preference for the stimulant methylphenidate is driven
by sleepiness [70]; and higher perception of cocaine strength is
reported after 24 h of SD [71]. Consistent with these changes in
top-down versus bottom-up drives, SD can shift the decision-
making strategy from loss-defending toward gain-seeking [45, 72].

Box 1. Sleep states and signature waveforms

Physiological measurements via electroencephalography (EEG), electrooculogra-
phy (EOG), and electromyography (EMG) can distinguish sleep versus wakefulness,
and further categorize sleep into NREM and REM states [342]. At wakefulness, the
cortical EEG exhibits desynchronized low-amplitude waveforms with an alpha-
rhythm component while the EMG activity is high. During NREM sleep, EEG
exhibits high amplitude and a prominent slow-wave and delta component while
EMG activity is reduced. REM sleep is characterized by a low-amplitude EEG with a
strong theta component accompanied by muscle atonia (lowest EMG activity), and
bursts of rapid-eye movements. In humans, NREM sleep is further subdivided into
four stages [343]: Stage 1 is light sleep with mixed frequencies and attenuated
alpha rhythms; Stage 2 contains sleep spindles and K-complexes; Stages 3 and 4
are deep sleep, containing high-amplitude slow waves. During a typical night, an
average person cycles through different stages of NREM sleep and REM sleep 4–6
times [344]. Similar cyclic sleep-wake architecture is often observed in other
mammals [345].

Box 2. Cocaine SA model in rats

Cocaine self-administration training is conducted in an operant-responding
chamber, where the rat learns to obtain infusions of cocaine solution by
performing operant respondings (i.e., poking its nose into the active hole or
pressing the active lever). The light and/or tone cues are contingently
presented with active nose-poking/lever-pressing and cocaine infusions,
through which the rat establishes cue-cocaine associations. Nose-poking
in the inactive hole or pressing the inactive lever does not result in cue
presentations or cocaine infusions.
After acquiring cocaine self-administration over days of repeated training, the rats

may undergo drug withdrawal. They are then tested at different times after
withdrawal in the same operant chambers with training cues but without cocaine
infusions. Presentation of these contingent cues is sufficient to trigger operant
responding, a behavioral readout that has been widely used to assess cue-induced
cocaine seeking. Over long-term withdrawal, there is progressive intensification of
cue-induced cocaine seeking, so called “incubation of cocaine craving”, which suggests
growing propensity for drug relapse [54, 346, 347]. Development of cocaine
incubation coincides with the gradual accumulation of calcium-permeable AMPA
receptors at glutamatergic synapses on nucleus accumbens principal neurons, which
critically contributes to the expression of cocaine incubation [210–214].
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It should be noted that the above results in humans are mostly
obtained from adults or young adults, and there may be important
differences in the adolescent brain regarding the sleep-reward
responding relationship. In early through late pubertal adoles-
cents, there is less activation in the caudate during both reward
anticipation and reward outcome in individuals with shorter sleep/
later onset and earlier offset and lower sleep quality [73]. However,
there have been limited sleep manipulation studies in adolescents
—it is not clear whether acute SD in adolescents may similarly
blunt subcortical reward responding, and whether reward
“insensitivity” in this context may also contribute to risk taking
and high-reward seeking.
Compared to acute SD, less is known about the impact of

chronic sleep disturbance on the reward circuit. Recently, using a
low-stress sleep fragmentation paradigm in mice, it was shown
that the medial Hb (mHb) exhibits increased spontaneous pace-
making activity following 5–7 days of chronic REM sleep

fragmentation [74]. This is postulated to promote mHb-mediated
anxiety and anhedonia [75–79] following chronic sleep distur-
bance. The potential molecular and cellular mechanisms mediat-
ing these sleep disturbance-induced changes will be discussed in
the next section.

MOLECULAR AND CELLULAR MECHANISMS THAT
CONTRIBUTE TO SLEEP-MEDIATED REGULATION OF REWARD
FUNCTION
Neurotransmitter and neuromodulator systems
Our insights into sleep-mediated regulation of neurotransmitter/
modulator systems predominantly come from acute SD studies,
with limited results from chronic sleep manipulations. Acute SD
has broad impact across brain regions and over many neuro-
transmitter systems, including SD-induced extracellular accumula-
tion of metabolites (e.g., adenosine, ceremide) that promote sleep,

Table 1. Sleep disturbance animal models.

Total sleep deprivation

Gentle handling Rodents are gently handled to be kept awake. The experimenter may pick
animals up, gently touch or brush animals’ tails or whiskers, introduce novel
objects, shake cages, or brush coat.
Total suppression of NREM and REM sleep.

[12, 258]

Automated piezoelectric cages Automated detection of sleep by piezoelectric signal triggers cage shaking to
wake animals up.
Total suppression of NREM and REM sleep.

[259]

Automated closed-loop EMG-based
running wheel

Automated detection of sleep by EMG signal triggers wheel running to wake
animals up.
Total suppression of NREM and REM sleep.

[260]

Selective REM sleep deprivation

Flowerpot/single platform (SP)/ modified
multiple platform (MMP)

Animals are housed on small platform(s) or flowerpot over water. Entering
REM sleep causes the animals to fall into water and wake up.
Abolish REM sleep and reduce SWS sleep.

