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Repeated lysergic acid diethylamide (LSD) reverses stress-
induced anxiety-like behavior, cortical synaptogenesis deficits
and serotonergic neurotransmission decline
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Lysergic acid diethylamide (LSD) is a serotonergic psychedelic compound receiving increasing interest due to putative anxiolytic
and antidepressant properties. However, the potential neurobiological mechanisms mediating these effects remain elusive.
Employing in vivo electrophysiology, microionthophoresis, behavioral paradigms and morphology assays, we assessed the impact
of acute and chronic LSD administration on anxiety-like behavior, on the cortical dendritic spines and on the activity of serotonin (5-
HT) neurons originating in the dorsal raphe nucleus (DRN) in male mice exposed to chronic restraint stress. We found that while the
acute intraperitoneal (i.p.) administration of LSD (5, 15 and 30 and 60 μg/kg) did not produce any anxiolytic or antidepressant
effects in non-stressed mice, the dose of 30 µg/kg (daily for 7 days) prevented the stress-induced anxiety-like behavior and the
stress-induced decrease of cortical spine densitiy. Interestingly, while LSD acutely decreased the firing activity of 5-HT neurons,
repeated LSD increased their basal firing rate and restored the low 5-HT firing induced by stress. This effect was accompanied by a
decreased inhibitory response of 5-HT neurons to microiontophoretic applications of the 5-HT1A agonist 8-OH-DPAT (8-hydroxy-N,
N-dipropyl-2-aminotetralin). In conclusion, repeated LSD prevents the exacerbation of anxiety-like behavior following chronic stress
exposure, but has no behavioral effects in non-stressed mice. These effects are paralleled by increased cortical spinogenesis and an
enhancement of 5-HT neurotransmission which might be due to 5-HT1A receptors desensitization. Increased cortical spine density
and enhancement of serotonergic neurotransmission may thus represent a candidate mechanism which mediate the therapeutic
effects of serotonergic psychedelics on stress-induced anxiety.

Neuropsychopharmacology (2022) 47:1188–1198; https://doi.org/10.1038/s41386-022-01301-9

INTRODUCTION
In recent years, psychedelic compounds have come to the forefront
as potential therapeutics in psychiatry [1–3]. In healthy individuals,
the mixed serotonin (5-HT)1A/2A receptor agonist lysergic acid
diethylamide (LSD) produces feelings of happiness, trust, and
empathy [4, 5], positive mood changes and prosocial effects [6, 7].
Preliminary randomized controlled trials (RCTs) demonstrated the
efficacy of LSD-assisted psychotherapy to treat anxiety and distress
associated with life-threatening diseases [8, 9]. Ongoing clinical
studies are assessing the efficacy of LSD for the treatment of
major depressive disorders [10]. Despite promising preliminary
evidence that they might be safe and efficacious in psychiatry, the
mechanisms mediating their therapeutic effects remain elusive,
hindering drug development.
In our previous published study, we observed that while at low

doses LSD (5–20 µg/kg) administration decreases the firing
activity of serotonergic (5-HT) neurons in the dorsal raphe
nucleus (DRN), at higher doses (60–120 µg/kg) it decreases the
firing activity of dopaminergic (DA) neurons in the ventral
tegmental area. Corroborating the involvement of the DA system,

this effect was prevented by the injection of the selective D2

antagonist haloperidol (50 µg/kg) [11]. This suggests that at
low doses LSD only affects 5-HT neurotransmission, but at
higher doses its effects extend to the DA system, thereby
producing psychotic-like symptoms such as hyperlocomotion
and stereotypic behaviors [12]. Similarly, other authors found a
differential effect of LSD doses and timing administration over
5-HT and DA systems [13, 14]. For these reasons, we have then
used LSD at a low dose range in a 7-day regimen, demonstrating
that LSD (30 µg/kg, i.p., for 7 days) enhances sociability and the
social novelty preference by potentiating the 5-HT2A and AMPA
responses in glutamatergic neurons and activating the mTORC1
complex in excitatory neurons of the medial prefrontal cortex
(mPFC) [15].
The 5-HT system is strongly involved in the neurobiology of

