Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What’s wrong with my experiment?: The impact of hidden variables on neuropsychopharmacology research

Abstract

The field of neuropsychopharmacology relies on behavioral assays to quantify behavioral processes related to mental illness and substance use disorders. Although these assays have been highly informative, sometimes laboratories have unpublished datasets from experiments that “didn’t work”. Often this is because expected outcomes were not observed in positive or negative control groups. While this can be due to experimenter error, an important alternative is that under-appreciated environmental factors can have a major impact on results. “Hidden variables” such as circadian cycles, husbandry, and social environments are often omitted in methods sections, even though there is a strong body of literature documenting their impact on physiological and behavioral outcomes. Applying this knowledge in a more critical manner could provide behavioral neuroscientists with tools to develop better testing methods, improve the external validity of behavioral techniques, and make better comparisons of experimental data across institutions. Here we review the potential impact of “hidden variables” that are commonly overlooked such as light-dark cycles, transport stress, cage ventilation, and social housing structure. While some of these conditions may not be under direct control of investigators, it does not diminish the potential impact of these variables on experimental results. We provide recommendations to investigators on which variables to report in publications and how to address “hidden variables” that impact their experimental results.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: There are many factors that can work together to impact an animal’s behavior.

References

  1. Simmons JM, Winsky L, Zehr JL, Gordon JA. Priorities in stress research: a view from the U.S. National Institute of Mental Health. Stress 2021;24:123–9.

    PubMed  Article  Google Scholar 

  2. Rasmussen K, White DA, Acri JB. NIDA’s medication development priorities in response to the Opioid Crisis: ten most wanted. Neuropsychopharmacology 2019;44:657–9.

    PubMed  Article  Google Scholar 

  3. Virani S, Baiocchi G, Bowtell D, Cabasag CJ, Cho KR, Fortner RT, et al. Joint IARC/NCI International Cancer Seminar Series Report: expert consensus on future directions for ovarian carcinoma research. Carcinogenesis 2021;42:785–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, et al. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020;141:1001–26.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Hoek JM, Hepkema WM, Halffman W. The effect of journal guidelines on the reporting of antibody validation. PeerJ 2020;8:e9300.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Kopp C. Locomotor activity rhythm in inbred strains of mice: implications for behavioural studies. Behav Brain Res. 2001;125:93–96.

    CAS  PubMed  Article  Google Scholar 

  7. Bedford NL, Gable JT, Hu CK, Wooldridge TB, Sokolov NA, Lassance J-M, et al. Automated tracking reveals the social network of beach mice and their burrows. BiorXiv. 2021. https://doi.org/10.1101/2021/08.07.45531.

  8. Ayyar VS, Sukumaran S. Circadian rhythms: influence on physiology, pharmacology, and therapeutic interventions. J Pharmacokinet Pharmacodyn. 2021:48:1–18.

    Article  Google Scholar 

  9. Ketchesin KD, Becker-Krail D, McClung CA. Mood-related central and peripheral clocks. Eur J Neurosci. 2020;51:326–45.

    PubMed  Article  Google Scholar 

  10. Nelson RJ, Bumgarner JR, Walker WH, DeVries AC. Time-of-day as a critical biological variable. Neurosci Biobehav Rev. 2021;127:740–6.

    PubMed  Article  Google Scholar 

  11. Nikbakht N, Diamond ME. Conserved visual capacity of rats under red light. ELife 2021;10:e66429.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Niklaus S, Albertini S, Schnitzer TK, Denk N. Challenging a myth and misconception: red-light vision in rats. Animals 2020;10:422.

    PubMed Central  Article  Google Scholar 

  13. Scheving LE, Vedral DF, Pauly JE. Daily circadian rhythm in rats to D-amphetamine sulphate: effect of blinding and continuous illumination on the rhythm. Nature 1968;219:621–2.

    CAS  PubMed  Article  Google Scholar 

  14. Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav. 2005;84:53–63.

    CAS  PubMed  Article  Google Scholar 

  15. Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. Learn Mem. 2015;22:426–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA 2002;99:9026–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Webb IC, Lehman MN, Coolen LM. Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiol Behav. 2015;143:58–69.

    CAS  PubMed  Article  Google Scholar 

  18. Haynes AC, Jackson B, Overend P, Buckingham RE, Wilson S, Tadayyon M, et al. Effects of single and chronic intracerebroventricular administration of the orexins on feeding in the rat. Peptides 1999;20:1099–105.