[261, 262]

Disk-over-water method Automated detection of sleep or REM sleep via EEG/EMG signals triggers
rotation of the disk placed over water and forces the animal on top of the disk
to move to avoid falling into water.
Chronic total or partial sleep/REM sleep deprivation.

[262, 263]

Pendulum/swing Continuously oscillating apparatus keeps the animals from entering REM
sleep through imbalanced postures.
Abolish REM sleep and reduce significant NREM sleep

[264, 265]

Cold environmental exposure Cold exposure to low ambient temperature < 10 °C.
REM sleep loss proportional to cold exposure

[266]

Chronic sleep restriction

Automated closed-loop rotating disc Automated detection of sleep via EEG/EMG signals triggers rotations of the
bottom plate in pulses to wake up the animals, reducing a proportion of their
sleep time.
Chronic sleep restriction/partial sleep deprivation.

[50]

Chronic sleep fragmentation

Treadmill Treadmill belt with a cylinder-shaped object underneath moving in both
directions to wake up the animal.
REM sleep restriction in cocaine withdrawn rats; Chronic REM sleep
fragmentation in mice.

[40, 74]

Sleep enhancement

Environmental warming Increasing ambient temperature towards thermal neutral zone
increases sleep.
Maximal REM sleep at ~29 °C.

[215, 216]

Various region or cell type-specific stimulation/
inhibition

Stimulation of NREM or REM sleep-promoting brain areas or specific cell types
to promote NREM or REM sleep; or suppression of wake-promoting
mechanisms

It has been challenging to understand the function of sleep in psychiatric disorders. Much of previous work performs correlational analysis to determine the
relationship between sleep phenotypes and psychiatric disorders with difficulty addressing causality. Animal models are designed to address causality with
mechanistic insights by introducing SD or sleep restriction, often using rodents (reviewed in [267]). Some of these procedures inevitably involve additional
stress, which may confound the interpretation of results [180].
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and changes in pro-wakefulness neurotransmissions (e.g., DA,
Hcrt). When these changes occur in the reward circuit, they may
result in acute changes in reward processing and thus impact
associated behaviors. Summarized in Table 3 are details on the
sleep manipulation paradigms, impacted neurotransmitter/mod-
ulator systems, brain regions, cellular effects, and outcome or
expected outcome on reward-associated behaviors. A few are
highlighted below.

Hcrt. Hcrt signaling not only sustains wakefulness and promotes
arousal [80–100], but also facilitates reward seeking including
natural and drug rewards [68, 98, 101–124]. Acute SD and chronic
sleep restriction both enhance Hcrt signaling through increasing
prepro-orexin synthesis, orexin-A release, and/or OX1 and OX2

receptor expressions (Table 3). Sleep disturbance-induced increase
in the activities of Hcrt system is thought to critically contribute to
dysregulated reward seeking ranging from binge eating disorder
to SUDs (reviewed in [123–125]). However, direct assessment of
such causal relationships has been limited. Recently, it was shown
in male mice that acute SD (4 h starting at ZT0-ZT2) enhances
cocaine conditioned place preference (CPP), and that systemic
administration of an orexin 1 receptor antagonist attenuates the
SD effect [68], suggesting that SD-induced increase in Hcrt
signaling can indeed enhance drug-reward seeking. The Hcrt
system may regulate diverse aspects of reward-seeking behaviors
through its wide projection targets and versatile cellular effects.
For example, Hcrt through receptor signaling in the paraventri-
cular thalamus (PVT) critically regulates reward-associated sign-

MS

DR
PVT

PVT

AMG

VTA

Decreased input/Coupling
Hcrt/Orx 
DA
5-HT

DR

REM sleep 
intervention

Acute sleep loss

Sleep instability (?)

Relapse

MS

Hipp

Chronic drug
experience

Relapse

MCHNAc

TMN

PFC Hipp

AMG

NAc VTA

mHb

LH
Hcrt/Orx

Hcrt/Orx neuron targets potentially contributing to drug relapse

Function 

Function 
• Chronic sleep 
 disturbance 
• Daytime 
 sleepiness

Sleep

• Palatable food  
• Alcohol  
• Cigarette  
• Illicit drugs 

Reward

b Based on cocaine withdrawal-
induced long-term changes

a
Based on acute SD effects

• Sign tracking    (?)
• Reward perception    (?) 
• Risk taking    (?) 
• Impulsivity    (?) 

CP-AMPARs  

Hcrt/Orx  

MCH neuron targets regulating REM sleep

MCH neuron targets potentially contributing to anti-relapse effects
Molecular/cellular changes contributing to increased drug seeking