stress-induced anxiety and depression [16, 17]. Chronic stress in
rodents produces a decline of 5-HT firing activity [18], in
addition to the development of anxiety-like phenotypes [19, 20].
Given that LSD is a serotonergic agent with anxiolytic properties,
it seems plausible that LSD might affect certain facets of the
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neurobiological stress response, exerting a protective role over
stress-induced neurobiological changes. However, whether
repeated LSD confers behavioral and neurobiological resilience
to stress preventing the exacerbation of stress-induced anxiety
and/or depressive-like behavior and the stress-elicited low firing
activity of serotonergic neurons, remains unknown. Moreover,
while LSD is known to acutely decrease the firing activity of 5-HT
neurons [11, 21], the effects of repeated LSD on 5-HT
neurotransmission in baseline conditions or under a chronically
stressful condition is yet to be investigated.
Here, we firstly tested if a single administration of different

doses of LSD (5, 15, 30 and 60 µg/kg) elicit anxiolytic and/or
antidepressant-like effect. Secondly, we investigated the ability of
repeated LSD administration to prevent the stress-induced
development of anxiety-like behavior. Lastly, we assessed if the
protective effects of repeated LSD over stress-induced behaviors is
paralleled by a protective effect over the stress-induced cortical
spinogenesis and 5-HT neurotransmission decline.

MATERIALS AND METHODS
C57BL/6N male mice (8–12 weeks old, weighing 25–30 g, Charles River,
Quebec, Canada) were used. All procedures were approved by the McGill
University Ethics Committee and conducted in accordance with the
Canadian Institute of Health Research for Animal Care and Scientific Use,
and the Animal Care Committee of McGill University (protocol number
5764). All efforts were made to minimize animal suffering, and the 3Rs rule
(reduce, refine, replace) applied where possible.

Acute and repeated LSD treatment
For acute studies, intraperitoneal (i.p.) LSD (Sigma-Aldrich, London, UK)
doses of 5, 15, 30 and 60 µg/kg were employed. Immediately after
administration, mice were placed in a transparent glass beaker to assess
the head twitch response for 10min. Subsequently, mice were returned to
their home cage for 20min before undergoing the other behavioral tests.
For the repeated treatment, the doses of 5, 15 and 30 µg/kg (i.p.) were
employed in the chronic restraint stress (CS) study and administered
during the last 7 days of the (CS) paradigm. For in vivo electrophysiological
recordings, cumulative acute injections were used. The doses tested were
chosen based on previous experiments showing that 5–20 µg/kg acutely
decreased the 5-HT DRN firing activity [11] and on behavioral experiment
showing that 7 days of 30 µg/kg daily increased social behavior in mice
without affecting locomotion [22]. For repeated treatment, behavioral or
electrophysiological experiments were performed 24 h later the last LSD or
vehicle injection. Detailed descriptions of the methods are presented in
the online Supplementary Material section.

RESULTS
Effects of acute LSD treatment on the head twitch response in
non-stressed animals
Immediately after LSD injection (5, 15, 30 and 60 µg/kg, i.p.), mice
were placed in a transparent Plexiglas cylinder (40 cm diameter)
for HTR quantification. One-way ANOVA analysis detected
a significant difference of the treatment (Fig. 1A, F (4,40)= 52,71,
p < 0.0001). In particular, the doses of 30 and, more robustly, of
60 µg/kg, increased the number of head twitches, compared to
mice treated with vehicle or lower LSD doses.

Effects of acute LSD treatment on anxiety- and depressive-like
behavior in non-stressed animals
Next, we performed a battery of behavioral tests to investigate the
ability of different doses of LSD (5, 15, 30 and 60 µg/kg) to modulate
anxiety-like and depression-like behaviors. Twenty minutes after the
HTR measurement, anxiety-like behavior was quantified in the
elevated plus maze (EPM) test. No statistical difference was detected
in the percentage of time spent in the open arms (Fig. 1B, F (4,39)=
0.6857, p= 0.6058) or in the number of entries (Fig. 1C, F (4,39)= 1.063,
p= 0.3881) in the open arms. After the EPM, animals underwent the
light-dark box test (LDBT). No differences were observed in the time

