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Antipsychotic drugs (APDs) are effective in treating positive symptoms of schizophrenia (SCZ). However, they have a substantial
impact on postmortem studies. As most cohorts lack samples from drug-naive patients, many studies, rather than understanding
SCZ pathophysiology, are analyzing the drug effects. We hypothesized that comparing SCZ-altered and APD-influenced signatures
derived from the same cohort can provide better insight into SCZ pathophysiology. For this, we performed LCMS-based proteomics
on dorsolateral prefrontal cortex (DLPFC) samples from control and SCZ subjects and used statistical approaches to identify SCZ-
altered and APD-influenced proteomes, validated experimentally using independent cohorts and published datasets. Functional
analysis of both proteomes was contrasted at the biological-pathway, cell-type, subcellular-synaptic, and drug-target levels. In silico
validation revealed that the SCZ-altered proteome was conserved across several studies from the DLPFC and other brain areas. At
the pathway level, SCZ influenced changes in homeostasis, signal-transduction, cytoskeleton, and dendrites, whereas APD
influenced changes in synaptic-signaling, neurotransmitter-regulation, and immune-system processes. At the cell-type level, the
SCZ-altered and APD-influenced proteomes were associated with two distinct striatum-projecting layer-5 pyramidal neurons
regulating dopaminergic-secretion. At the subcellular synaptic level, compensatory pre- and postsynaptic events were observed. At
the drug-target level, dopaminergic processes influenced the SCZ-altered upregulated-proteome, whereas nondopaminergic and a
diverse array of non-neuromodulatory mechanisms influenced the downregulated-proteome. Previous findings were not
independent of the APD effect and thus require re-evaluation. We identified a hyperdopaminergic cortex and drugs targeting the
cognitive SCZ-symptoms and discussed their influence on SCZ pathology in the context of the cortico-striatal pathway.

Neuropsychopharmacology (2022) 47:2033–2041; https://doi.org/10.1038/s41386-022-01310-8

INTRODUCTION
Schizophrenia (SCZ) is a devastating mental disorder that typically
emerges in late adolescence or early adulthood and results in severe
social and mental impairment [1]. SCZ pathophysiology involves
altered functionality of different brain areas. However, the
dorsolateral prefrontal cortex (DLPFC), an area crucial for verbal
and working memory, has been of special interest due to evidence
of SCZ-associated morphometric changes and neurotransmitter
abnormalities [2–4]. Direct examination of protein expression in the
DLPFC of SCZ postmortem tissue using high-throughput approaches
has revealed several altered proteins and biological pathways.
However, the main limitation of these high-throughput approaches
is distinguishing the impact of antipsychotic drug (APD) treatment
[5], which influences myriad cellular, subcellular, and molecular
processes. Most postmortem studies do not have sufficient drug-
naive and drug-treated SCZ subjects to compare with control
groups, making it hard to infer the true molecular correlates of SCZ.
To address this challenge, several studies have performed

expression profiling of nonhuman primates [6] or rodents [7, 8]

that were chronically treated with APDs. While these animal-based
studies identified APD signatures (relevant genes or proteins
influenced by APDs), they heavily rely on unsustainable causal
assumptions about SCZ pathophysiology and/or the APD mechan-
ism of action (MOA). First, these animal-based studies focus on
characterizing SCZ symptoms rather than understanding the
molecular basis of the disease. Second, healthy animals exposed
to pharmacological treatment or lesions to mimic SCZ symptoms
might induce changes in brain structure or composition that
might not reflect the disease pathology. Last, animal models
metabolize APDs differently than humans, possibly altering
different metabolic pathways. Nevertheless, specific signatures
derived from these models are important for identifying genes
and the related pathways involved in APD action.
The development of resources that provide drug-specific

