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While much research has highlighted phenotypic heterogeneity in obsessive compulsive disorder (OCD), less work has focused on
heterogeneity in neural activity. Conventional neuroimaging approaches rely on group averages that assume homogenous patient
populations. If subgroups are present, these approaches can increase variability and can lead to discrepancies in the literature. They
can also obscure differences between various subgroups. To address this issue, we used unsupervised machine learning to identify
subgroup clusters of patients with OCD who were assessed by task-based fMRI. We predominantly focused on activation of
cognitive control and performance monitoring neurocircuits, including three large-scale brain networks that have been implicated
in OCD (the frontoparietal network, cingulo-opercular network, and default mode network). Participants were patients with OCD
(n= 128) that included both adults (ages 24–45) and adolescents (ages 12–17), as well as unaffected controls (n= 64). Neural
assessments included tests of cognitive interference and error processing. We found three patient clusters, reflecting a “normative”
cluster that shared a brain activation pattern with unaffected controls (65.9% of clinical participants), as well as an “interference
hyperactivity” cluster (15.2% of clinical participants) and an “error hyperactivity” cluster (18.9% of clinical participants). We also
related these clusters to demographic and clinical correlates. After post-hoc correction for false discovery rates, the interference
hyperactivity cluster showed significantly longer reaction times than the other patient clusters, but no other between-cluster
differences in covariates were detected. These findings increase precision in patient characterization, reframe prior neurobehavioral
research in OCD, and provide a starting point for neuroimaging-guided treatment selection.
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INTRODUCTION
Obsessive compulsive disorder (OCD) is a common and disabling
psychiatric illness, occurring in 2–3% of the population. It begins
during childhood or adolescence in at least 50% of patients [1, 2]
and is associated with notable heterogeneity in symptom
presentation, with common domains including excessive check-
ing, attempts to produce symmetry, and cleanliness [3]. However,
while much research has highlighted heterogeneity in phenotypic
presentation in OCD [4], less work has focused on underlying
heterogeneity in neural activity [5].
A number of findings provide a foundation to investigate

neural heterogeneity in OCD. Broadly, recent models of
psychopathology suggest that disruptions of three large-scale
brain networks characterize many aspects of psychopathology,
including OCD [6–8]. One is the frontoparietal network (FPN; also
referred to as the central executive network), which is anchored
in the dorsolateral prefrontal cortex and the posterior parietal
cortex. The FPN is involved in cognitive control, defined as the
ability to flexibly adapt behavior in varying conditions. Dysfunc-
tion of this network may underlie the tendency of patients
with OCD to become stuck in compulsive rituals. Another
relevant network is the cingulo-opercular network (CON, also

referred to as the salience network), which is anchored in the
dorsal anterior cingulate cortex/posterior medial frontal cortex
(dACC/pMFC) and anterior insula/frontal operculum. The CON
is hypothesized to play several roles such as continuous
performance monitoring and integration of internal emotional
states with task execution [9, 10]. In OCD, patients often do not
feel a sense of completeness following compulsive rituals and
continue to repeat them in an attempt to achieve an
emotionally satisfied state, possibly due to dysfunction in this
circuit [11]. The FPN and CON, which are collectively involved in
external goal-directed behavior, act reciprocally with the default
mode network (DMN). The DMN is involved in internal, self-
referential processes and is anchored in the ventromedial
prefrontal cortex and posterior cingulate cortex (PCC). The
DMN is typically deactivated during cognitive control tasks [12].
Patients with OCD, however, have been shown to deactivate the
DMN to a lesser extent than control participants and show
atypical connectivity of the DMN with the CON and FPN [13–15].
The failure of the DMN to disengage during task execution could
possibly drive the repetitive thought patterns observed in OCD
because of failure of the CON to mediate the reciprocal
interaction between the FPN and DMN [15–18].
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Several experimental paradigms have focused on tasks that tap
functions of these three networks, frequently through tests of
cognitive control sub-processes including cognitive interference,
response inhibition, and error processing. In prior work in OCD
employing these approaches, notable heterogeneity has been
found. Some neuroimaging findings have demonstrated that
patients with OCD have reduced FPN activation during inter-
ference and inhibition processing [19–22], when control is
required to engage a weaker response set to override or inhibit
a competing response set [23, 24]. However, other investigations
on this topic have reported no difference [25] or increased
activation [26–28]. In error processing, patients with OCD show an
increased amplitude of the error-related negativity (ERN) [29, 30],
which refers to a response-locked electroencephalographic
component that follows an error and localizes to midline frontal
cortex. The ERN findings in OCD have been followed up with
neuroimaging work showing increased neural activity in error-
related regions, specifically the pMFC/dACC [15, 26, 31, 32]. The
finding is thought to reflect either a greater tendency to perceive
“erroneous behavior” that leads to increased compulsive rituals, or
a compensatory response to override habitual behaviors that
drive compulsive ritualizing. However, as with studies examining
interference processing, not all groups have reported a greater
error-related signal in patients with OCD [28, 33]. While this work
suggests the neural substrates that might underlie the symptoms
of OCD, the inconsistency in the published literature hinders the
identification of reliable biomarkers of the disorder.
Many approaches have been considered to address failures to