MCH neuron projections
Hcrt/Orx neuron projections 

Cellular function 
Cellular function 

Fig. 1 Sleep–reward interactions and implications in substance use disorders. a Acute sleep loss often results in reduced top-down controls,
contrasting with increased bottom-up drives. Following acute SD, PFC shows reduced coupling with the NAc and amygdala (AMG), possibly
through adenosine build-up and reduced glutamatergic transmission efficacy; some subregional increase in activity is also observed.
Hippocampus (Hipp) shows deficits in glutamatergic signaling and synaptic plasticity. NAc shows increased reactivity to reward or risk taking,
possibly through decreased dopamine D2/3 receptor signaling, thus biasing toward D1-receptor signaling. The VTA and AMG show increased
reactivity to emotional stimuli. The AMG also shows increased reactivity to food reward-associated cues. The hypocretin (Hcrt)/orexin (Orx)
system based in the LH may represent a regulatory hub. It shows enhanced activity following sleep disturbances through increase in the
activity of Hcrt neurons, increase in prepro-orexin synthesis and orexin release, and increase in OX1R and OX2R receptor expressions in the
target regions. Hcrt signaling may orchestrate various neurotransmitter and modulator systems, including glutamate, GABA, acetylcholine,
DA, norepinephrine, and 5-HT, and promote reward-associated sign-tracking (PVT-NAc), attention (basal forebrain-PFC), impulsivity and risk
taking (PFC, NAc), and reward perception (NAc). These effects may, together, lead to typical increases in reward-seeking behaviors, including
palatable food wanting and consumption, alcohol intake, cigarette smoking, and illicit drug use. DR: dorsal raphe nucleus (a main source of
5-HT neurons). Details see Tables 2 and 3. b Withdrawal from chronic drug use affects not only the reward circuit, but also the sleep-regulatory
mechanisms, often resulting in persistent sleep disturbances at night and excessive sleepiness during the day, which may, in turn, facilitate
drug relapse. In rats trained to self-administer cocaine, drug withdrawal induces excessive activation of Hcrt neurons in the LH, which may
contribute to sleep instability as well as increase in drug seeking. Moreover, cocaine withdrawal dampens MCH neuron intrinsic membrane
excitability and impairs glutamatergic transmissions, which may compromise MCH neuron’s role in REM sleep regulations. Hypofunction of
MCH neurons may result in dis-inhibition of downstream targets, worsening cocaine-induced hyperactivity of Hcrt neurons in LH and
exacerbating CP-AMPAR accumulation at NAc principal neuron synapses, which together facilitate incubation of cocaine craving. REM sleep
interventions, including REM sleep restriction-rebound and sleep-warming, engage MCH neuron activities in sleep, and promote REM sleep
through downstream targets such as medial septum (MS), tuberomammillary nucleus (TMN), and dorsal raphe (DR), among others. MCH
neuron activities in REM sleep may also produce anti-relapse effects hypothetically through MCH-Hcrt neuron interactions in the LH as well as
downstream mutual targets including the NAc, hippocampus, amygdala, and VTA.
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tracking conditioned responses [126]; Hcrt signaling in the VTA
increases glutamate release and transmission efficacy onto DA
neurons, facilitates DA release (reviewed in [127]), and promotes
impulsive behaviors [128]; in the basal forebrain, Hcrt increases
cholinergic cell activity, resulting in robust acetylcholine release in
the PFC and sustained attention [129]; in the NAc, Hcrt increases
GABAergic transmission onto the principal neurons (tested in
dissociated neurons [130]), and increases hedonic “liking” and/or
“wanting” of palatable food reward [131]. In addition, Hcrt also
regulates serotonergic (5-HT) system in dorsal raphe, norepine-
phrinergic system in the locus coeruleus, and histaminergic
system in the tuberomammillary nucleus (TMN) (reviewed in [1]).
Thus, the Hcrt system orchestrates a full collection of neuro-
transmitter and modulator systems to promote motivational
activation in various circumstances (reviewed in [132]). Their up-
regulation in response to sleep disturbances may tip the top-
down (e.g. attention) versus bottom-up balance (e.g. reward-cue
salience, hedonic values etc.), resulting in reward dysfunction.

DA. There are mixed results regarding DA release following sleep
disturbance. Acute SD (6 h, gentle handling) in rats increases
extracellular DA metabolites in the basal forebrain [133]; acute SD
(4 h, gentle handling) in hamsters increases hypothalamic DA and
its metabolites [134]; chronic REM SD (flowerpot-over-water; 96 h)

in rats increases DA metabolites in the striatum but not cortex
[135]; yet REM SD for 16 h in rats does not appear to modulate
overall DA release in the NAc assessed by microdialysis [136],
suggesting procedure-dependent, and brain region-specific reg-
ulations. Furthermore, acute SD decreases the availability of DA
D2/3 receptors in the NAc in humans [136]. This is thought to
result in a D1-D2/3 imbalance, which may increase the tendency
for impulsivity and risk taking [137, 138].

Adenosine. The accumulation of extracellular adenosine upon
acute SD suppresses neurotransmitter release, and, when occurs in
the cortex, would “tune down” the top-down control. On the other
hand, adenosine modulates postsynaptic mGluR5-homer1a-mTOR
signaling as shown in the cortex, producing anti-depressive effects
(Table 3).

Ceramide. A recent study identified a lipid product ceramide,
which accumulates during acute SD. It promotes sleep through
direct inhibition of thalamic reticular neuron firing [139]. Interest-
ingly, the source of ceramide is thought to be microglia [139], the
CNS immune cells that play active roles in synaptic pruning during
sleep [140, 141]. Related to reward and drug seeking, a decrease in
ceramide in dorsal hippocampus is associated with faster
extinction of learned appetitive behaviors in rats [142]. Moreover,

Table 2. Overlapping sleep-reward brain regions.

