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A novel role for the lateral habenula in fear learning
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Fear is an extreme form of aversion that underlies pathological conditions such as panic or phobias. Fear conditioning (FC) is the
best-understood model of fear learning. In FC the context and a cue are independently associated with a threatening
unconditioned stimulus (US). The lateral habenula (LHb) is a general encoder of aversion. However, its role in fear learning remains
poorly understood. Here we studied in rats the role of the LHb in FC using optogenetics and pharmacological tools. We found that
inhibition or activation of the LHb during entire FC training impaired both cued and contextual FC. In contrast, optogenetic
inhibition of the LHb restricted to cue and US presentation impaired cued but not contextual FC. In either case, simultaneous
activation of contextual and cued components of FC, by the presentation of the cue in the training context, recovered the
conditioned fear response. Our results support the notion that the LHb is required for the formation of independent contextual and
cued fear memories, a previously uncharacterized function for this structure, that could be critical in fear generalization.

Neuropsychopharmacology (2022) 47:1210–1219; https://doi.org/10.1038/s41386-022-01294-5

INTRODUCTION
Fear is an extreme and uncontrollable reaction to a threatening
stimulus. Pavlovian fear conditioning (FC) is probably the most
studied and best-understood model of fear learning [1, 2]. FC
training normally involves the pairing of a tone (cue) and an
electric foot-shock unconditioned stimulus (US). It has long been
known that such protocol generates two independent associa-
tions relating the cue and the context to the US [3, 4]. Prevailing
models postulate that tone-US association takes place in cortical
and thalamic auditory inputs to the lateral amygdala [5–8], while
context-US association involves context encoding circuits cen-
tered in the hippocampus, which sends contextual representation
to the amygdala [9, 10].
The lateral habenula (LHb) is a hub for aversive information

processing. Aversion-related information reaches the LHb from
the basal ganglia and numerous structures of the limbic system
[11]. In turn, the LHb projects to the brain stem, where it is one of
the few structures that controls both serotoninergic and
dopaminergic systems [11]. The LHb and its downstream targets
are activated by electric foot-shocks [12–15] and develops
responses to cues predicting these aversive stimuli along with
the appearance of conditioned responses [14–16]. This suggests
the LHb may play a role in FC. However, few studies examined this
possibility [17–19]. Here, we investigated the participation of the
LHb in the acquisition of contextual and cued FC performing
pharmacological and optogenetics manipulations. We show that
interfering with the neuronal activity of the LHb during FC training
severely impairs the recall of contextual and cued FC. However,

when the cue is played in the training context, a conserved FC
memory is expressed. Our results support a central role for the
LHb in FC learning, critically affecting not only context and cued
FC but also, remarkably, the interaction between contextual and
cue representations in fear expression.

MATERIALS AND METHODS
Animals
Experiments were performed in male Wistar rats. Animals were 5–6 weeks
old at the time of surgery. Experimental procedures were approved by the
Animal Care and Use Committee of the University of Buenos Aires
(CICUAL), and the Autonomous Community of Madrid (PROEX 167/18).
Additional information can be found in the Supplementary Material.

Surgeries
Pharmacology. Rats under deep ketamine/xylazine anesthesia (100 and
5mg/kg respectively) were bilaterally implanted with 22-Gauge guide
cannulae 2.0 mm above the LHb (AP −3.0 mm, ML ± 0.7 mm, DV −3.8 mm
from Bregma), or 1.0 mm dorsal, ventral, or lateral to LHb coordinates in
specific experiments. Cannulae were fixed to the skull with three surgical
steel screws and dental acrylic.

Optogenetics. Rats under deep isoflurane anesthesia (4% induction, 1–2%
maintenance, in 0.8 L/minute oxygen) were bilaterally injected with 300 nl
of adeno associated viral vector (AAV) per side at the LHb (AP −2.9 mm,
ML ± 0.7 mm, DV −5.0 mm from Bregma). Vectors used: AAV8-CamKIIα-
ArchT-GFP, AAV8-CamKIIα-GFP, both from UNC Vector Core, or AAV8-hSyn-
oChIEF-tdTomato, homemade as described in [20]. Optical fiber implants
(200 µm core, 0.39 NA) were bilaterally inserted aiming just above the LHb,
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with 4 degrees angle from the sagittal plane (AP −3.0 mm, ML ± 1.05mm,
DV −4.5 mm from Bregma), and fixed to the skull with three surgical steel
screws and dental acrylic. Behavioral procedures began three weeks after
surgery.
During surgeries, animals received a dose of analgesic (meloxicam

0.6mg/kg) and antibiotic (gentamicin 3mg/kg).