spent in the light compartment (Fig. 1D, F (4,39)= 1.044, p= 0.3969)
nor in the number of transitions between the dark and light
compartment (Fig. 1E, F (4,39)= 0.5721 p= 0.6844). Subsequently, mice
were placed in a novel arena to undergo the novelty suppressed
feeding test (NSFT). None of the tested doses of LSD produced
changes in the latency to feed in the novel environment (Fig. 1F,
F (4,40)= 0.3520, p= 0.8411). A different cohort of mice was tested in
the open field test (OFT) and the forced swim test (FST). Thirty
minutes after the injections, mice were placed in the OFT arena. A
main effect of treatment was observed over the total distance
traveled (Fig. 1H, F (4,39)= 4.045, p= 0.007). Although post-hoc
analyses did not reveal statistically significant differences between
any of the experimental groups, we found a non-statistically
significant trend in the increased distance traveled by the mice
treated with the 60 µg/kg dose, compared to vehicle-treated mice.
Similarly, none of the tested doses produced significant differences in
the number of entries into the center (Fig. 1I, F (4,39)= 0.2324 p=
0.9185) or the total time spent in the center area of the arena (Fig. 1J,
F (4,39)= 0.4238, p= 0.7905). Stereotypies, which are abnormal
repetitive, unvarying, and functionless behaviors that model a
psychotic-like behavior [23] were also assessed during the 20min of
open field. Intriguingly, we found that while the dose of 60 µg/kg
produced a significant increase of grooming duration (Fig. 1K,
F (4,39)= 57, p< 0.001) and rearing episodes (Fig. 1L, F (4,39)= 11.25,
p< 0.001), the dose of 30 µg/kg did not, confirming the dual
activation of the 5-HT system at low doses of LSD and dopamine at
higher doses as previously observed [11]. Finally, mice were tested in
the FST and no differences were found regarding the immobility time
in relation to the dose of LSD (Fig. 1M, F (4,39)= 0.3399 p= 0.8494).
Given that the 60 μg/kg dose induced an increase in the stereotypies
(grooming and rearing) in the OFT (Fig. 1K, L), we did not use this
dose in further experiments.

Repeated LSD administration prevents chronic-stress induced
anxiety-like behavior
Given the lack of behavioral effects in non-stressed animals, we
investigated the ability of LSD to prevent the development of
anxiety-like behavior following chronic restraint stress (CS, 15 days,
2 h/day). Twenty-four hours after the last restraint procedure, mice
underwent the open field test (OFT) (Fig. 2A). Stressed mice
showed no differences in locomotion compared to controls (CTL),
and repeated LSD had no effect on the distance traveled at the
tested doses (Fig. 2B, stress factor, F (1, 69)= 0.1772, p= 0.6751;
treatment factor, F (3, 69)= 0.3122, p= 0.8165; interaction treat-
ment × stress, F (3, 69)= 2.018, p= 0.1194). As expected, CS
decreased the time spent in the center of the open field test arena
(Fig. 2C, stress factor, F (1, 69)= 163.7, p < 0.001; treatment
factor, F (3, 69)= 2.562, p= 0.0618; interaction treatment × stress,
F (3, 69)= 3.529, p= 0.0193, Fig. 2C, G) and the number of entries to
the center (Fig. 2D, G stress factor, F (1, 69)= 162.6, p < 0.001;
treatment factor, F (3, 69)= 8.127, p= 0.0001; interaction treat-
ment × stress, F (3, 69)= 5.148, p= 0.0029). Interestingly, the
number of entries was statistically higher in CS mice treated with
LSD at the dose of 30 µg/kg/day for 7 days (last injection 24 h
before the test) compared to CS mice treated with veh (p < 0.001),
indicating an anxiolytic-like effect of the 7-day repeated LSD
regimen. On the contrary, the doses of 5 and 15 µg/kg failed
to prevent the decrease in the number of entries in CS mice
(Fig. 2D). In line with our previous work [15], repeated LSD
administration did not affect the center time and entries. In
addition, neither repeated LSD nor CS affected the duration of
grooming (Fig. 2E, stress factor, F (1, 69)= 1.944, p= 0.1677;
treatment factor, F (3, 69)= 0.6376, p= 0.5934; interaction treat-
ment × stress, F (3, 69)= 0.6756, p= 0.5699) or the frequency of
rearing (Fig. 2F, stress factor, F (1, 69)= 1.488, p= 0.2267; treatment
factor, F (3, 69)= 1.648, p= 0.1864; interaction treatment × stress,
F (3, 69)= 0.7582, p= 0.5214). These results demonstrate that
amongst the doses not eliciting stereotypic behavior, only the
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repeated dose of 30 µg/kg prevented the CS-induced decrease in
number of entries in the center of the arena, without affecting the
grooming and rearing behavior.