    CAS  PubMed  Article  Google Scholar 

  19. España RA, Plahn S, Berridge CW. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Res. 2002;943:224–36.

    PubMed  Article  Google Scholar 

  20. Kawai H, Iwadate R, Ishibashi T, Kudo N, Kawashima Y, Mitsumoto A. Antidepressants with different mechanisms of action show different chronopharmacological profiles in the tail suspension test in mice. Chronobiol Int. 2019;36:1194–207.

    CAS  PubMed  Article  Google Scholar 

  21. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90:2522–30.

    CAS  PubMed  Article  Google Scholar 

  22. Guan Z, Vgontzas AN, Omori T, Peng X, Bixler EO, Fang J. Interleukin-6 levels fluctuate with the light-dark cycle in the brain and peripheral tissues in rats. Brain Behav Immun. 2005;19:526–9.

    CAS  PubMed  Article  Google Scholar 

  23. Ucar DA, Tocco RJ, Kluger MJ. Circadian variation in circulating pyrogen: possible role in resistance to infection. Proc Soc Exp Biol Med Soc Exp Biol Med N. Y N. 1983;173:319–23.

    CAS  Article  Google Scholar 

  24. Kusunose N, Koyanagi S, Hamamura K, Matsunaga N, Yoshida M, Uchida T, et al. Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol Pain. 2010;6:1744-8069–6–83.

    Article  CAS  Google Scholar 

  25. Valentinuzzi VS, Menna-Barreto L, Xavier GF. Effect of circadian phase on performance of rats in the morris water maze task. J Biol Rhythms. 2004;19:312–24.

    PubMed  Article  Google Scholar 

  26. Valentinuzzi VS, Kolker DE, Vitaterna MH, Ferrari EAM, Takahashi JS, Turek FW. Effect of circadian phase on context and cued fear conditioning in C57BL/6J mice. Anim Learn Behav. 2001;29:133–42.

    Article  Google Scholar 

  27. Garner AM, Norton JN, Kinard WL, Kissling GE, Reynolds RP. Vibration-induced Behavioral Responses and Response Threshold in Female C57BL/6 Mice. J Am Assoc Lab Anim Sci JAALAS. 2018;57:447–55.

    PubMed  Article  Google Scholar 

  28. Arts JWM, Kramer K, Arndt SS, Ohl F. Sex differences in physiological acclimatization after transfer in Wistar rats. Animals 2014;4:693–711.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Lee S, Nam H, Kim J, Cho H, Jang Y, Lee E, et al. Body weight changes of laboratory animals during transportation. Asian-Australas J Anim Sci. 2012;25:286–90.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Hurst K, Litwak KN. Accelerative forces associated with routine inhouse transportation of rodent cages. J Am Assoc Lab Anim Sci JAALAS. 2012;51:544–7.

    CAS  PubMed  Google Scholar 

  31. Obernier JA, Baldwin RL. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 2006;47:364–9.

    CAS  PubMed  Article  Google Scholar 

  32. Tuli JS, Smith JA, Morton DB. Stress measurements in mice after transportation. Lab Anim. 1995;29:132–8.

    CAS  PubMed  Article  Google Scholar 

  33. Laroche J, Gasbarro L, Herman JP, Blaustein JD. Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology 2009;150:2351–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, et al. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2021;46:949–58.

    CAS  Article  Google Scholar 

  35. Sial OK, Gnecco T, Cardona-Acosta AM, Vieregg E, Cardoso EA, Parise LF, et al. Exposure to vicarious social defeat stress and western-style diets during adolescence leads to physiological dysregulation, decreases in reward sensitivity, and reduced antidepressant efficacy in adulthood. Front Neurosci. 2021;15:701919.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Laroche J, Gasbarro L, Herman JP, Blaustein JD. Enduring influences of peripubertal/adolescent stressors on behavioral response to estradiol and progesterone in adult female mice. Endocrinology 2009;150:3717–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Ismail N, Kumlin AM, Blaustein JD. A pubertal immune challenge alters the antidepressant-like effects of chronic estradiol treatment in inbred and outbred adult female mice. Neuroscience 2013;249:43–52.

    CAS  PubMed  Article  Google Scholar 

  38. Ismail N, Blaustein JD. Pubertal immune challenge blocks the ability of estradiol to enhance performance on cognitive tasks in adult female mice. Psychoneuroendocrinology 2013;38:1170–7.

    CAS  PubMed  Article  Google Scholar 

  39. Ogawa T, Kuwagata M, Hori Y, Shioda S. Valproate-induced developmental neurotoxicity is affected by maternal conditions including shipping stress and environmental change during early pregnancy. Toxicol Lett. 2007;174:18–24.