Behavioral procedures
All behavioral procedures were video recorded and analyzed offline.
During training, test, and analysis the experimenter was blind for the
treatment. Additional information can be found in the Supplementary
Material.

Contextual and cued FC training
Cued FC protocol consisted of a 180 s baseline period followed by 4 tone-
shock presentations (17 s, 3 kHz, 80 dB tone followed by 3 s, 0.60 mA) with
an inter-stimulus interval of 70 s. For contextual FC training, procedures
were equal, but the tone was omitted during conditioning. Additional
information can be found in the Supplementary Material.

Pharmacology experiments. Rats received bilateral intra LHb infusions of
GABA-A receptor agonist, muscimol (Sigma, 60 ng/µl in saline solution, 0.5
µl/side). Additional information can be found in the Supplementary
Material.

Optogenetics experiments. For ArchT experiments, continuous light of 532
nm at 10mW was delivered with a laser source (CNI, China), starting at
tone onset and stopping 5 s after shock termination. For oChIEF
experiments, 5 ms pulses at 20 Hz of 447 nm light at 10mW were
delivered with a laser source (Tolket, Argentina) during the whole training.
Additional information can be found in the Supplementary Material.

FC tests
For contextual FC test, animals were placed in the training context
(Context A) for 180 s and then returned to its home cage. For cued FC test
animals were placed in a novel chamber (Context B). Cue test consisted of
a pre-tone period of 180 s, followed by a 60 s tone (same as training tone)
and a 30 s post-tone period. For Context+ Tone test procedure was similar
to contextual FC test, but after 180 s in the test cage the tone was

presented for 60 s. Additional information can be found in the
Supplementary Material.

Freezing analysis
Freezing was manually scored offline. Experimenter was blind for animal´s
treatment. Additional information can be found in Supplementary Material.

Statistical analysis
Each animal was taken as an independent measure. Statistical analysis of
FC experiments was done by generalized linear mixed modeling (GzLMM,
for further details see Supplementary Material). In freezing over time plots,
line represents intersubjects’ mean, and shaded area represents +SEM. In
bar plots, each dot represents a subject, bars represent mean and
error bars +SEM. In figures only significant post-hoc contrasts are informed
(*p < 0.05; **p < 0.01, ***p < 0.001).

RESULTS
Pharmacological inactivation of the LHb impairs contextual
fear conditioning
To study the role of the LHb in contextual FC, we analyzed the
effect of its inactivation during training. For that purpose, we
performed surgeries in rats to implant chronic bilateral intracer-
ebral cannulae aimed at the LHb. After 10 days of recovery time,
animals were bilaterally infused with the GABA-A agonist,
muscimol, or vehicle in the LHb before FC training. During
training, rats were placed in a FC chamber and presented with
four unsignaled foot-shocks (Fig. 1A). The infusion of muscimol in
the LHb did not modify freezing behavior during FC training
(Supplementary Fig. 1). To evaluate contextual FC, animals were
placed back in the conditioning chamber 7 days after training and
freezing behavior was quantified. Muscimol group displayed
significantly lower levels of freezing than the control group
(3.32 ± 1.03% for muscimol group vs. 30.31 ± 6.23% for control
group, p= 0.0004; nvehicle= 11, nmuscimol= 12; Fig. 1B), suggesting
that inactivating the LHb during contextual FC training impairs
acquisition of contextual FC.
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Fig. 1 Inactivation of the LHb during FC training blocks contextual FC. A Diagram of the experimental setup: bilateral vehicle/muscimol
intra LHb infusions were performed 30min before FC training. Contextual FC was tested 7 days later. During training, subjects freely explored
the cage for a baseline period of 197 s. After that they were exposed to 4 foot-shocks (0.6 mA, 3 s) interspaced by 87 s. In the recall session
animals were re-exposed to the training context for 180 s and freezing was quantified. B Test of contextual FC memory. Left panel: freezing
over time. Right panel: average baseline freezing during FC training and memory recall session 7 days later. During recall session freezing in
the muscimol group was lower than in the control group (t(20)= 4.294, p= 0.0004, nvehicle= 11, nmuscimol= 12). Additional statistics
information can be found in the Statistics details section of Supplementary Material.
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In a separate cohort of animals, we observed that muscimol
infusion in the LHb before exposure to an open field (OF) did not
modify locomotion or exploratory behavior (Supplementary
Fig. 2). Moreover, upon a subsequent re-exposure to the OF
48 h later, animals infused with muscimol displayed a decrease in
exploratory behavior equivalent to control animals (Supplemen-
tary Fig. 2). Thus, the inactivation of the LHb by muscimol does
not induce a general deficit in exploratory behavior nor in context
habituation.