signatures now permits more sophisticated analyses of the APD
effects on postmortem studies. Particularly useful are the compara-
tive toxicogenomics database (CTD) [9] anchoring well-curated
drug-associated features and the connectivity map (cmap) [10],
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anchoring experimentally derived drug-specific features. We predict
that these resources, together with known gene ontologies and
recent advances in generating cell-specific signatures, will provide
an opportunity to generate informed hypotheses regarding drug
and disease effects at the cellular level in SCZ. To this end, we
performed systematic integration of these resources with liquid
chromatography–mass spectrometry (LCMS)-based proteomics data
to highlight alterations attributed to APD medications versus SCZ-
driven pathophysiology in human postmortem DLPFC. We demon-
strate unique proteins, biological pathways, and synaptic and
cellular alterations differentially influenced by APD drugs and SCZ
pathophysiology, as well as potential MOAs connected with each of
these proteomes.

METHODS AND MATERIALS
Subjects and Tissue Preparation
DLPFC (Brodmann area 9) tissues from SCZ and nonpsychiatric control
subjects were obtained from the Maryland and Alabama brain collections.
There were two cohorts used in this study. A mass spectrometry cohort
from SCZ (n= 10) and nonpsychiatrically ill controls (n= 10) (Supplemen-
tary Table 1). Second, a conformation study cohort of SCZ patients (n= 23)
and nonpsychiatrically ill controls (n= 23) was included (Supplementary
Table 1). Schizophrenia subjects were diagnosed based on the DSM-IV
criteria. The medical records of the subjects were examined using a
formally blinded medical chart review instrument and in person interviews
with the subjects and/or their caregivers, as previously described [11]. The
Institutional Review Boards of the Maryland and Alabama brain collections

approved the study’s ethical protocol, and informed written consent was
obtained from all subjects’ legal next of kin. Tissue sections (14 μm thick)
were generated and stored at −80 °C until use. Frozen tissues were
thawed, scrapped, and homogenized in 1ml of 5 mM Tris HCl, 32 M
sucrose pH 7.4, with 1% protease and phosphatase inhibitor (Halt, Thermo
Fisher™). The protein concentration was measured with the Pierce BCA kit
for the mass spectrometry and western blot experiments detailed in the
supplementary information.
Further details on extracting SCZ-altered and APD-influenced pro-

teomes, theme-centric pathway analysis, and drug-MOA/target-specific
enrichment analysis are provided in the supplementary information.

RESULTS
Schizophrenia altered and APD-influenced proteomes
LCMS-based expression profiles for 1547 non-imputed proteins were
obtained from postmortem DLPFC gray matter (layers 1 through 6)
samples of the control (CTL) and SCZ subjects (n= 10/group;
Supplementary Table 1). After regressing the effect of age and PMI
(each accounting for > 5% overall variability in the data, Fig. 1A), we
obtained 72 differentially expressed proteins (Supplementary Table 2;
up= 16, down= 56, p value < 0.05, designated as the SCZ-altered
proteome) that segregated the control and SCZ samples (Fig. 1B).
The subjects in this study were treated either with typical or atypical
APDs, which together accounted for <5% of the overall variability in
the data (Fig. 1A). Since regressing this small effect from a limited
number of samples is challenging [12, 13], we instead filtered the
proteins that independently explained >10% of the variability
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associated with atypical and typical APDs using linear mixed
modeling [14] (Supplementary Table 3; Fig. 1A, red boxes, see the
methods). Regardless of the direction (i.e., up- or downregulated), 26
and 47 proteins were associated with atypical and typical APDs,
respectively (designated the APD-influenced proteome). Except for
the downregulated SCZ-altered and typical APDs, there was minimal
overlap between the SCZ-altered and APD-influenced proteomes
(Fig. 1C).
Next, we validated the proteomics approach and identified