    CAS  PubMed  Article  Google Scholar 

  40. Patin V, Lordi B, Vincent A, Thoumas JL, Vaudry H, Caston J. Effects of prenatal stress on maternal behavior in the rat. Dev Brain Res. 2002;139:1–8.

    CAS  Article  Google Scholar 

  41. Moriyama C, Galic MA, Mychasiuk R, Pittman QJ, Perrot TS, Currie RW, et al. Prenatal transport stress, postnatal maternal behavior, and offspring sex differentially affect seizure susceptibility in young rats. Epilepsy Behav. 2013;29:19–27.

    PubMed  Article  Google Scholar 

  42. Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 2013;339:1095–9.

    CAS  PubMed  Article  Google Scholar 

  43. Sachser N, Zimmermann TD, Hennessy MB, Kaiser S. Sensitive phases in the development of rodent social behavior. Curr Opin Behav Sci. 2020;36:63–70.

    PubMed  PubMed Central  Article  Google Scholar 

  44. Warner HR. NIA’s intervention testing program at 10 years of age. Age 2015;37:22.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Marco EM, Macrì S, Laviola G. Critical age windows for neurodevelopmental psychiatric disorders: evidence from animal models. Neurotox Res. 2011;19:286–307.

    PubMed  Article  Google Scholar 

  46. Hammen C, Henry R, Daley SE. Depression and sensitization to stressors among young women as a function of childhood adversity. J Consult Clin Psychol. 2000;68:782–7.

    CAS  PubMed  Article  Google Scholar 

  47. Lipman NS, Corning BF, Coiro MA. The effects of intracage ventilation on microenvironmental conditions in filter-top cages. Lab Anim. 1992;26:206–10.

    CAS  PubMed  Article  Google Scholar 

  48. Toth LA. The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp Neurol. 2015;270:72–77.

    PubMed  Article  Google Scholar 

  49. Åhlgren J, Voikar V. Housing mice in the individually ventilated or open cages—Does it matter for behavioral phenotype? Genes Brain Behav. 2019;18:e12564.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Mueller FS, Polesel M, Richetto J, Meyer U, Weber-Stadlbauer U. Mouse models of maternal immune activation: Mind your caging system! Brain Behav Immun. 2018;73:643–60.

    CAS  PubMed  Article  Google Scholar 

  51. David JM, Knowles S, Lamkin DM, Stout DB. Individually ventilated cages impose cold stress on laboratory mice: a source of systemic experimental variability. J Am Assoc Lab Anim Sci. 2013;52:738–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neigh G, Bowers S, Korman B, Nelson R. Housing environment alters delayed-type hypersensitivity and corticosterone concentrations of individually housed male C57BL/6 mice. Anim Welf. 2005;14:249–57.

    CAS  Google Scholar 

  53. Baumans V, Schlingmann F, Vonck M, van Lith HA. Individually ventilated cages: beneficial for mice and men? Contemp Top Lab Anim Sci. 2002;41:13–19.

    PubMed  Google Scholar 

  54. Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. Fasting of mice: a review. Lab Anim. 2013;47:225–40.

    CAS  PubMed  Article  Google Scholar 

  55. Mani SK, Reyna AM, Alejandro MA, Crowley J, Markaverich BM. Disruption of male sexual behavior in rats by tetrahydrofurandiols (THF-diols). Steroids 2005;70:750–4.

    CAS  PubMed  Article  Google Scholar 

  56. Villalon Landeros R, Morisseau C, Yoo HJ, Fu SH, Hammock BD, Trainor BC. Corncob bedding alters the effects of estrogens on aggressive behavior and reduces estrogen receptor-α expression in the brain. Endocrinology 2012;153:949–53.

    PubMed  Article  CAS  Google Scholar 

  57. Trainor BC, Takahashi EY, Campi KL, Florez SA, Greenberg GD, Laman-Maharg A, et al. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding. Horm Behav. 2013;63:543–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Whiteside TE, Thigpen JE, Kissling GE, Grant MG, Forsythe D. Endotoxin, coliform, and dust levels in various types of rodent bedding. J Am Assoc Lab Anim Sci. 2010;49:184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ewaldsson B, Fogelmark B, Feinstein R, Ewaldsson L, Rylander R. Microbial cell wall product contamination of bedding may induce pulmonary inflammation in rats. Lab Anim. 2002;36:282–90.

    CAS  PubMed  Article  Google Scholar 

  60. Duke JL, Zammit TG, Lawson DM. The effects of routine cage-changing on cardiovascular and behavioral parameters in male Sprague-Dawley rats. Contemp Top Lab Anim Sci. 2001;40:17–20.