Repeated LSD administration prevents chronic stress-induced
anxiety-like behavior in the light-dark box test and in the
novelty suppressed feeding test, but not in the elevated plus
maze test
To further assess the protective effects of the only effective LSD
dose (30 µg/kg) over stress-induced anxiety-like behavior, another
cohort of LSD-treated mice and controls were exposed to CS and
tested in the EPMT, LDBT and NSFT (Fig. 3A). In the EPMT, CS and
CTL mice did not display differences in locomotion (Fig. 3B, stress
factor, F (1, 28)= 0.1162, p= 0.7358; treatment factor, F (1, 28)=
2.482, p= 0.1264; interaction stress x treatment, F (1, 28)= 0.0059,
p= 0.9395). However, CS mice spent less time in the open
arms (Fig. 3C, stress factor, F (1, 28)= 33.26, p= <0.001; treatment
factor, F (1, 28)= 1.858, p= 0.1837; interaction stress × treatment,
F (1, 28)= 0.1038, p= 0.7497), more time in the closed arms
(Fig. 3D, stress factor, F (1, 28)= 33.26, p < 0.0001; treatment
factor, F (1, 28)= 1.858, p= 0.1837; interaction stress × treatment,
F (1, 28)= 0.1039, p= 0.7496), and entered less the open arms
(Fig. 3E, stress factor, F (1, 28)= 55.19, p < 0.0001; treatment factor
F (1, 28)= 0.3799, p= 5426; interaction stress × treatment, F (1, 28)=
0.1273, p= 0.1273). The repeated LSD treatment failed to alter any
of these parameters (p > 0.05). In the LDB test, the CS protocol
produced fewer transitions between the light and dark compart-
ments in mice treated with veh, an effect that was prevented by

the LSD treatment (Fig. 3F, stress factor, F (1, 28)= 2.706, p=
0.1111; treatment factor, F (1, 28)= 3.568, p= 0.0693; interaction
stress × treatment, F (1, 28)= 8.554, p= 0.0068). LSD treatment
did not affect the time spent in the light compartment of the
LDBT, for which the Two-way ANOVA analysis revealed a main
effect of stress (Fig. 3G, F (1, 28)= 15.41, p= 0.0005) but not of
treatment (F (1, 28)= 2.437, p= 0.1297), or of the interaction of
the two (F (1, 28) = 0.1152, p= 0.7369). Finally, the same cohort of
mice was tested in the NSFT. As expected, CS mice showed
an increased latency to feed in the novel arena compared to
CTL (Fig. 3H, stress factor, F (1, 28)= 6.564, p= 0.0159; treatment
factor, F (1, 28)= 5.436, p= 0.0269; interaction stress × treatment,
F (1, 28)= 3.163, p= 0.0005), confirming that the stress protocol
exacerbated anxiety-like behavior. Importantly, LSD-treated stressed
mice (last dose 24 h before the test) had a reduced latency to feed
compared to veh-treated CS mice (p < 0.05). No difference was
found in the latency to feed in the home cage (Fig. 3I, stress factor,
F (1, 28)= 0.2289, p= 0.6359; treatment factor, F (1, 28)= 0.5332, p=
0.4711; interaction stress × treatment, F (1, 28)= 3.345, p= 0.0777).
Overall, these data indicate that the repeated LSD at the dose of 30
µg/kg prevents the exacerbation of stress-induced anxiety-like
behavior.

Chronic restraint stress does not exacerbate depressive- and
anhedonic-like behavior
Next, we assess whether the CS paradigm employed in the study
produces depressive- and/or anhedonic-like behavior, as we
previously observed using a model of chronic unpredictable stress
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[18]. Using another cohort of mice, we performed the sucrose
preference test (SPT) and the forced swim test (FST). No differences
were detected due to stress or repeated LSD (30 µg/kg) in the
immobility time (Fig. 3J, stress factor, F (1, 36)= 0.2973, p= 0.2973;
treatment factor, F (1, 36)= 0.8832, p= 0.3536; interaction stress ×
treatment, F (1, 36)= 0.0232, p= 0.8797) or sucrose preference
(Fig. 3K, stress factor, F (1, 36)= 1.590, p= 0.2155; treatment factor,

F (1, 36)= 0.6355, p= 0.4306; interaction stress × treatment, F (1, 36)=
0.5810, p= 0.4509).

Repeated LSD administration prevents the chronic stress-
induced reduction of cortical spine density
Stress induces a remodeling of brain architecture, which is
underpinned by changes in dendritic spines morphology and
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density [24, 25], particularly within the PFC [26]. Since previous
experiments demonstrated that acute in vitro LSD administration
increased the number of dendritic spines in rodent primary
neuronal cultures [27], we thought to investigate whether
repeated LSD during exposure to a repeated stressogenic insult
prevents the stress-induced reduction in the number of apical
dendritic spines in the mPFC. As expected, 15 days of chronic
restraint stress reduced the number of dendritic spines, while LSD
(30 µg/kg/day for 7 days, last dose 24 hours before the brain
dissection) prevented this decline while also increasing spinogen-
esis in control mice (Fig. 3L, M, stress factor, F (1, 17)= 22.92, p <
0.001; treatment factor, F (1, 17)= 61.57, p < 0.001; interaction stress
x treatment, F (1, 17)= 61.57, p < 0.001).