Brain region Reward function Impact by sleep disturbance Sleep/arousal function

PFC Executive evaluation of reward value
and outcome [268–270]

Reduced coupling with the amygdala,
with subregional increase in activity
[62]; reduced synaptic release of
glutamate onto NAc [47]; both
following acute SD

Generation of slow-wave activity
[271, 272]

Hippocampus Memory and learning, attribution of
context to reward [273]

Impaired NMDA receptor-dependent
synaptic plasticity; deficit in
hippocampus-dependent memory
tasks following acute or chronic sleep
disturbance [274]

Reactivate memory in sleep through
sharp-wave ripples to communicate
with prefrontal cortex [275, 276]

NAc Reward prediction and translation,
goal orientation, reward-associated
learning [270]

Increased reactivity to monetary
reward or high risk in adolescents/
young adults following acute SD
[196, 277]; Reduced probability of
glutamate release at mPFC and rostral
amygdala inputs onto principal
neurons following acute SD [47, 278]

Slow-wave sleep initiation via A2A

/D2 receptor-expressing neurons
[279, 280]; arousal through A2A

receptor inhibition [281], or D1-
receptor neuron activation [280, 282].

VTA Reward signaling and prediction.
Approach, reward-related learning,
and conditional acquisition [283]

Increased reactivity to positive
emotional stimuli following acute SD
[62]

VTA DA neuron activity promotes
arousal [284]

Amygdala Valence encoding of stimuli and cue
association [270, 285]

Increased reactivity to food reward
anticipation or negative emotional
stimuli, decreased coupling to mPFC
and orbital frontal cortex following
acute SD in humans [43, 62]

Habenula Reward value-based decision-making,
signaling of aversion [286, 287]

Increase in pace-making spontaneous
firing of cholinergic projection neurons
in medial habenula, following 5–7 days
of chronic REM sleep fragmentation
[74]

Suppression of motor movements
related to circadian control of
behavior and REM sleep generation
via melatonin and cytokine
interleukin-18 [286, 287]

Lateral
hypothalamus

Reward evaluation and motivation for
food and drug reward [288]

Increased activity of Hcrt neurons or
orexin levels following acute to chronic
sleep restriction [80, 220, 289–292];
increased MCH neural activity following
recovery sleep [220]

Initiation of sleep on/ off mechanisms
associated with orexin/MCH neuronal
activation [293]

Dorsal raphe
nucleus

Activity is correlated with reward
values, reward delay, task progress,
and reward absence; modulation of
reward waiting and reinforcement
[294, 295]

Total SD increases dorsal raphe neuron
mean firing rates in cats, maximal
increase at 15 h of total SD [296]

Promotion of waking and inhibition
of REM sleep via serotonergic inputs
[297]
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inhibition of ceramide biosynthesis attenuates the development
of tolerance to morphine [143]. Whether and how ceramide
accumulation from SD may impact reward function is not known.
In summary, changes in neurotransmitter systems underlie

the reduced top-down controls and increased bottom-up
drives, which may together increase reward motivation and
seeking (Fig. 1a). This will have important implications for SUDs
(see below).

Synaptic plasticity
In addition to acute modulation of neurotransmissions, sleep can
also impose enduring effects by inducing long-term synaptic
plasticity. A great deal of insight was obtained from learning-and-
memory studies in the visual, somatosensory, and motor cortices
as well as the hippocampal circuits, where diverse mechanisms are
engaged in sleep to produce long-term synaptic potentiation or
depression as well as homeostatic synaptic scaling [23, 144–153].
On the one hand, slow waves during NREM sleep and theta waves
in REM sleep sort different neuronal ensembles across the peaks
and throughs, enabling spike timing-dependent synaptic poten-
tiation or depression [149, 154, 155]; on the other hand, NREM and
REM sleep states provide dramatic fluctuations in neuromodula-
tors such as increase in acetylcholine and MCH in REM sleep,
decrease in 5-HT, and almost complete silence of norepinephrine
transmission in REM sleep, which further modulate synaptic
plasticity [145, 153, 155–163]. Furthermore, imposed upon these
background fluctuations are the “memory replays” that occur both
during NREM and REM sleep, which combine with the synchro-
nous population activity and fluctuation of neuromodulators to
influence synapses and neurocircuits. These sleep effects are
postulated to mediate distinct aspects of learning, memory, as
well as creativity [151].
Whereas most of sleep-assisted synaptic plasticity is studied in