    CAS  PubMed  Google Scholar 

  61. Rasmussen S, Miller MM, Filipski SB, Tolwani RJ. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci. 2011;50:479–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ader DN, Johnson SB, Huang SW, Riley WJ. Group size, cage shelf level, and emotionality in non-obese diabetic mice: impact on onset and incidence of IDDM. Psychosom Med. 1991;53:313–21.

    CAS  PubMed  Article  Google Scholar 

  63. Izídio GS, Lopes DM, Spricigo L Jr, Ramos A. Common variations in the pretest environment influence genotypic comparisons in models of anxiety. Genes Brain Behav. 2005;4:412–9.

    PubMed  Article  Google Scholar 

  64. Theil JH, Ahloy-Dallaire J, Weber EM, Gaskill BN, Pritchett-Corning KR, Felt SA, et al. The epidemiology of fighting in group-housed laboratory mice. Sci Rep. 2020;10:16649.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Greenman DL, Bryant P, Kodell RL, Sheldon W. Influence of cage shelf level on retinal atrophy in mice. Lab Anim Sci. 1982;32:353–6.

    CAS  PubMed  Google Scholar 

  66. Freymann J, Tsai P-P, Stelzer H, Hackbarth H. The amount of cage bedding preferred by female BALB/c and C57BL/6 mice. Lab Anim. 2015;44:17–22.

    Article  Google Scholar 

  67. Freymann J, Tsai P-P, Stelzer H, Hackbarth H. The impact of bedding volumes on laboratory mice. Appl Anim Behav Sci. 2017;186:72–79.

    Article  Google Scholar 

  68. Kentner AC, Speno AV, Doucette J, Roderick RC, The contribution of environmental enrichment to phenotypic variation in mice and rats. ENeuro. 2021;8:ENEURO.0539-20.2021.

  69. Bartolomucci A. Social stress, immune functions and disease in rodents. Front Neuroendocrinol. 2007;28:28–49.

    CAS  PubMed  Article  Google Scholar 

  70. Bates MLS, Emery MA, Wellman PJ, Eitan S. Social housing conditions influence morphine dependence and the extinction of morphine place preference in adolescent mice. Drug Alcohol Depend. 2014;142:283–9.

    CAS  PubMed  Article  Google Scholar 

  71. Lore R, Flannelly K. Rat societies. Sci Am. 1977;236:106–18.

    CAS  PubMed  Article  Google Scholar 

  72. Scott JP, Fredericson E. The causes of fighting in mice and rats. Physiol Zool. 1951;24:273–309.

    Article  Google Scholar 

  73. Mondragón R, Mayagoitia L, López-Luján A, Díaz JL. Social structure features in three inbred strains of mice, C57Bl/6J, Balb/cj, and NIH: a comparative study. Behav Neural Biol. 1987;47:384–91.

    PubMed  Article  Google Scholar 

  74. Van Loo PLP, Van Zutphen LFM, Baumans V. Male management: coping with aggression problems in male laboratory mice. Lab Anim. 2003;37:300–13.

    PubMed  Article  Google Scholar 

  75. Greenberg GD, Howerton CL, Trainor BC. Fighting in the home cage: agonistic encounters and effects on neurobiological markers within the social decision-making network of house mice (Mus musculus). Neurosci Lett. 2014;566:151–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev. 2014;40:1–5.

    PubMed  Article  Google Scholar 

  77. Williamson CM, Lee W, Romeo RD, Curley JP. Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol Behav. 2017;171:110–9.

    CAS  PubMed  Article  Google Scholar 

  78. Louch CD, Higginbotham M. The relation between social rank and plasma corticosterone levels in mice. Gen Comp Endocrinol. 1967;8:441–4.

    CAS  PubMed  Article  Google Scholar 

  79. Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep. 2018;8:1759.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Lidster K, Owen K, Browne WJ, Prescott MJ. Cage aggression in group-housed laboratory male mice: an international data crowdsourcing project. Sci Rep. 2019;9:15211.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Kentner AC, Lima E, Migliore MM, Shin J, Scalia S. Complex environmental rearing enhances social salience and affects hippocampal corticotropin releasing hormone receptor expression in a sex-specific manner. Neuroscience 2018;369:399–411.