Acute and repeated LSD administration differentially impact
5-HT transmission in the DRN
Drugs used to treat anxiety and depression like selective
serotonin re-uptake inhibitors (SSRIs) produce a short-term
decrease in 5-HT firing activity, followed by a desensitization of
the 5- HT1A somatodendritic autoreceptors, leading, after some
days of treatment, to a net increase in 5-HT neurotransmission
[28, 29]. Given that acute LSD at the tested doses failed to
produce any behavioral effects, whereas repeated LSD pre-
vented the development of stress-induced anxiety-like pheno-
type and the decrease in cortical spinogenesis, we hypothesized
that LSD could impact the DRN 5-HT transmission similarly to
the SSRIs. Firstly, we tested the ability of acute cumulative
injections of the 3 different doses of LSD employed in the CS
protocol to modulate the 5-HT DRN activity in anesthetized
mice (Fig. 4A, B). We found in non-stressed mice that acute LSD
(5, 15 and 30 µg/kg, i.p.) decreased the spontaneous firing
activity of DRN 5-HT neurons (Fig. 4C, D, RM One-way ANOVA,
F (1.985, 7.941)= 34.41, p= 0.0001), similarly to the response
previously observed in non-stressed rats [11, 30, 31]. Post-hoc
analyses showed that LSD completely shut down DRN 5-HT
activity at the dose of 30 µg/kg. We then tested how repeated
administration of this dose of LSD (30 µg/kg, i.p., daily for 7 days,
last dose 24 h before recording) affected 5-HT neurotransmis-
sion. The dose was chosen because i) it was the minimal dose to
completely inhibit the 5-HT firing activity, ii) it was the only dose
that could prevent the development of stress-induced anxiety-
like behavior when administered for 7 days, iii) it produced a low
extent of stereotypies. Intriguingly, following 7 days of treat-
ment, LSD (30 µg/kg) significantly increased the mean sponta-
neous cell firing frequency of DRN 5-HT neurons (14 neurons
recorded in 4 mice) compared with veh (10 neurons recorded in
4 mice) (Fig. 4E, F, t= 3.751, df= 26, p < 0.001). These effects
were coupled to an increased numbers of spikes events in 200 s
(Fig. 4G, F, t= 6.504, df= 26, p < 0.001. In addition, LSD
produced an increased coefficient of variation percentage
(Fig. 4H, t= 3.170, df= 26, p < 0.01) suggesting that repeated
LSD administration triggered a more irregular firing activity as
opposed to the regular or rhythmic firing activity in mice treated
with veh. Indeed, interspike interval (ISI) histograms generated

from the mean 5-HT neural activity showed a skewed ISI profile
of mice treated with LSD compared with the normally
distributed ISI profile of mice treated with veh (Fig. 4I). No
significant difference was found in the percentage of neurons
discharging in burst in mice treated with veh or LSD (Fig. 4J,
χ2 test= 0.6222, df= 1, p= 0.4302).
To determine whether the increase in DRN 5-HT firing after