proteome sets (i.e., SCZ-altered and APD-influenced). First, we
validated the proteomics approach in an independent cohort by
performing western blot analysis of glutaminase (GLS; Fig. 2A), a
protein that was differentially expressed in our MS-based
proteomics analysis (Fig. 2B and Supplementary Table 2). We did
not observe any difference in GLS expression between CTL and
SCZ subjects (Fig. 2C). However, consistent with previous findings
[15] and known downregulation of glutamate (a product
generated by the catalytic action of GLS) in SCZ during early
adulthood or late adolescence [16, 17], a significant down-
regulation was observed in the age range of 20–37 (Fig. 2D,
n= 6/group, p-value < 0.02). Second, the SCZ-altered up- and
downregulated protein-sets were validated using hypergeometric
overlap analysis with other similar proteomics studies of DLPFC
[18, 19] (Supplementary Table 5; Fig. 2E, top) and other brain areas
including insular-cortex [20], hippocampus [21], anterior-
hippocampus [22], genu-of-corpus-callosum [23] and gray [24] and
white [25] matter of anterior-cingulate-cortex (ACC) (Supplementary
Table 5; Fig. 2E, middle). The upregulated proteins overlapped

with the studies from most other areas, while the downregulated
proteins only overlapped with the ACC gray matter but
consistently overlapped with DLPFC in the other studies. Notably,
all studies overlapped significantly with features associated either
with atypical or typical APDs. Finally, we validated the atypical and
typical APD-influenced proteome using hypergeometric overlap
analysis with drug-specific features available from either CTD or
cmap (Fig. 2E, bottom). Consistent with their mechanism involving
dopaminergic transmission, typical APD-associated proteins over-
lapped significantly with haloperidol, a dopamine receptor
antagonist (and typical APD) [26]. Interestingly, haloperidol also
overlapped significantly with the upregulated proteins and was
administered to the studied SCZ samples (Supplementary Table 1),
thus validating the APD-influenced proteome set. Atypical APD-
associated proteins overlapped with valproic acid, which is often
used as an adjunctive agent to treat SCZ [27].
Overall, our statistical analysis revealed SCZ-altered and APD-

influenced proteomes. The SCZ-altered proteome is conserved
across multiple brain areas and studies. However, as revealed by the
overlap with the APD-influenced proteome, it was not independent
of the medication effect. Both proteome sets were validated either
experimentally or in silico, thereby building confidence to contrast
the functional analysis performed around them.

Distinct functional changes associated with SCZ and APD
Next, to understand the functional changes associated with SCZ-
altered and APD-influenced proteomes, we performed gene
ontology (GO) analysis (Fig. 3). The identified pathways (q-value
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< 0.05) were clustered into functional themes (Fig. 3, left labels).
Upregulated pathways were involved in only a few themes related
to organelles, vesicles, and extracellular regions. The extracellular
region was the most prominently altered upregulated theme, as
the majority of other pathways (Supplementary Table 4), including
those involving organelles and vesicles (extracellular exosome,
extracellular organelle, extracellular vesicle and neurofilament), also
had extracellular functionalities. Notably, the majority of the
upregulated pathways overlapped with those that were down-
regulated. Given that GO pathways represent a set of coordinated
features [28–30] against different biological processes, the
simultaneous enrichment of extracellular functionalities in the
up- and downregulated feature sets reflects their aberrant
coordination in SCZ.
Downregulated pathways were involved in almost all of the

themes and overlapped considerably with the typical APD-
associated pathways; however, there were some notable non-
overlaps between the two profiles. For instance, the down-
regulated pathways showed exclusive enrichment of themes
associated with cell surface receptor signaling, signal transduction,
dendrites, cytoskeleton organization and homeostatic processes
(Fig. 3, green arrowhead), whereas the typical APD-associated

pathways showed exclusive enrichment of themes associated with
synaptic signaling, regulation of neurotransmitter levels and immune
system processes (Fig. 3, cyan arrowhead). The atypical APDs also
showed fewer pathways and were mostly associated with themes
involving extracellular regions, vesicles, organelles, phosphorylation,
and metabolic processes involving ATP, drug, and carbohydrate
metabolism. Unlike typical APDs, atypical APDs showed no
association with immune system processes or other structural
changes (cytoskeletal organization, axons, dendrites, and synaptic
signaling).
Overall, the functional analysis revealed that, with the exception

of the loss of homeostasis, signal transduction, dendritic, and
cytoskeleton-related processes, APDs appear to compensate for
the majority of the pathways disrupted in SCZ, but they alter
synaptic signaling and the immunological process.