the context of sensory cortex development, cognition, or motor
learning and memory, similar cellular processes may occur in the
limbic circuit to regulate emotion and motivation. Many
“signature” sleep waves occur in the reward circuit. Slow-wave
activity in NREM sleep, the most prominent sleep EEG feature, is
frequently generated in the PFC-orbital frontal cortices and
propagates as a wave [164]; theta waves as a prominent feature
in REM sleep are found in the hippocampus, amygdala, and cortex
(reviewed in [165]). These waves could provide opportunities for
spike timing-dependent plasticity to take place in large scales in
the reward circuit. Moreover, “memory replays” are often observed
in hippocampal “place” cells during sleep [166–168]. In mice
acquired cocaine CPP, the hippocampal “place” cells are coupled
to NAc principal neurons in wake and sleep through theta
oscillations, which is thought to underlie the potentiation of
hippocampal-NAc coupling and the increase in NAc principal
neuron firing in the cocaine zone [169]. In addition to promoting
synaptic strengthening, sleep may also facilitate learning-
associated synaptic weakening. In the mouse frontal association
cortex, auditory-cued fear conditioning induces spine elimina-
tions. This process is dependent on REM sleep through a calcium-
dependent mechanism [170]. Finally, opposite to promoting
“memory”, sleep may also enable “forgetfulness”. For example,
in the mouse hippocampus, MCH neuron terminal activity
suppresses pyramidal neuron firing, and MCH neuron activities
during REM sleep promote the elimination of contextual fear
memory [171]. Thus, REM sleep may serve to modify contextual
memory, which together with reducing the affective tone of
emotional memory [25, 63], may provide protections against the
development of post-traumatic stress disorder phenotypes in
rodents and humans [172–174]. In summary, sleep is integral to
synaptic plasticity across cortex, hippocampus, and the inter-
connected circuit. It is fully capable of playing diverse roles in the
formation and modification of emotional memories. However,
direct demonstrations of sleep-specific synaptic plasticity that

regulates natural or drug reward-seeking behaviors have been
limited.

Sleep-mediated regulation of gene expression
Another avenue for sleep to impose long-term changes is through
regulation of gene expressions. This is reflected in sleep
disturbance-induced changes in the transcriptome [175–177] or
epigenome. The latter is just beginning to be understood [178].
Changes in gene expression and regulation could be the result of
neuronal and glial ensemble activity in sleep or sleep disturbance
combined with neurochemical changes discussed above, which
may, in turn, feedback to sustained regulation of neural activity.
Indeed, comparing mouse cortical transcriptome between sleep,
6-h-SD, and 4-h-SD+ 2-h-sleep recovery conditions, more than
half of the SD-altered genes continue to be differentially
expressed after recovery sleep, suggesting sustained changes
induced by SD [175]. Although acute SD profoundly alters the
cortical transcriptomes [175, 177], whether and how these
changes alter subsequent reward processing is poorly understood.
Notably, a few of the SD-sensitive transcriptional hubs in the
cortex or basal forebrain are similarly affected by repeated drug
exposures, including MEF2C, PER2, JUNB, NFκB, FOSB, and EGR1
etc., some of which have been examined for potential implications
in SUDs (Table 4). Thus, sleep disturbance may interact with drug
experience at the level of transcription regulation to exert long-
term impact on cellular functions and behaviors, including
predisposition to drug use, drug experience, and drug withdrawal.
Nonetheless, the transcriptomic data from sleep studies are mostly
focused on the cortex, whereas data from SUD patients or
addiction animal models are overwhelmingly focused on the NAc
[179]. Thus, future studies need to bridge the two by examining
overlapping brain regions shared by sleep and reward regulations.
Chronic sleep disturbance may affect the reward circuit and

cellular processes in ways distinct from acute SD effects. Research
in this area has been limited, and mostly relies on high-stress sleep
disturbance models (Table 1; [180]). Using disk-over-water method
for chronic sleep restriction in rats, it was shown that long-term
sleep restriction alters cortical transcriptome qualitatively different
from that following acute SD [176]. In a separate study, rats were
sleep-restricted using a periodically rotating wheel for 18 h daily,
and adrenergic receptors of different subtypes in the basal
forebrain and anterior cingulate cortex show differential expres-
sions following 1 day versus 3–5 days of sleep restriction [181],
consistent with the notion that sleep undergoes allostasis as sleep
debt accumulates [182, 183]. However, it is not known how the
specific changes may affect cortical function or reward processing.
Using a customized treadmill system for chronic selective REM
sleep fragmentation with minimum stress, it was shown that the
mHb cholinergic neurons in mice increase tonic firing through
reduced activity of an acid-sensing potassium channel KCNK9 [74].
The behavioral consequences of this effect are not known,
although increase in mHb activity may modulate a variety of
affect/reward functions ranging from aversion, anxiety, anhedonia,
to nicotine and alcohol abuse, as well as reinstatement of cocaine
CPP [77–79, 184–187]. Understanding the impact of chronic sleep
disturbance on the reward circuit is of high clinical significance.
This will be greatly facilitated by the development of robust,
automated, and noninvasive chronic sleep disturbance models
that introduce minimum procedural stress.

IMPLICATIONS IN SUDS
Initial drug use
In humans, initiation of drug use often occurs during adolescence
[188–190]. The median ages for first opportunity and first use of
illicit drugs are 13 years and 14 years, respectively, in the US as of
2011 [191]. In 2019, 1.8 million among 12–17-year olds had first
time use of alcohol, 1 million for marijuana, 385,000 for cigarette
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smoking, and 82,000 for cocaine [192]. Moreover, based on a
2010 survey in a nationally representative sample (N= 2524) of
10th graders in the US, 8% were “predominant polysubstance
users” [193]. This is greatly concerning because of the association
between younger initiation and poorer outcome in developing
SUDs [188–190]. There are many reasons that set adolescence a
vulnerable period for initiating drug use [194], and compromised
sleep is an unequivocal one. Although 8–10 h of sleep per night is
needed for optimal function in adolescents, only 29% of US high
school students reach this amount, and 44% of US high schoolers
sleep for less than 6 h per night [195]. Acute sleep loss weakens
top-down controls and increases bottom-up drives for reward,
which may result in biases toward reward-associated sign-tracking
(speculated above), increases in impulsivity, risk taking, and
reward responding [46, 196] (Fig. 1a). All these aspects, combined
with the fast-developing mesolimbic system and slowly maturing
prefrontal cortex in the adolescent brain [194], may facilitate drug
seeking and taking behaviors.
Compared to acute SD, implications of chronic sleep disturbance