repeated LSD administration was due to altered 5-HT1A auto-
receptor sensitivity, as observed for SSRIs [32], we performed
in vivo electrophysiological recordings with multi-barreled electro-
des for microionthophoretic ejections [33]. To assess the 5-HT1A
receptor sensitivity, we tested the inhibitory response to micro-
ionthophoretic ejections of increasing doses of the 5-HT1A selective
agonist 8-OH-DPAT [33]. While the 5-HT1A agonist decreased in a
current-dependent manner the DRN 5-HT firing activity of mice
treated with veh, LSD-treated mice showed a statistically significant
attenuation of the inhibitory response (Fig. 4K, L, current factor,
F (2.353, 61.17)= 46.30, p < 0.001; treatment factor F (1,26)= 11.89, p <
0.001; interaction current × treatment F (3,78)= 11.89, p < 0.001).
Together, these data indicate that 7-day treatment with LSD (30
µg/kg) reduced the sensitivity of DRN 5-HT neurons to the
inhibitory effect of the 5-HT1A agonist. Given the affinity of the 8-
OH-DPAT for the 5-HT7 receptor [34, 35], and also to confirm that
the 5-HT1A is desensitized even when 8-OH-DPAT is systemically
injected, we performed additional electrophysiological experi-
ments in naïve animals treated with LSD alone or vehicle, by
administering the 5-HT7 receptor antagonist SB269970 (1mg;kg,
i.p. [36, 37]) 10min prior to the acute cumulative injections of
8-OH-DPAT (5–20 µg/kg, i.p. given every 5 min). SB269970 did not
affect the inhibitory effect of cumulative injection of 8-OH-DPAT in
7-day vehicle-treated animals (8-OH-DPAT effect, F (4, 20)= 5.797,
p= 0.0029; treatment effect, F (1, 5)= 0.04544, p= 0.8396; interac-
tion 8-OH-DPAT effect × treatment, F (4, 20)= 0.02983, P= 0.9981).
In mice treated with 7-day LSD (30 µg/kg), the cumulative injection
of 8-OH-DPAT produced an attenuated response, compared to
vehicle-treated animals, and the injection of the SB269970 prior
8-OH-DPAT did not impact this effect, confirming that 7-day LSD
treatment induces a desensitization of the 5-HT1A receptors and
this effects is not mediated by the 5-HT7 receptors (8-OH-DPAT
main effect, F (4, 44)= 7.146, p= 0.0002; treatment F (2, 11)= 12.95,
p= 0.0013; interaction 8-OH-DPAT effect × treatment, F(8, 44)=
4.712, p= 0.0003) (Supplementary Fig. S1).

Repeated LSD administration prevents the stress-induced
decline of 5-HT DRN neurons firing
We previously demonstrated that chronic unpredictable stress
produces a decline of the 5-HT DRN firing activity in rats and
impairs the 5-HT1A receptor responsiveness [18]. Therefore, we
investigated if chronic restraint stress produces the same effects
and if a repeated LSD regimen (30 µg/kg daily for 7 days) could
prevent the stress-induced decline of DRN 5-HT neuronal
activity (Fig. 5A, B). We performed in vivo electrophysiological
recordings in an additional cohort of stressed and non-stressed
mice. As expected, CS decreased the spontaneous firing rate

Fig. 3 Effects repeated LSD treatment (30 μg/kg,i.p., once a day for 7 days) on anxiety-like behavior, depressive like behavior and on
mPFC spine density in mice following chronic restraint stress (CS). A Schematic timeline showing the stress procedure, drug treatment and
behavioral procedures. Distance traveled (B), percentage of time spent in the open arm (C), percentage of time spent in the closed arm (D),
and number of entries in the open arm (E) during the EPMT. F LSD normalizes the number of transition between the dark and the light
compartment in the LDBT, which were decreased after CS. G Time spent in the light compartment during the LDBT. H Repeated LSD prevents
the decreased latency to feed in stressed mice in the novel environment during the NSFT. No effect was detected in the home cage (I). Each
bar represents mean ± SEM and each point represents a single mouse. LSD treatment and chronic stress procedure were ineffective to
produce any change in the immobility time in the FST (J) and in the % of sucrose intake in the SPT (K). LSD treatment prevents the reduced
spine density induced by the chronic stress paradigm and elicits an increase in spine density in veh-treated mice (L, M). Each bar or line
represents mean ± SEM and each point represents a single mouse. Two-way ANOVA followed by Bonferroni post-hoc comparison; *p < 0.05;
***p < 0.001. N.S. not significant, veh vehicle, EPMT elevated plus maze, LDBT light-dark box test, NSFT novelty suppressed feeding test, FST
forced swim test, SPT sucrose preference test, veh vehicle, CTL non-stressed control, CS chronic restraint stress.
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activity of DRN 5-HT neurons compared to control (stress factor,
F (1, 156)= 22.87, p < 0.001; treatment factor, F (1, 156)= 44.58, p <
0.001; interaction stress x treatment, F (1, 156)= 3.999, p=
0.0473). Importantly, post-hoc analysis revealed that the firing

rate of DRN 5-HT neurons in stressed mice treated with LSD was
higher compared to stressed mice treated with veh (Fig. 5C, D,
p < 0.001). Our results confirm that chronic stress impairs 5-HT
neurotransmission in the DRN and show that a 7-day repeated
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LSD treatment during the last 7 days of stress prevents this
neuronal impairment.