Distinct synaptic events and layer 5 pyramidal neurons are
disrupted in SCZ
Disruptions of synaptic and cellular function play an important
role in the complex network of events that underpin SCZ
pathophysiology [31]. To focus on the enrichment of those events
in the functional analysis, we used SynGO [32], a database of
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synaptic ontology (Fig. 3, inset top) and cell-specific signatures
from the human DLPFC [33] (Fig. 3, inset bottom). Synaptic
enrichments (p-value < 0.05) were organized into presynaptic
(Fig. 3 inset, red) and postsynaptic (Fig. 3 inset, green) groups of
pathways.
Downregulated proteins were equally enriched in presynaptic

and postsynaptic components. Postsynaptic components, how-
ever, exhibited greater structural variability (actin-cytoskeleton,
mRNA complexes, neurotransmitter receptor transport and anchored
and membrane components of postsynaptic density) than pre-
synaptic components, which were primarily associated with the
synaptic vesicle and its regulation. In addition to pre- and
postsynaptic changes, dopamine uptake and glutamatergic
synapse-associated pathways were also downregulated. Upregu-
lated proteins, on the other hand, were more enriched in the
postsynaptic components associated with the Golgi apparatus,
endocytic zone, endosomes, and G-coupled acetylcholine receptors.
Upregulated presynaptic components were associated with
vesicle movements (exocytosis, endocytosis, and recycling). Long-
term synaptic plasticity was also upregulated.
Among the synaptic changes associated with different APD

signatures, atypical APD was mostly associated with presynaptic
components, including dopaminergic synapses and neurotrans-
mitter uptake. Mitochondrial-related pathways were also found in
conjunction with atypical APDs, implying that these medicines
impact bioenergetic functions. Typical APDs, in contrast, were
primarily associated with postsynaptic components linked to the
cytoskeleton and its organization.
Within the different cell-type-specific signatures obtained from

DLPFC-specific single-cell studies [33], up- and downregulated
proteins were enriched in a nonoverlapping set of layer-5
pyramidal neurons (PNs). Characterizing these neurons further
(see Supplementary Table 6 notes) using GO revealed that the PN
subsets were exclusively associated with the regulation of
dopamine (excitatory neurons-(2)-layer-5: q-value < 5.02 × 10−5;
excitatory neurons-(5)-layer-5: q-value < 9.12 × 10−4). Additionally,
based on the enrichment of different deep-layer projection
neuron markers [34], these neurons appear to be striatum
projecting (excitatory neurons (2) layer 5: p-value < 0.08; excitatory
neurons (5) layer 5: p-value < 0.09).
Overall, zooming in on cellular and synaptic changes reveals a

balance of pre- and postsynaptic changes, as well as the influence
of up- and downregulated proteins on distinct subsets of
dopamine-regulated striatal projecting layer-5 PNs associated
with distinct neuromodulatory and synaptic events.

Insights into the key MOAs associated with SCZ-specific
signatures
To understand the molecular events (MOAs or targets) that
precede the aforementioned functional events, we looked for
enrichment of drug signatures associated with known MOAs/
targets in SCZ-altered up- and downregulated proteins. Sixty-two
and 18 drugs were enriched (p-values < 0.05) in up- and down-
regulated proteins, respectively (Fig. 4, Supplementary Table 7
notes).
MOAs/targets involved in upregulated events include neuro-

modulation (dopamine, norepinephrine, and acetylcholine), local
immune response (histamine), and regulation of pain (opioid
receptors). Contrary to the signature reversing principle [35], which
assumes discordance between drug-disease signatures for a
therapeutic effect, several known SCZ drugs were concordant
with the disease signatures, confirming that the SCZ-altered
proteome, as noted, is likely to be driven by the medications.
Among the MOAs/targets shared by up- and downregulated