in SUDs are less explored. A longitudinal study shows that over 70%
of individuals with insomnia or hypersomnia develop some forms of
psychiatric problems, including major depression and SUDs, in their
lifetime [197]. Insomnia is also a commonly reported cause for self-
medication with alcohol, which often precedes the development of
alcohol use disorder [198]. It is not clear, however, whether it is
chronic sleep problems that lead to substance use as self-
medication, or there could be a third causal factor—e.g., genetic-
environmental predisposition—that leads to both sleep problems
and SUDs, with sleep problems manifesting first.

Relapse to drug use after withdrawal—preclinical studies
targeting sleep improvement
Sleep-drug use interactions take place since the initial drug use
and persist through long-term withdrawal [2, 3, 199]. On the one
hand, sleep dysregulation persists, indicating drug withdrawal-
induced prolonged neurophysiological changes; and conversely,
chronic sleep disturbance is thought to precipitate relapse to drug
use [2, 49, 50, 199–205]. The relationship between sleep
disturbance and SUDs is thus thought to be bi-directional, which
forms a vicious cycle that drives continued substance use and
relapse [200]. Sleep disturbance may tilt the balance between top-
down controls and bottom-up drives that contribute to drug
craving and relapse after withdrawal. However, the bottom-up
drive at this stage is likely to be more about alleviating negative
affect than obtaining reward [206].
Sleep disturbance resulting from drug withdrawal could be

pathophysiologically different from externally imposed SD. For
example, withdrawal-induced sleep disturbance may reflect sleep
allostasis, and experimentally induced sleep disturbance in either
naïve or drug-experienced individuals is a deviation from home-
ostasis. Considering this difference, it is important to use animal
models that recapitulate the long-term sleep disturbances
following substance use and withdrawal, and examine whether
increasing or improving sleep may be beneficial.
Increasing sleep is not the mathematical opposite of SD, as

sleep is not simply a lack of wakefulness, but rather an active
process of similar scales. This is clearly demonstrated in
transcriptomic studies, which show a large number of sleep-
specific gene expressions qualitatively distinct from those during
wakefulness or SD [177]. In this regard, it is equally important to
complement sleep disturbance studies by addressing whether
increasing sleep time or improving sleep quality after drug
withdrawal affects relapse.
To tackle this problem, we have used a rat cocaine SA model.

Following SA training (0.75 mg/kg/infusion, 1 overnight + 5 day ×
2 h/day) and withdrawal, rats experience sustained sleep loss and
fragmentation [40], qualitatively recapitulating the human situa-
tions [3]. Moreover, this cocaine procedure induces “incubation of

cocaine craving”—a progressive intensification of cue-induced
cocaine seeking after withdrawal, which indicates increased
propensity for drug relapse (Box 2). Additionally, this cocaine
procedure induces a persistent synaptic accumulation of calcium-
permeable AMPA receptors (CP-AMPARs) after withdrawal in NAc
principal neurons [40, 207–209], which are key synaptic substrates
for cocaine incubation [210–214]. These features allow for
behavioral and electrophysiological assessment of the effects of
sleep interventions after cocaine experience.
First, using a sleep restriction-rebound strategy to increase and

consolidate light-phase (inactive phase) sleep in rats, we found
that selective REM sleep restriction-rebound during withdrawal
day 22–42 leads to decreased incubation of cocaine craving tested
on withdrawal day 45. This is accompanied by decreased CP-
AMPARs at NAc principal neuron synapses [40]. Next, focusing on
the role of REM sleep in this regulation, we used environmental
warming to selectively increase REM sleep. Warming to near
thermoneutrality preferentially increases REM sleep in drug naïve
animals [215,216]. In rats after cocaine withdrawal, warming leads
to a selective increase in total REM sleep time and decrease in REM
sleep fragmentation, and the REM sleep effects are accompanied
by reduced incubation of cocaine craving as well as decrease in
NAc CP-AMPARs [207]. Together, these results suggest a potential
causal relationship between REM sleep and relapse to cocaine use.