DISCUSSION
Recently, psychedelic compounds have come to the forefront as
potential novel therapeutics in psychiatry, especially at low- and
non-hallucinogenic doses [1–3, 38]. Despite ongoing research
efforts, the neurobiological mechanism(s) of action mediating
their therapeutic effects remain elusive. Here, we explored two
potential mechanisms of anxiolytic action of psychedelics,
specifically LSD. While acute LSD did not affect anxiety-like and
depressive-like behavior in naïve mice, repeated administration
(30 μg/kg/day for 7days, but not 5 and 15 μg/kg) during stress
exposure prevented the development of anxiety-like behavior,
suggesting an anxiolytic-like effect of repeated LSD under
anxiogenic conditions. In parallel, we found that repeated LSD
administration prevented the CS-induced cortical synaptogenesis
impairments, while also increasing spine density in naïve mice.
Interestingly, while acute cumulative injections of LSD decreased
the 5-HT neuronal activity in the DRN, repeated LSD administra-
tion increased the 5-HT firing activity likely via desensitizing the
5-HT1A receptor in naïve animals. On the other hand, LSD
prevented the CS-induced decline of the 5-HT firing rate, thus
maintaining an average firing rate within control values. These
data show that while behaviorally the effects of LSD were only
detectable in stressed mice, electrophysiological and morpholo-
gical changes were observable also in the non-stress conditions.
Our findings corroborate clinical results pointing toward an

anxiolytic effect of LSD [39]. Indeed, studies on patients experiencing
anxiety and distress associated with a terminal disease reported rapid
and sustained improvements in anxiety scores, for up to six months
following one or two administrations of LSD [9] or other psychedelics
such as psilocybin [40, 41]. Preclinical evidence concerning the
anxiolytic- and antidepressants-like effects of LSD remains contro-
versial. In a recent study LSD did not elicit anxiolytic-like effects in the
elevated plus maze test in rats, but it induced a sustained

antidepressant-like effect in the forced swim test 5 weeks after a
single LSD administration (0.15mg/kg) [42]. A previous study
found that repeated LSD (0.13mg/kg daily for 11 days) reversed
the stress-induced deficits in active avoidance learning and normal-
ized 5-HT2A receptor-mediated hippocampal 5-HT signaling in a
model of depression [43]. Another recent study reported that a high
dose of LSD (0.3mg/kg) induces an antidepressant-like trend in the
tail suspension test (TST), but this trend did not reach statistical
significance [44]. Similarly, in zebrafish, LSD was reported to induce
anxiolytic-like effects [45]. Concerning other serotonergic psychede-
lics, chronic intermittent administration of N,N-Dimethyltryptamine
(1mg/kg, once every 3 days for 30 days), elicited antidepressant-like
effect in female, but not male, rats [46]. Moreover, while psilocybin did
not rescue the depressive-like phenotype of the Flinders Sensitive
Line rat model of depression [47], it reversed some of the behavioral
and electrophysiological effects of chronic stress in mice [48]. Lastly, a
Psilocybe cubensis extract at the dose of 10 and 40mg/kg did not
induce antidepressant-like effects in the FST [49]. In the present study,
in naïve mice, none of the chosen doses (5, 15, 30 and 60 µg/kg)
elicited anxiolytic- and/or antidepressant-like effects. Therefore, to
assess potential anxiolytic effects of LSD in stress conditions we
performed a 15 day-chronic restraint stress paradigm, which
exacerbates anxiety-like behavior [50–53]. Indeed, 7 days of repeated
LSD at the dose of 30 µg/kg prevented the exacerbation of stress-
induced anxiety-like behavior, uncovering a protective role of LSD on
stress-induced phenotypes which was not detectable under basal
conditions. Considering these results, it will be worth to investigate if
even a single LSD injection produces protective/anxiolytic effects after
7–8 days in acute restraint stress model.
Neurogenesis and synaptogenesis are evoked as plasticity