replicate findings across studies. One solution has been to rely
upon findings from meta-analyses, which gain added power from
pooling small effects across multiple studies. This approach was
exemplified by Norman and colleagues who used the originating
statistical parametric maps, as opposed to published voxel peaks
passing a given threshold [34]. In this work, they showed that OCD
patients had a greater error-related signal in the pMFC, as well as
the right anterior insula (aIns), but reduced activation during
inhibition tasks in rostral and ventral anterior cingulate cortex,
thalamus/caudate, right aIns, medial frontal cortex, and supra-
marginal gyrus. While the meta-analytic work provides a good
picture of findings that might be considered the most consistent
on average, the very nature of relying on group averages obscures
possible differences between patients which could explain
discrepancies in prior literature. For example, if half of patients
exhibit a strong positive signal in a region, whereas the other half
exhibit an equally strong negative signal, the group average will
appear as zero. Moreover, subjects in the high and low activations
groups may differentially respond to intervention. This problem of
heterogeneity is compounded in imaging data, in which
differences in the magnitude of the signal as well as the spatial
location, could conceal different patterns of response - an issue
that is likely accentuated between individuals at different stages
of brain development [35]. Heterogeneity measures are routinely
obtained in meta-analyses, but such variance is rarely explained
comprehensively by moderators, and variance in single imaging
studies is rarely analyzed separately to determine if regional
heterogeneity exists.
To address this problem, we applied unsupervised machine

learning (ML) to task-based fMRI data to search for clusters of
patients that display distinctive patterns of neural activation. This
approach is particularly well-suited to identify neuropsychiatric
heterogeneity. Traditional regression-based models often address
neural targets one at a time, which ignores heterogeneity and
neglects important multivariate patterns. As a result, traditional
regression-based results represent average effects that are less
useful for informing diagnosis and treatment selection for
individual patients [36]. In contrast, an unsupervised ML approach
can simultaneously integrate multiple inputs across components
of activated networks, leading to personalized brain-based

profiles. The brain-based profiles could also inform treatment
recommendations by predicting differential treatment response to
varying intervention approaches. We used the Incentive Flanker
Task (IFT) [37], which activates critical nodes of the FPN and the
CON while deactivating the DMN. The IFT achieves this end when
participants make a speeded response to stimuli requiring
cognitive control to resist interference from non-target flanking
stimuli. Task difficulty was titrated to ensure around 15% error
rates, so that we could also analyze error processing. We
hypothesized that multiple brain-based patient clusters would
emerge based on task-based fMRI findings, and we sought to
contrast these clusters with a brain-based profile derived from
nonaffected controls. We also tested post-hoc hypotheses that the
brain-based patient subgroups would vary with regard to
demographic and clinical correlates as well as treatment response
to cognitive behavioral therapy (CBT).