proteins, several neuromodulatory events (except dopaminergic),
hyperpolarization events (sodium channel blockers), and cyto-
chrome p450 activity were observed, implying that these targets
are critical pharmacological nodes in SCZ pathophysiology. MOAs

exclusive to downregulated events include both fast (GABA-A) and
slow (GABA-B) inhibitory modulations; serotonergic and norepi-
nephrine modulation by means of receptors and transporters;
different cell-surface and cytoplasmic signal transduction events
(tyrosine-protein kinase LCK, serine/threonine-protein kinase);
enzymes involved in homeostasis (carbonic anhydrases), fatty acid
oxidation (carnitine palmitoyl transferase), and anti-inflammatory
activity (cyclooxygenase); hormonal receptor activity involving
gender specificity (androgen and progesterone); cellular processes
inhibiting depolarization by means of acetylcholinesterase; cellular
processes associated with the DNA metabolic process (DNA
alkylation, DNA synthesis); microtubule organization (tubulin beta-
1 chain) and cellular detoxification events (glutathione
S-transferase kappa 1) and gastrointestinal regulation (cholecysto-
kinin B receptor).
Overall, SCZ-altered upregulated events were linked with a few

MOAs/targets, most of which were neuromodulatory, whereas
downregulated events were linked with a more diverse range of
MOAs/targets outside of neuromodulation.

DISCUSSION
The majority of SCZ subjects receive lifelong APD treatment,
which limits the inferences drawn from postmortem examinations.
Here, to understand the effect of SCZ and APDs (in SCZ), we
contrasted the statistically derived distinct SCZ-altered and APD-
influenced proteomes using functional analysis focusing on GO,
cell types, and subcellular synaptic changes. Using drug-specific
signatures, we demonstrated that the majority of SCZ-altered
changes were influenced by APDs. However, our approach could
mitigate this issue in two different ways. First, the contrast
between pathways associated with SCZ-altered and APD-
influenced proteomes revealed that homeostasis-, signal trans-
duction-, cytoskeleton-, and dendrite-related processes were
generally not compensated for by APDs. The latter two processes
(cytoskeleton and dendrite) are consistent with the increased
neuronal density in nontreated postmortem SCZ-DLPFC, which is
accompanied by a decrease in cell size (attributable to the
cytoskeleton) and dendritic spines [36, 37].
In addition, the signatures of drugs with a known MOA revealed

a potential mechanism involved in SCZ pathophysiology despite
the confounding effect of drugs. For instance, in addition to the
influence of drugs in our cohort, an upregulated therapeutic effect
of dopamine receptor antagonists (Fig. 4) supports the known
compensatory upregulation of dopamine receptors during SCZ
pathophysiology [38]. Interestingly, the SCZ-altered proteome in
the present study significantly overlapped with several previous
SCZ-related findings across different studies and brain regions
(Fig. 2E). Furthermore, functional analysis using these proteomes
demonstrated several key SCZ-specific findings, such as the effect
of the extracellular region [39], the association of layer-5 PNs with
SCZ pathology [40] and its projection to the striatum [41], which
are consistent with several previous molecular, anatomical, and
functional imaging-based studies. While these consistencies
highlight the data reproducibility, the influence of APDs in all of
these studies calls into question the inferences about SCZ
pathophysiology based on them.

Influence of SCZ-altered and APD-influenced proteomes in
cortico-striatal pathways
DLPFC neurons (Fig. 5) project to the dorsal striatum related to
associative functionality via cholinergic interneurons, which
modulate dopaminergic input (to the striatum) through the
nicotine receptors [42]. The output of the dorsal striatum includes
direct and indirect projections to the basal ganglia (globus pallidus
internal) via GABAergic medium spiny neurons (MSNs) [43]. MSNs
projecting directly use D1 (excitatory) receptors, and those
relaying indirectly via the globus pallidus external and subthalamic
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Norepinephrine | Serotonin reuptake inhibitor
Sodium channel blocker
Muscarinic acetylcholine receptors
Androgen receptor antagonist
ACE inhibitor
Alpha-2 adrenergic receptor antagonist
Adenosine receptor antagonist
Cyclooxygenase (1 and 2)
Monoamine oxidase inhibitor
GABAA antagonist
Carnitine palmitoyltransferase inhibitor
Serotonin receptors
Carbonic anhydrase inhibitor