Pharmacological inactivation of the LHb impairs cued fear
conditioning
Next, we studied the effect of LHb inactivation during cued FC
training. Animals were infused with muscimol or vehicle in the
LHb, and 30min later they were trained in cued FC, in which
animals were presented with 4 foot-shocks preceded by a 17-
second-long tone (Fig. 2A). Cued FC memory was evaluated 7 days
later by exposing the animals to the tone in a novel context
(Context B). Inactivation of the LHb did not affect freezing during
training (Supplementary Fig. 3A). During memory recall session,
muscimol and vehicle groups showed similarly low levels of
freezing to Context B (pre-tone freezing: 0.79 ± 0.55% for
muscimol group vs. 10.97 ± 5.51% for control group, p= 0.2828;
nvehicle= 8, nmuscimol= 9; Fig. 2B). Tone presentation elicited a
robust freezing in the vehicle group and significantly lower levels
of freezing in the muscimol group (tone freezing: 13.79 ± 5.41%
for muscimol group vs. 75.96 ± 11.08% for control group, p <
0.0001; Fig. 2B).
To control for the spatial specificity of muscimol infusion we

infused muscimol in areas around the LHb before cued FC training
(Supplementary Fig. 4A). We found that neither infusion of
muscimol 1 mm dorsal, lateral, or ventral to the LHb significantly
affected freezing behavior (Supplementary Fig. 4B). Moreover,
freezing behavior was unaltered during cued or contextual FC
recall in muscimol infused animals with non-voluntarily bilaterally
missed infusions (Supplementary Fig. 5). Recall of contextual and
cued FC was also impaired if evaluated 24 h after training
(Supplementary Fig. 6), suggesting that LHb inactivation impairs
formation of cued and contextual long-term memories.

Context+ tone test of FC reveals a conserved fear
conditioning memory
To further investigate the extent to which inactivation of the LHb
impairs FC learning, we performed additional experiments in
which freezing to the cue was evaluated in the training context
(Context A), a condition we called “context+ tone” (Fig. 3A and
Supplementary Fig. 3). In that test, the pre-tone period is a readout
of the contextual component of the FC memory. Indeed,
confirming our previous result, during memory recall we observed
a reduction of freezing in the muscimol group during the pre-tone
period (pre-tone freezing: 7.76 ± 2.74% for the muscimol group vs.
30.44 ± 7.05% for the control group, p= 0.0474; nvehicle= 13,
nmuscimol= 13; Fig. 3B). Presenting the tone further increased
freezing in the control group and, most notably, it also induced a
robust freezing in the muscimol group, which reached freezing
values equivalent to the control group (tone freezing: 68.31 ±
7.47% for muscimol group vs. 75.82 ± 6.08% for control group,
p= 0.8460; Fig. 3B). Thus, our results show that even under the
inactivation of the LHb, a FC memory is formed that could be
effectively retrieved when the cue is presented in the conditioning
context.
In our previous article we showed that the inactivation of the

LHb during Inhibitory Avoidance learning accelerates the decay of
the memory [21]. To investigate the long-term stability of the FC
memory formed under the inactivation of the LHb, we evaluated,
in a new set of animals, freezing in “context+ tone” conditions
3 weeks after training (Fig. 3A, C). Freezing levels of the muscimol
group in the “context+ tone” condition was lower than in the
vehicle group 3 weeks after training (tone freezing: 47.59 ± 9.82%
for the muscimol group vs. 75.97 ± 8.21% for the control group,
t(26)= 2.683, p= 0.0491; nvehicle= 8, nmuscimol= 8; Fig. 3C), show-
ing that, under the inactivation of the LHb, FC generates a
weakened memory that is harder to retrieve and temporarily less
stable.