MATERIALS AND METHODS
Participants and procedure
The data used for the present investigation came from a clinical trial
examining neural correlates of cognitive behavioral therapy compared to
an active comparison intervention for OCD [38]. Participants (N= 192)
included clinical patients (n= 128 patients with OCD; 61.7% female) and
healthy control participants (n= 64; 65.6% female). Clinical participants
included adults (ages 24–45; 55% of clinical participants) and adolescents
(ages 12–17), selected in these age brackets to reflect more stable
compared to more plastic periods of brain development. In all analyses
involving age, age group was treated as a categorical variable. Participants
were assessed for a diagnosis of OCD and related psychopathology using
age-appropriate semi-structured assessment [39, 40]. Severity of OCD
symptoms was measured using the adult/child versions of the Yale-Brown
Obsessive Compulsive Scale (Y-BOCS) [41, 42]. Clinical participants were
also assessed with the Obsessive Compulsive Inventory-Revised [43],
Hamilton Anxiety Scale [44], global assessments of functioning [45, 46],
and subscales of the Wechsler Abbreviated Scale of Intelligence-II [47]
were used to establish IQ. Control participants were required to have no
history of past or current mental illness (except simple phobias). Full
inclusion and exclusion criteria for clinical and control participants can be
found in the Supplementary Materials.
Following baseline scanning and clinical assessment, block randomiza-

tion was used to assign clinical participants to either cognitive behavioral
therapy (CBT) or stress management therapy (SMT), stratified by
medication, sex, and age group. OCD severity was reassessed at week 12
of treatment. All clinical assessment was performed by independent
evaluators blind to intervention group. All predictive and machine learning
models used full-information maximum likelihood estimation as a method
to address missing data. Non-clinical control participants participated in
baseline neuroimaging, but they did not participate in clinical assessments
beyond OCD diagnosis and did not receive an intervention. Control
participants were recruited to match clinical participants on age and sex.
Study data were derived from trial NCT02437773 preregistered at
clinicaltrials.gov, and CONSORT flowchart materials can be found in
Supplementary Fig. S1. Data were collected at the University of Michigan
Department of Psychiatry, and informed consent for adult participants and
legal guardians following procedures approved by the University of
Michigan Institutional Review Board.

fMRI task procedure, image processing and feature extraction
During fMRI scanning, subjects performed the IFT. The IFT consists of
pressing one of two buttons to identify one of 4 target letters (S, K, H, C)
surrounded by 4 flankers, which are either mapped to the same button
response (low interference) or the opposite response (high interference) as
the target. Each trial was also preceded by a monetary incentive, indicating
how much money a subject would make on correct trial (from 0 to 10¢ to
50¢), and a feedback signal indicated whether or not they were correct in
their response, which required that they respond within a certain interval,
adjusted to keep error scores around 15%. Accuracy and reaction time was
measured during the task. For additional specifics on our IFT implementa-
tion, please see Norman et al. [38].
Our scanning procedures are detailed in the Supplemental Materials.

First-level contrasts compared activation during correct high interference
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relative to correct low interference trials (interference contrast), and error
relative to correct trials during interference (errors contrast). These
contrasts were collapsed across incentive levels which were not a focus
of the current study. All subjects were combined in a “super-group”
analysis to obtain statistical parametric maps, which were thresholded for
brain-wise correction according to random field theory (p < 0.05). We then
extracted BOLD signal from regions of interest representative in the CON,
FPN, and DMN using 6mm radius spheres placed from among significant
peaks of activation and deactivation for clusters for the interference (high
minus low) and error contrasts (obtained during the interference
condition). In addition, because we had a significant peak of error-
related activation in the putamen, and subcortical structures have been
implicated in OCD [48], we included this area as well. This resulted in a
matrix of 18 regions by 192 participants, which was submitted to the latent
profile analysis described below.

IFT activation
The extracted data included sets of large-scale brain network regions of
interest (ROIs) for each contrast (derived from the CON, FPN, and DMN; see
Supplementary Table S1). For errors, this included the cingulo-opercular
network (pMFC, dACC, bilateral aIns), as well as deactivation in the anterior
and posterior default mode network (DMN). Bilateral putamen was also
noted to deactivate to errors. For the interference contrast, activation foci
also occurred in the CON, along with bilateral frontoparietal nodes and
deactivation in the anterior and posterior DMN.