LH MCH system comes into play—contrasting with Hcrt
system
LH MCH neurons critically regulate REM sleep onsets and/or bout
durations [217–219]. Both REM sleep restriction-induced rebound
in REM sleep and warming-induced increase of REM sleep engage
the activity of LH MCH neurons [216, 220]. These neurons are
predominantly REM sleep-active [221], with greater population
activities during long-bout versus short-bout REM sleep episodes
[207]. Cocaine withdrawal-induced REM sleep fragmentation
concurs with persistent decrease in the membrane excitability
of these neurons, as well as impairment in glutamatergic
transmission efficacy [222]. To counteract cocaine-induced
deficits in MCH neurons, enhancing MCH neuron activities in
sleep by environmental warming or direct chemo- or optogenetic
stimulations similarly decreases cocaine incubation [207]. More-
over, locally infusing MCH peptide into NAc decreases cocaine-
induced synaptic accumulation of CP-AMPARs and reduces
incubation [207], suggesting that MCH-to-NAc projections could
play an important role. In the NAc, cocaine-induced CP-AMPARs
are enriched in GluA1 subunits [210, 211, 223, 224]. MCH receptor
activation in the NAc dephosphorylates GluA1 at Serine 845
and facilitates their removal from synapses [225]. Thus, con-
solidated REM sleep may engage MCH neurons to regulate
cocaine seeking after withdrawal in part through regulating NAc
CP-AMPARs (Fig. 1b).
In contrast to the hypoactivity of MCH neurons, the LH Hcrt

neurons show enhanced functionality following cocaine experi-
ence. After rats learn to self-administer cocaine with intermittent
access for 14 d (0.2 mg/infusion, 5 min/30 min × 12 epochs/d),
they undergo withdrawal for >150 d, followed by a re-exposure to
the SA environment. The rats show an increase in the number of
Hcrt neurons in LH and increase in Hcrt neuron activities, as
measured by the proportion of Hcrt neurons that show Fos
immunoreactivity, which further show a significant correlation
with incubation of cocaine craving [101]. Excessive activation of
Hcrt neurons may promote drug seeking through diverse
projection targets as discussed above. In addition, Hcrt neurons
may drive sleep instability after cocaine withdrawal, as they do in
the aging brain [100].
In summary, repeated cocaine exposure and withdrawal can

lead to reduced activities of MCH neurons and enhanced activities
of Hcrt neurons in the LH, which may synergistically impair sleep
and promote drug seeking (Fig. 1b).
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Targeting sleep for SUDs
Through diverse neurotransmitter and modulator systems, all
substance uses result in sleep changes, and persistent sleep
disturbances are a common complaint following drug and alcohol
withdrawal [3, 33, 34, 36, 226]. Sleep problems are thought to fuel
drug relapse, and could indeed predict the outcome of drug and
alcohol relapse in human patients [37, 227]. This may also be
directly relevant to polysubstance uses, where patients may
intend to self-medicate and resort to alcohol, marijuana, or opioids
to mend impaired sleep from various drug withdrawal; or
alternatively, use psychostimulants to promote wakefulness to
counteract the withdrawal-induced excessive sleepiness during
the day [228]. Polysubstance use is increasingly gaining attention
[229,230], for which animal models are beginning to be developed
(reviewed in [230]). In summary, targeting sleep may be applicable
to both mono- and poly-SUDs, and may benefit drug relapse far
beyond sleep improvement per se.
The Hcrt system represents a prominent candidate for this goal.

Excessive activation of Hcrt system is commonly observed during
withdrawal from a variety of substances, including cocaine,
opioids, nicotine, and alcohol [1, 123, 124, 231], suggesting the
possibility of targeting Hcrt system in general either for individual
substance use or polysubstance use (e.g. cocaine + alcohol [232]).
Recent studies focused on suvorexant, an FDA-approved,
insomnia-treating dual Hcrt/orexin receptor OX1R/OX2R antago-
nist, show promising results for improving withdrawal symptoms
in various preclinical models, raising the possibility that the reward
circuit can be targeted through its shared components with the
sleep-regulatory machinery [233]. A few other sleep-promoting
medications have been proposed to be tested for treating SUDs,
including topiramate, tiagabine, gaboxadol, vigabatrin, and
lisuride [3]. The reported sleep effects are either a selective
increase in slow-wave sleep time, or a reduction in REM sleep.
While some have safety issues as GABA enhancers, none are
shown to be particularly effective yet in reducing drug relapse [3].
More recently, modafinil, a mild psychostimulant acting on DA
transporters, shows promising results in reducing cocaine relapse.
In the study, modafinil is taken in the morning to increase
alertness during the day, resulting in improved nighttime sleep.
Patients with this modafinil regimen exhibit reduced rate of
cocaine relapse, with the improvement positively correlated with
the amount of N3 stage NREM sleep; and the positive correlation
persists even after correction for modafinil treatment [234].
However, modafinil does not alter REM sleep architecture in this
study (but see [235]).
Could REM sleep-MCH neuron activity benefit SUDs in general?