mechanism underlying the mechanism of action of approved
antidepressants [54, 55] and psychedelic compounds [27], attenuat-
ing the negative effects of stress and depression on hippocampal
[56] and prefrontal cortex [57] plasticity. This is supported by the
stimulation of dendritic spines growth, synapse formation and
dendritic arbor complexity in cortical rat cell cultures [27].
Accordingly, a recent study reported powerful neurogenic effects
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of DMT in the subgranular zone of the mouse dentate gyrus of the
hippocampus accompanied by an enhancement of memory [58]. In
partial contrast, a study investigating the effects of repeated DMT
administration in mice reported a decrease in cortical dendritic
spines density in females, but not male rats [46]. In the present study
we observed that repeated LSD increased the number of apical
dendritic spines in the mPFC in naïve animals, while preventing
the stress-induced decrease of apical dendritic spines. Previously, we
showed that LSD induced an increase in firing rate of a subset
of neurons of the mouse infralimbic cortex, while modulating the
cortico-thalamo-cortical system [59]. Further supporting a potential
synaptogenic effect of LSD, human studies reported that microdoses
of LSD transiently increase BDNF levels [60], as also reported for
Ayahuasca [61]. BDNF-induced glutamate release has been shown to
decrease following chronic restraint stress, together with glucocorti-
coid receptor expression [52]. In line with the current findings, LSD
increased synaptic plasticity in brain organoids, an effect accom-
panied by increased expression of proteins involved in synaptogen-
esis and plasticity, such as synaptophysin, glutamate metabotropic
receptor 7, and synaptic vesicle glycoprotein 2A [62].
LSD shares with antidepressants not only the capacity to

increase the density of apical dendritic spines in the mPFC [57],
which is hypothesized to endure antidepressant effects but also
the capacity to potentiate the 5-HT neurotransmission. Being LSD
a 5-HT1A receptor agonist, as expected [63] after acute injection, it
decreased DRN 5-HT firing activity, by acting on the 5-HT1A
autoreceptors [64]. However, after a 7-day regimen, it increased
DRN 5-HT firing activity, likely due to a desensitization of the
5-HT1A autoreceptors. Interestingly, in these experiments we also
observed that a 15 day restraint stress protocol reduces DRN 5-HT
firing activity similarly to a 3-week chronic unpredictable stress
paradigm [18], and that LSD can prevent this decrease.
The behavioral outcomes of this study should be interpreted in

light of their limitations. We have used a battery of tests which are
considered the gold-standard test for the screening of putative
antianxiety/antidepressant drugs even if they show limitations in the
interpretation of the real behavior [65–67]. The chronic stress
paradigm used in this study did not induce depressive-like behavior.
This is in line with other reports suggesting that chronic restraint
stress is a paradigm which reliably induces anxiety-like behavior, but
less reliably induces depressive-like behavior [50–53]. Studies
investigating potential antidepressant-like effects of LSD could use
different chronic stress paradigms, which more reliably exacerbate
depressive-like behavior in rodents, such as the chronic unpredict-
able stress model [18] or the chronic social defeat stress paradigm
[68]. Moreover, previous animal research highlighted that chronic
stress protocols might affect memory. Even if the results are still
controversial [69, 70], we cannot rule out that the effects of stress
and the reversal induced by LSD may be linked to its direct effects
on memory and not on anxiety per se. In this study we showed that
LSD prevented the development of anxiety-like phenotype and 5-
HT decline following the stress procedure; however, whether this
protective effect would persist for weeks or even months after the
last LSD injection remains unknown and more investigations are
needed. Another limitation of the study is the lack of sex difference
outcomes following LSD administration. Studies in the literature
concerning the differential impact of psychedelics on sex are
still unclear in animal models [71] and further research on this topic
is necessary.
In conclusion, repeated, but not acute, low doses of LSD prevent

the exacerbation of stress-induced anxiety-like behavior without
affecting depressive-like behavior or other behavioral measures.
Moreover, while acute LSD decreases 5-HT neuronal firing in the
DRN, repeated LSD enhances it, likely through a desensitization of
the 5-HT1A somatodendritic autoreceptors. Lastly, repeated LSD
administration increases dendritic spine density in mPFC pyrami-
dal neurons and prevents the stress-induced decrease in cortical
dendritic spines density. Together, these results suggest that the

anxiolytic properties of LSD might be mediated by a mechanism
of action involving an enhancement of 5-HT neurotransmission, an
increase in cortical synaptogenesis, or both. Together with our
previous finding showing that the repeated treatment employed
here is associated to an activation of mTORC1 and a potentiation
of AMPA/5-HT2A responses in the mPFC [15], the current findings
provide a potential mechanistic explanation of neurobiological
mechanisms which might underlie the anxiolytic and antidepres-
sant effects of psychedelic compounds. Clinical studies are
warranted to determine the minimum acute and repeated LSD
dose necessary to induce anxiolytic outcomes in psychiatric
populations, while assessing the duration of such effects, and
determine the most effective regimen. Future studies should
assess the anxiolytic effects of repeated LSD administration in
people diagnosed with anxiety disorders not associated with a
terminal illness [9]. These efforts could help elucidate whether LSD
elicits similar protective effects on anxiety, neurotransmission and
neuroplasticity in anxiety disorders.
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