Analytic plan
To identify clusters of patients defined by distinct patterns of activation
across extracted ROIs, we implemented unsupervised machine learning

through the use of latent profile analysis (LPA, also known as Gaussian
mixture modeling). Latent profile analysis was used to evaluate whether
participants could be classified into a discrete number of latent groups
based on observed interference- and error-related activations extracted for
each individual participant. These latent groups are denominated by
multiple synonyms in the literature, including profiles, classes, and clusters;
we rely predominantly on the term “clusters” throughout this manuscript
because it aligns with terminology used in similar unsupervised ML
approaches that have been applied to OCD [49]. Latent profile analysis is
based on a mixture modeling approach, which uses a categorical latent
variable to allow for the possibility of multiple underlying distributions to
explain the observed pattern of responses, as opposed to assuming that
a variable (or set of variables) is properly represented by a single
distribution based on an overall average. In this investigation, we
evaluated whether there were discrete clusters of patients based on
multivariate neural activation patterns. Models were estimated in Mplus
version 8 [50] using full-information maximum likelihood estimation with
robust standard errors.
To establish the proper number of patient clusters, an iterative process

was used. A 1-cluster model was first fit to the data, and then a 2-cluster
model was fit to the data and its fit was compared the 1-cluster model.
Subsequently, a 3-cluster model was fit to the data to see if it fit better
than the 2-cluster model, and this sequence continued by comparing each
k cluster model to a respective k-1 cluster model, up through a 6-cluster
model. Model selection and evaluation criteria are detailed in the
Supplemental Materials; overall we relied on suggestions by Masyn [51]
and employed both quantitative metrics and qualitative model interpret-
ability when making final model decisions. Because a primary goal was
to identify pathological profiles of difference between OCD and
healthy subjects, healthy control participants were included in ML model

Table 1. BOLD activation observed in patient clusters and unaffected controls.

Qualitative description Cluster Entropya

Unaffected controls Normative (clinical) Interference hyperactivity Error hyperactivity

Error processing

dACC 0.56 0.32 0.69 1.62 0.21

SMA 0.57 0.42 0.68 1.44 0.19

lAIFO 0.52 0.39 0.55 1.37 0.20

rAIFO 0.61 0.44 0.67 1.62 0.21

lPutamen −0.61 −0.57 −0.97 −0.17 0.13

rPutamen −0.62 −0.64 −1.15 −0.29 0.14

antDMN −1.13 −1.00 −1.55 −0.69 0.16

postDMN −0.29 −0.49 −0.90 −0.35 0.16

Interference

dACC 0.20 0.19 0.72 −0.27 0.14

pMFC 0.27 0.27 0.88 −0.16 0.27

lAIFO 0.12 0.19 0.48 −0.08 0.25

rAIFO 0.25 0.27 0.85 −0.24 0.18

lDLPFC 0.17 0.19 0.66 −0.18 0.23

rDLPFC 0.21 0.18 0.84 −0.13 0.14

lParietal 0.21 0.37 1.01 −0.20 0.27

rParietal 0.19 0.30 1.05 −0.20 0.24

antDMN −0.23 −0.32 0.23 −0.55 0.23

postDMN −0.07 −0.08 0.24 −0.30 0.24

Model estimated Nb 64.00 84.37 19.45 24.18

Discrete classified Nb 64 85 19 24

Percent of clinical sample – 65.9% 15.2% 18.9% –

Percent of total sampleb 33.3% 43.9% 10.1% 12.6% –

aValues reflect variable-specific entropy
bModel estimated results are allowed to take on fractional values because our models used probabilistic cluster assignment, while discrete classified results
fully assigns participants to clusters based on their most likely latent cluster membership
cTotal sample includes both clinical patients and healthy control participants
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Fig. 1 Neural activation patterns are depicted for a number of OCD-relevant brain areas in study participants. Results are reported
separately for each of the three empirical subgroups identified in our clinical sample, as well as unaffected control participants. Error = error
contrasts (shaded in blue); interference = interference contrasts (shaded in yellow). ACC anterior cingulate cortex, SMA supplementary motor
area, AIFO anterior insula/frontal operculum, DMN default mode network, MFC posterior medial frontal cortex, DLPFC dorsal lateral prefrontal
cortex, parietal parietal cortex, d dorsal, l left, r right, ant anterior, post posterior.

Table 2. Clinical and demographic covariates associated with study participants.