Cyclin-dependent kinase 1/cyclin B
Pl3-kinase p110-alpha subunit
Alpha-1a adrenergic receptor
Monoamine receptors
Cytochrome P450 inhibitor

Adrenergic receptor antagonist
Carbonic anhydrase ll
Local anesthetic
Cholecystokinin B receptor
DNA synthesis inhibitor
Cyclooxygenase inhibitor
Fatty acid synthase inhibitor
Protein-tyrosine phosphatase 2C
Beta-1 adrenergic  receptor
GABAB receptor
Neuronal acetylcholine receptor
Vesicular monoamine transporter inhibitor
Progesterone receptor agonist
Autotaxin
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Deptropine
Nocodazole

Disopyramide
Ronidazole

Domperidone
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Fig. 4 Drug and MOA/target associated with the SCZ-altered proteome. The orange and green boxes represent the enrichment (ES) of
drugs with known MOA/targets in up- and downregulated proteomes, respectively. A lighter to darker shade of both orange and green
represents an increasing enrichment calculated using −log10 (p-value of enrichment statistics). The upward-pointing orange arrow and
downward-pointing green arrow represent the up- and downregulated drug signatures, respectively, as predicted by the cmap database. See
Supplementary Table 7 for details on each drug.
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nucleus use D2 (inhibitory) receptors. The globus pallidus internal
projections hyperpolarize the thalamus, which projects back to
layer-3, where the inhabitant PNs extend axon collaterals to other
cortical areas [38]. Additionally, the DLPFC, similar to the dorsal
striatum, receives input from dopaminergic neurons of the ventral
mesencephalon [44].
Our functional analysis revealed that the up- and down-

regulated changes are enriched in two different subsets of
striatum projecting layer 5 PNs, which, based on the exclusive

enrichment of dopaminergic signaling, can be linked to D1- and
D2-receptor-expressing cortical PNs. PN with upregulated events
(Fig. 5, yellow) based on the association with haloperidol, which
targets the D2 receptor [45], can be D2-PN, while PN with
downregulated events (Fig. 5, blue) can be D1-PN. Under normal
circumstances when dopamine is optimal, the network events
sum up to relay the usual thalamic input to the cortex (Fig. 5,
legend). However, during SCZ, the hyperactivity of the dopamine
in the striatum assigns salience to unremarkable environmental
stimuli [46] and relays it to cortical layer-3 PNs [47] (Fig. 5, gray
PN), whose collaterals could cascade the salience signal to other
cortical areas, leading to an inappropriate effect. Note that within
this mechanism (i.e., a hyperdopaminergic striatum), previous
studies have postulated a hypodopaminergic cortex [38, 48–51],
but our functional analysis based on downregulated dopamine
uptake (Fig. 3) and upregulated dopamine receptor antagonists
(Fig. 4) suggests that the hyperdopaminergic effect leading to SCZ
pathology might simultaneously initiate in the cortex and the
striatum. A possible and perhaps important pathological implica-
tion of this could be a maladaptive association between working
memory [DLPFC function [52]] and salience [striatum function
[53]]. Note that under normal conditions, this association can be
between working memory and reward [54]. There is also an
association between stress—a prefrontal cortex (PFC)-related
functionality—and SCZ. Supporting the latter, a recent study on
mouse chronic unpredictable stress demonstrated that D1-and
D2-PN subpopulations of the PFC undergo distinct stress-induced
intrinsic and synaptic plasticity changes that may have functional
implications for stress-related pathology [55]. One can argue that a
hyperdopaminergic cortex, consistent with most medication-
based mechanisms (e.g., haloperidol), is likely relevant to the
positive and negative symptoms of SCZ (inappropriate affect) but
does not involve the cognitive deficit related to DLPFC
functionality. This, we conjecture, is largely because cognition
(e.g., working memory) may be associated with intracellular
signaling events [56, 57], while most SCZ-relevant therapeutic
changes target the receptor events implicated in a circuit-wide
phenomenon. We observed several downregulated kinase-related
events in our MOA/target analysis that are involved in memory
formation [58]. In this regard, a more rational design might look
for adjuvants that target the kinase pathways suggested here
(Fig. 4).
Further placing the functional analysis results in the context of a