The notion of enhancing REM sleep to achieve benefits may
appear counter-intuitive, as many antidepressants that increase
brain monoaminergic signaling suppress or delay REM sleep [236].
However, REM sleep may have both pro-relapse (i.e. sleep
fragmentation) and anti-relapse components, and MCH neuron
activity in REM sleep may represent a key to the anti-relapse
effects [207]. MCH neurons project throughout the brain, and
many limbic structures important for reward processing have
moderate to high levels of MCH receptor expressions, including
NAc, hippocampus, VTA, PFC, amygdala, and LH [237, 238]. Many
of these regions also express Hcrt receptors and receive Hcrt fiber
projections [239–242]. Thus, in the LH, MCH neurons inhibit Hcrt
neurons through local inhibitory circuits, which has been detailed
in sleep and energy expenditure regulations [243, 244]. In ventral
hippocampus, MCH neuron terminal activities and MCH receptor
signaling regulate impulsivity [245]; stimulating MCH neuron axon
terminals suppresses pyramidal neuron firing, and REM sleep-
active MCH neuron activity facilitates the erasure of contextual
fear memory [171]. This may be in contrast with the role
of Hcrt in facilitating hippocampus-dependent memory formation
[246]. Other brain regions receiving MCH and Hcrt dual
innervations include PFC, amygdala, NAc, VTA, among others

[107, 237–242, 247, 248]. Therefore, it is possible that MCH neuron
activities modulate Hcrt effects from both the source and the
target regions, shaping the reward network through synaptic and
cellular plasticity mechanisms in REM sleep (Fig. 1b). It will be
meaningful to test whether REM sleep-enhancing medications,
particularly those that can increase MCH neuron activity or MCH
signaling during REM sleep and prolong REM sleep episodes
without causing REM sleep fragmentation, alleviate withdrawal
symptoms and reduce relapse to drug use.

Individual variations
Both sleep phenotypes and SUD development exhibit substantial
individual variations. Sleep time, architecture, and waveforms are
influenced by genetic and environmental factors [249]. SUD
development is also complex, involving personality and physio-
logical traits as well as individual experiences [250]. Genetic
factors may strongly influence personality and physiological traits
such as impulsivity, risk taking, and reward/stress responsivity,
which tap into the vulnerability to SUDs [250]. Environmental
factors include drug availability, peer influence, stress, lifestyle,
and others, to which circadian misalignment and sleep distur-
bance could also be contributors [194]. Specifically, how may sleep
interact with genetics to produce diverse individual variations
in SUDs?
An inspiring example comes from rodent studies of sign-

tracking versus goal-tracking behaviors. These are naturally
occurring behaviors through Pavlovian learning, in which
reward-associated cues acquire incentive salience in sign-
tracking animals, whereas in goal-tracking ones the cues obtain
predictive value that predominates over incentive salience [251]. It
is thought that sign-trackers may be more vulnerable to addiction,
as their reaction to reward-associated cues is more relying on
subcortical drive rather than cortical executive control [252].
Mechanistically, sign-tracking relies on PVT Hcrt receptor signaling
[126] and (presumed downstream) phasic DA release in the NAc
core [58]. In response to reward-associated cues, both c-Fos
activities in LH-PVT and PVT-NAc projection neurons and phasic
DA release in the NAc are more prominent in sign-trackers than in
goal trackers [58, 253]. Thus, comparing the top-down versus
bottom-up dynamics, sign-trackers may have stronger bottom-up
drive than goal trackers at baseline, which may render sign-
trackers higher susceptibility to acute SD-induced weakening in
top-down controls (reviewed in [61]).
Although sign-tracking may not be directly applied to humans,

certain genetic polymorphisms affecting Hcrt or DA systems are
associated with SUDs and/or SD susceptibility. For example, in a
genome-wide association study, a Hcrt receptor 2 (HCRTR2) gene
polymorphism shows association with nicotine dependence as
well as the age for initial methamphetamine use [254]. HCRTR2 is
also a candidate gene in sertraline- (a selective serotonin reuptake
inhibitor antidepressant) associated insomnia in depressed
patients [255]. Regarding the DA system, a variable number
tandem repeat polymorphism in the human PER2 gene is
associated with lower availability of striatal D2 receptors and
cocaine abuse [256]. Moreover, a nine-repeat DA transporter (DAT)
allele in human is linked to higher phasic DA activity and
increased striatal responsivity to reward anticipation following SD,
and a ten-repeat DAT allele is linked to lower phasic DA activity
and increased striatal responsivity to punishment following SD
[257]. These examples highlight the interaction between sleep and
genotypes in producing individual variations.
Based on the sleep-reward interactions at circuit, cellular, and

molecular levels discussed above, we suggest that future efforts
be focused on the following three aspects to further dissect sleep-
based individual variations in SUDs: (1) to explore the potential
correlation between the sensitivity to acute SD in reward-
associated tasks and susceptibility to drug-taking and seeking
tests at the level of individual subjects; (2) to explore the potential

R. Guo et al.

71

Neuropsychopharmacology (2023) 48:61 – 78



correlation between key sleep parameters (e.g., REM sleep
fragmentation and microstructures) and scores in SUD tests; (3)
to explore the potential correlation between sleep-associated
genetic polymorphisms and SUD phenotypes.

CONCLUSIONS AND FUTURE DIRECTIONS
By summarizing recent results, this review discusses how sleep
influences reward processing through circuit, cellular, and
molecular substrates. This sleep-mediated regulation and the
underlying mechanisms offer a conceptual possibility not only to
improve the wellbeing of healthy populations and safe-guard
adolescence development, but also develop treatment for SUDs.
Considering sleep disruption both as a comorbidity to SUDs and
a potential causal factor for drug relapse, manipulating sleep
quality may serve as complementary therapeutics treating SUDs
and mood disorders. Moreover, by integrating key sleep
parameters, a sleep metrics may be formulated to predict
individual susceptibility to SUDs and other reward-associated
psychiatric diseases.
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