Variable Overall sample Clinical patient clusters

Clinical
participants

Control
participants

Normative
(clinical)

Interference
hyperactivity

Error hyperactivity

A priori considerations

Assigned to CBT group 50.4% NA 53.8% 47.3% 41.4%

Pre-Treatment Y-BOCS 26.12 (5.26) NA 26.01 (5.22) 25.96 (5.22) 26.66 (5.22)

Y-BOCS change −8.47 (8.42) NA 8.62 (8.35) 9.43 (8.35) 6.96 (8.35)

CBT x Y-BOCS changea −6.18 (8.00) NA 7.05 (7.87) 5.29 (7.87) 3.83 (7.87)

Demographic and clinical variables

Proportion adults 55.5% 50.0% 62.7% 36.4% 45.5%

Proportion male 38.3% 34.4% 36.4% 42.2% 41.8%

Proportion taking
medication

49.2% NA 50.7% 42.0% 50.0%

Current GAD 34.6% NA 34.5% 31.5% 37.6%

Current social anxiety 22.8% NA 21.4% 21.0% 29.3%

Past MDD 39.1% NA 41.3% 42.1% 28.9%

HAM-A Total 11.84 (7.93) NA 12.27 (7.87) 10.15 (7.87) 11.78 (7.87)

OCI - Obsessions 5.93 (3.38) NA 5.99 (3.36) 5.52 (3.36) 6.09 (3.36)

OCI - Washing 4.59 (4.04) NA 5.01 (3.96) 4.79 (3.96) 3.09 (3.96)

OCI - Ordering 4.29 (3.77) NA 4.29 (3.75) 4.64 (3.75) 3.99 (3.75)

OCI - Checking 4.34 (3.46) NA 4.54 (3.43) 3.83 (3.43) 4.12 (3.43)

OCI - Neutralizing 2.89 (3.61) NA 2.6 (3.55) 4.13 (3.55) 2.84 (3.55)

OCI - Hoarding 1.92 (2.49) NA 2.18 (2.45) 1.41 (2.45) 1.49 (2.45)

OCI - Total 23.98 (11.96) NA 24.64 (11.85) 24.31 (11.85) 21.61 (11.85)

Functional and cognitive variables

GAF/CGAS 53.50 (7.43) 87.62 (5.10) 53.95 (6.64) 52.45 (6.64) 52.93 (6.64)

WASI-II FSIQ 107.97 (13.18) 106.06 (11.18) 107.74 (12.35) 108.48 (12.35) 108.58 (12.35)

IFT Interference RT 44.59 (20.45) 48.96 (27.26) 43.40 (22.41) 56.28 (22.41)* 39.43 (22.41)

IFT Incongruent accuracy 0.67 (0.13) 0.67 (0.12) 0.65 (0.12) 0.72 (0.12) 0.72 (0.12)

Results reported in format of mean (SD) for continuous variables and % for dichotomous variables. Estimation method for clinical correlates assumes
variances/standard deviations are equal across clusters. Control participants were not assessed for clinical variables and did not participate in intervention.
Y-BOCS Yale-Brown Obsessive Compulsive Scale, HAM-A Hamilton Anxiety Scale, OCI Obsessive Compulsive Inventory-Revised, GAF Global Assessment of
Functioning, CGAS Children’s Global Assessment Scale, WASI-II Wechsler Abbreviated Scale of Intelligence-II.
*The interference hyperactivity cluster showed longer reaction times than each of the other patient clusters at the p < 0.05 level after adjusting for the false
discovery rate
aCBT vs. SMT group differences in Y-BOCS change
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estimation by treating their data as training data [50]. This process
automatically assigns all controls into a single cluster that is separate from
clinical participants, while clinical participants were free to be assigned to
clusters based on empirical model estimation. This approach allowed data
from control participants to aid in overall variance estimation and allow
for direct comparison of model results between clinical patients and
controls, while not contaminating cluster formation results for clinical
patient clusters.
We also evaluated demographic and clinical covariates associated with

brain-based patient clusters. Because clusters were identified empirically,
analyses evaluating covariate differences based on cluster membership
reflected a post-hoc approach. Accordingly, p-values for these analyses
were evaluated based on false discovery rate procedures (FDR) [52]. In this
case, each single predictor/outcome was considered as a separate family of
hypotheses for evaluation (e.g., evaluating age differences across three
different clinical clusters resulted in three hypothesis tests). We used the
BCH method of covariate and distal outcome evaluation developed by
Bakk and Vermunt [53].