hyperdopaminergic cortex, the reduced dendrite and cell size
(cytoskeleton, Fig. 3) seems to be selective for the D1-PNs (blue)
and not the D2-PNs or other PNs (particularly layer-3), as
postulated previously [38]. As the postulated hyperdopaminergic
cortex by means of D1-PNs may also sum up to relay inappropriate
affect from the thalamus, the selective pruning of these D1-PN
dendrites and reduced cell size may be a compensatory
mechanism that is further supported by the equally distributed
pre- and post-synaptic events, a phenomenon often associated
with a compensatory response [38].
Although our study focused only on the DLPFC, we observed

conserved results across several brain areas, suggesting that a
similar hyperdopaminergic mechanism might appear in all areas;
however, depending upon the location, it can have different
functionality. For instance, in the auditory or motor cortex and
related areas in the striatum, inappropriate affect, instead of
amplifying salience, can amplify inner speech, leading to thought
echo, a phenomenon consistently observed in SCZ patients [43].

Limitations and future directions
This study does have some limitations. First, despite the fact that
several variables, including sex, age, and race, play a significant
role in SCZ pathophysiology [59], the data was not stratified or
regressed for these variables, as doing so would have reduced the
power of the analysis. Investigating the influence of these

1
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3

4

5

6

Excitatory
Inhibitory
Thalamic input Dopaminergic input

Collateral 

D2D1
STRd

TH

GPi

GPe

STN

VTA

Fig. 5 Schematic summary of functional changes observed in the
study in the context of cortico-stratum circuitry. Enrichment
analysis of up- and downregulated SCZ-altered proteomes showed
enrichment in two different subsets of layer 5 PNs, showing
enriched dopaminergic signaling. The PNs enriched in upregulated
events were also associated with D2 receptor antagonists. Together,
these findings point toward selective association of the SCZ-altered
up- and downregulated proteome with D1-PN and D2 PN of cortical
layer 5, respectively. The data consistent with previous anatomical
studies also suggests that the two neurons are striatum projecting,
perhaps to D1- and D2-expressing MSN neurons. An order of
excitatory and inhibitory events shown in red and green,
respectively, sum up to modulate the excitatory thalamic input to
the cortex. Unlike previous studies postulating a hypodopaminergic
cortex, the functional analysis also suggests a hyperdopaminergic
cortex and a potential selective and compensatory pruning of D1-
PN dendrites (shown as a dashed blue line). STRd: dorsal striatum,
GPe: Globus pallidus external, GPi: Globus pallidus internal, STN:
Subthalamic nucleus, TH: Thalamus, VTA: Ventral tegmental area. See
the text for more details.
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variables on SCZ pathophysiology could be a promising future
direction. Second, we acknowledge that the analysis of APDs
related features is underpowered and should be interpreted as
exploratory. Third, the functional predictions obtained through
bioinformatics analyses should be interpreted as hypothesis-
generating. Consistent with the medication-related effect of PN
noticed in this study, in our recent single-nucleus transcriptomic
study [60], we have demonstrated that disease and drug state are
associated with to two distinct layer-5 PNs. However, the
hyperdopaminergic functionality centered around these PNs as
predicted in this study needs to be confirmed at the brain imaging
level. Likewise, the kinase signaling specific drug discussed here
need to be confirmed using human induced pluripotent stem cell
derived neurons.

DATA AND MATERIALS AVAILABILITY
All analyzed data are available in the main text or the supplementary materials. The
raw data are available from the corresponding author upon reasonable request.
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