    CAS  PubMed  Article  Google Scholar 

  82. Toth LA, Kregel K, Leon L, Musch TI. Environmental enrichment of laboratory rodents: the answer depends on the question. Comp Med. 2011;61:314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Trainor BC, Workman JL, Jessen R, Nelson RJ. Impaired nitric oxide synthase signaling dissociates social investigation and aggression. Behav Neurosci. 2007;121:362–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Grippo AJ, Lamb DG, Carter CS, Porges SW. Social isolation disrupts autonomic regulation of the heart and influences negative affective behaviors. Biol Psychiatry. 2007;62:1162–70.

    PubMed  PubMed Central  Article  Google Scholar 

  85. Zorzo C, Méndez-López M, Méndez M, Arias JL. Adult social isolation leads to anxiety and spatial memory impairment: Brain activity pattern of COx and c-Fos. Behav Brain Res. 2019;365:170–7.

    PubMed  Article  Google Scholar 

  86. Detillion CE, Craft TKS, Glasper ER, Prendergast BJ, DeVries AC. Social facilitation of wound healing. Psychoneuroendocrinology 2004;29:1004–11.

    CAS  PubMed  Article  Google Scholar 

  87. Lindzey G, Winston H, Manosevitz M. Social dominance in inbred mouse strains. Nature 1961;191:474–6.

    CAS  PubMed  Article  Google Scholar 

  88. Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 2011;334:693–7.

    CAS  PubMed  Article  Google Scholar 

  89. Beery AK, Holmes MM, Lee W, Curley JP. Stress in groups: lessons from non-traditional rodent species and housing models. Neurosci Biobehav Rev. 2020;113:354–72.

    PubMed  PubMed Central  Article  Google Scholar 

  90. Zhou T, Sandi C, Hu H. Advances in understanding neural mechanisms of social dominance. Curr Opin Neurobiol. 2018;49:99–107.

    CAS  PubMed  Article  Google Scholar 

  91. Gattermann R, Fritzsche P, Neumann K, Al-Hussein I, Kayser A, Abiad M, et al. Notes on the current distribution and the ecology of wild golden hamsters (Mesocricetus auratus). J Zool. 2001;254:359–65.

    Article  Google Scholar 

  92. Ross AP, Norvelle A, Choi DC, Walton JC, Albers HE, Huhman KL. Social housing and social isolation: Impact on stress indices and energy balance in male and female Syrian hamsters (Mesocricetus auratus). Physiol Behav. 2017;177:264–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Carter CS, Getz LL. Monogamy and the Prairie Vole. Sci Am. 1993;268:100–6.

    CAS  PubMed  Article  Google Scholar 

  94. Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, et al. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 2007;32:966–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Glasper ER, DeVries AC. Social structure influences effects of pair-housing on wound healing. Brain Behav Immun. 2005;19:61–68.

    PubMed  Article  Google Scholar 

  96. Beery AK, Lopez SA, Blandino KL, Lee NS, Bourdon NS. Social selectivity and social motivation in voles. ELife 2021;10:e72684.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Kuske JX, Trainor BC. Mean girls: social stress models for female rodents. Curr Top Behav Neurosci. 2021. 2021. https://doi.org/10.1007/7854_2021_247.

  98. Horrell ND, Acosta MC, Saltzman W. Plasticity of the paternal brain: effects of fatherhood on neural structure and function. Dev Psychobiol. 2021;63:1499–520.

    PubMed  Article  Google Scholar 

  99. Kentner AC, Abizaid A, Bielajew C. Modeling dad: animal models of paternal behavior. Neurosci Biobehav Rev. 2010;34:438–51.

    PubMed  Article  Google Scholar 

  100. Bandrowski A, Brush M, Grethe JS, Haendel MA, Kennedy DN, Hill S, et al. The resource identification initiative: a cultural shift in publishing. Neuroinformatics 2016;14:169–82.

    PubMed  PubMed Central  Article  Google Scholar 

  101. Sert NP, du, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biol. 2020;18:e3000410.

    Article  CAS  Google Scholar 

  102. Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U, et al. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 2019;44:245–58.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Allen Pryor for drawings used in Fig. 1. ACK was supported by NIH R15 MH114035 and BCT was supported by NIH R01 MH121829 and NSF IOS 1937335. The authors have nothing additional to disclose.

Author information

Authors and Affiliations

Authors

Contributions

HBS, ACK, and BCT wrote and co-wrote the paper.

Corresponding author

Correspondence to Brian C. Trainor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butler-Struben, H.M., Kentner, A.C. & Trainor, B.C. What’s wrong with my experiment?: The impact of hidden variables on neuropsychopharmacology research. Neuropsychopharmacol. 47, 1285–1291 (2022). https://doi.org/10.1038/s41386-022-01309-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01309-1

Search

Quick links