RESULTS
Cluster enumeration results
Based on evaluation of Bayesian Information Criterion (BIC) [54]
values and qualitative cluster interpretation, we chose a 4-cluster
model as a best fit to the data (see Supplementary Table S2
for detail on BIC and entropy values for all models considered).
While a 5-cluster model showed a lower BIC value (ΔBIC= 19.06
compared to 4-cluster model), the additional cluster found
showed substantial overlap with clusters found in the 4-cluster
model and provided limited information and produced multiple
clusters that were very small, limiting quality of inference from
these clusters. Confidence in cluster assignment was strong for the
4-cluster model (entropy= 0.97).
Brain activation patterns for identified patient clusters are

depicted numerically in Table 1 and graphically in Fig. 1. Across
clusters, errors elicited strong activation in the CON and deactiva-
tion of the DMN, while interference elicited activation of both CON
and FPN, as well as deactivation in DMN nodes. However, these
patterns were more pronounced in some patients than others, as
demonstrated by the emergence of three different clinical patient
clusters. One cluster tracked the pattern of activation and
deactivation seen in the control participants (a “normative” cluster
accounting for 65.9% of participants with OCD). Another cluster was
characterized by stronger activation of CON and FPN to interference
tasks, but normal activation of these networks to error processing
tasks (an “interference hyperactivity” cluster accounting for 15.2% of
participants with OCD). In the DMN, patients in this second cluster
exhibited greater deactivation during error processing, along with a
failure to deactivate during interference, showing slight activation
instead. A third cluster was characterized by greater CON activity
and less deactivation in the anterior DMN (an “error hyperactivity”
cluster accounting for 18.9% of participants with OCD). Interestingly,
this third cluster showed deactivation across the CON and FPN
nodes during interference processing, as well as greater deactiva-
tion in the DMN.

Demographic and clinical correlates of patient clusters
Demographic and clinical correlates of patient clusters can be
found in Table 2. After correcting for false discovery rates at the p <
0.05 level, the only significant between-cluster differences in
covariates were found for IFT interference reaction time, with the
interference hyperactivity cluster showing longer reaction times
than each of the other patient clusters. Notable findings that were
nonsignificant after FDR correction include a lower proportion of
adults in the interference hyperactivity cluster relative to the
normative cluster (36.4% vs. 62.7%; p= 0.05), higher rates of past
MDD in the interference hyperactivity cluster relative to the error
hyperactivity cluster (42.1% vs .28.9%; p= 0.16), and lower
rates of IFT accuracy in the normative cluster relative to the

interference hyperactivity cluster (65% vs. 72%; p= 0.05) and the
error hyperactivity cluster (65% vs. 72%; p= 0.03). Additionally,
differential response to treatment was compared across the clusters
(CBT x Y-BOCS change). In this case, a nonsignificant difference was
observed, where the normative cluster showed a stronger response
to CBT relative to the error hyperactivity cluster (p= 0.07). This
approach reflects a comparison of cluster types for each therapy
arm and is graphically depicted in Fig. 2.

DISCUSSION
We found neural heterogeneity in patients with obsessive
compulsive disorder in the large-scale neurocircuits engaged in
cognitive control and performance monitoring. In this relatively
large sample of participants, we identified three brain-based
patient clusters relative to the normative sample of control
subjects. The largest normative patient cluster showed activation
during interference and error processing, closely replicating the
pattern seen in the control participants. In contrast, an error
hyperactivity cluster of patients exhibited increased activation
in the CON, along with a failure to deactivate both DMN and

Fig. 2 Yale-brown obsessive compulsive scale (Y-BOCS) scores at
pre- and post-treatment for each patient cluster. Observed
changes in OCD symptoms are displayed, stratified by patient
cluster and treatment group.
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putamen. This was not a cluster that simply had more “positive”
activation overall, as these patients tended to show little to no
activation during the interference task along with greater
deactivation. On the other hand, a third cluster exhibited
interference hyperactivity in the CON and FPN, along with a
reversal of deactivation seen in the anterior DMN. During error
processing, this cluster showed increased deactivation in
the DMN.
These findings identify potentially important differences in the

neurocircuits of persons with OCD during interference and error
processing. They suggest that each process taps a different set of
deviations from normative function, differing based on the
individuals being studied. This finding contrasts with the general
tendency to use diagnostic processes, research designs, and
analytic approaches that assume relative phenotypic homogeneity
of patients with OCD. This assumption likely leads to contradictory
findings and failures to replicate when differing mixtures of
patients are included in different samples.
Multiple considerations are important for interpreting the

differing patient clusters that were identified. One hypothesis
about OCD pathology is that the DMN fails to disengage during
tasks requiring externally-directed attention, possibly due to
defective mediation by the CON of reciprocity between task-
positive networks (CON and FPN) and DMN, thereby driving
persistent obsessions, leading to compulsive behaviors [15–18].
The profiles of the error hyperactivity and interference hyper-
activity cluster both support this hypothesis, in so far as both of
these clusters failed to deactivate or showed reduced deactivation
in the DMN. However, each cluster showed opposite patterns of
deactivation for error and interference contrasts, such that in the
other condition the cluster exhibited greater DMN deactivation.
Although selecting a response in the presence of interference and
monitoring for errors are often lumped together in the broad class
of “executive function”, our findings show that these distinct
processes tap into different components of OCD pathophysiology,
while still sharing common functional nodes such as the DMN and
CON. Most importantly for new treatment development, interven-
tions targeting networks may need to identify the profile type of a
patient in order to apply the appropriate intervention (e.g.,
neuromodulation or neurofeedback).
The clinical and demographic characteristics which we tested

did not yield strong differences between the clusters, although we
saw some patterns which failed to reach significance after FDR
adjustment. The exception was the reaction time interference
effect, which was significantly larger in the interference hyper-
activity cluster. This could reflect a longer time-on-task, which has
been associated with greater activation magnitude [55]. This
cluster of subjects also had a (non-significantly) higher percentage
of adolescent participants, which may also reflect developmental
factors. While adults and adolescents have shown several
differences in OCD-relevant neural activation [56–59], we did not
find age to significantly differentiate clusters. Regarding treatment
response, there was an intriguing visual trend suggesting that the
normative patient cluster had a stronger treatment response to
CBT relative to SMT. It is possible that this cluster represents a
more common form of OCD with fewer biological deficits or
abnormalities and is associated with improved CBT response, but
these findings would require a fully powered a priori study to
elucidate.
These neural findings are placed in the context of our analytic

approach, which provides information that is not frequently
reported in contemporary unsupervised ML in biobehavioral
research. We chose a model-based approach to unsupervised
ML, which fits a model that incorporates not only means (such as
in traditional k-means approaches), but also estimates variance
(accounting for uncertainty and noise in the data) and reports
uncertainty in the degree of cluster separation and the effective-
ness of each variable/feature in differentiating the clusters (via

entropy). This model-based approach creates a direct connection
to the broader population of patients with OCD, and it provides
information that can limit overconfidence in specific results. For
example, our entropy results showed that we could confidently
assign patients into specific clusters, but despite observed
between-cluster differences, no single feature was an outstanding
biomarker. Instead, the full set of biomarkers working in concert
was necessary to create patient clusters.
One tradeoff of our model-based ML approach is that it

increases robustness and generalizability at the expense of the
number of brain areas that we could investigate. Mixture
modeling estimates multiple parameters relevant to each brain
area, and because there is a limited amount of information in the
data, we were limited in how many brain areas we could evaluate.
While we selected brain networks that are relevant to OCD, a more
exploratory approach may find that additional networks reflect
task- and OCD-relevant heterogeneity, though it would have a
higher risk of nonreplicability.
Additional limitations of this work are to be noted. While our

use of the FDR procedure helps retain power relative to alternative
post-hoc corrections, fully powered a priori comparisons are
needed to better characterize demographic and clinical correlates
of brain-based clusters. This is particularly relevant for age, where
early onset cases of OCD can present with a distinct clinical profile
[60], and future work may seek to enrich the sample across a
broader range of onset age. Our inclusion of patients across age
groups provided valuable information, but could also have
increased error variance. Future studies with even larger sample
sizes may be able to further subdivide the patient clusters that we
observed and allow for increased statistical power for between-
cluster comparisons.
This study is the first to use unsupervised ML to identify brain-

based patient clusters in OCD based on activation of cognitive
control and performance monitoring neurocircuits. We identified
several discrete neural patterns that are associated with clinical
presentation in OCD. Our approach provides unique insight
beyond clinical phenotyping, which may only identify one
phenotype when there are truly multiple underlying physiological
patterns that lead to the condition. Parsing this heterogeneity may
allow for greater precision in patient characterization and reframe
prior neurobehavioral research in OCD. It can also provide a
starting point for neuroimaging-guided treatment selection,
where differential treatment response may eventually be detected
based on these characteristics.
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