Optogenetic inactivation of the LHb impairs cued fear
conditioning
Previous articles have described that the LHb signals cue and US
as increases in neuronal activity [14, 15]. To study if that increase
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Fig. 2 Inactivation of the LHb during training blocks cued FC. A Diagram of the experimental setup: bilateral vehicle/muscimol intra LHb
infusions were performed 30min before FC training. Cued FC was tested 7 days later. During training, rats freely explored the cage for a
baseline period of 180 s that was followed by 4 tone-shock pairings (17 s of tone followed by 3 s, 0.6 mA shock) interspaced by 70 s. During
memory recall, tone was presented for 60 s after a pre-tone period of 180 s. B Left panel: freezing over time. Dashed line delimits tone
presentation. Right panel: average freezing for pre- and tone periods. Freezing during pre-tone period was low and not different between
vehicle and muscimol groups (pre-tone freezing: 0.79 ± 0.55% for muscimol group vs. 10.97 ± 5.51% for vehicle group; t(28)= 1.469, p=
0.2828). In contrast, during tone presentation, a highly significant reduction in freezing was observed in the muscimol group (t(28)= 5.396, p <
0.0001, nvehicle= 8, nmuscimol= 9). Additional statistics can be found in the Statistics details section.
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in neuronal activity is required for FC we inactivated the LHb
during tone and US presentation by means of optogenetic tools.
We injected at the LHb an AAV encoding the inhibitory light-
dependent proton pump Archaerhodopsin (ArchT) fused to the
fluorescent protein GFP, or GFP as control, and implanted optic
fiber cannulae bilaterally in the LHb with the tip placed
immediately above the LHb (Fig. 4A, B). In whole cell patch-
clamp recordings we confirmed that LHb neurons could be
inhibited by ArchT (Supplementary Fig. 7). It has been reported
that foot-shocks induce an increase in neuronal activity at the LHb
that lasts for seconds [14, 15], therefore during training we
inhibited the LHb from tone onset to 5 s after shock termination
(Fig. 4A). We did not observe differences in freezing between
ArchT and GFP groups during training (Supplementary Fig. 8).
Seven and eight days later, animals underwent two recall sessions.
First, a pure cued memory recall session, in which the cue was
played in a novel context, followed, the next day, by a context+
tone session in which cued and contextual memories were
evaluated by playing the cue in the training context. On cued

memory recall session we found that freezing to the tone was
lower in the ArchT than in the GFP group (freezing to the tone
during tone test session: 48.26 ± 7.54% for ArchT group vs. 85.32 ±
4.99% for GFP group, t(66)= 3.410, p= 0.0089; nGFP= 9, nArchT= 10;
Fig. 4C, E). On the other hand, on context+ tone session, ArchT
group showed levels of freezing equivalent to GFP group during
the pre-tone period, indicating a conserved contextual FC memory
(Fig. 4D, E; pre-tone freezing during context+ tone session: 46.29 ±
10.71% for ArchT group vs. 53.32 ± 9.51% for GFP group, t(66)=
0.178, p= 1.0000). In addition, in the context+ tone session
freezing levels in the ArchT group during tone presentation were
higher than in the previous session (t(66)= 3.366, p= 0.0089), and
not different from the GFP group, (tone freezing during context+
tone session: 76.64 ± 7.85% for ArchT group vs. 87.99 ± 9.51% for
GFP group, t(66)= 1.145, p= 0.8742, Fig. 4E), indicating again that
LHb inhibition during FC training induces context-dependent
deficiencies in cued FC. Importantly, ArchT optogenetic inhibition
of the LHb for the same amount of time, but during inter stimulus
period did not affect cued memory (Supplementary Fig. 9).
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Optogenetic activation of the LHb impairs cued and
contextual fear conditioning
The previous experiment showed that, in contrast to pharmaco-
logical inactivation, optogenetic inhibition of the LHb during cue
and US did not affect freezing to the context, suggesting that

inhibition of the LHb during the entire training is required to
impair the contextual component of FC. It has been proposed
elsewhere that the LHb participates in context encoding through a
dynamic synchronization with the hippocampus [22, 23]. If
this mechanism links the LHb to contextual FC, any arbitrary
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whole-training disruption of the endogenous pattern of activity of
the LHb, regardless of its sign, should disrupt contextual FC. To
investigate this possibility, we assayed the effect on FC of a
sustained arbitrary optogenetic excitation of the LHb during
training. Based on published reports, we assayed the fast
excitatory opsin oChIEF, which has a fast recovery kinetics that
allows sustained stimulation [24]. It has been shown that
optogenetic stimulation of the LHb with oChIEF with 5 ms pulses
delivered at 20 Hz does not to generate place aversion [25], thus
we chose that pattern of stimulation during FC training. This light
stimulation pattern implies a 10% duty cycle that, in contrast with
the sustained illumination that would be required for constant
ArchT activation, would result in minimal temperature changes in
the illuminated tissue (Supplementary Fig. 10). In patch-clamp
experiments, we verified that neurons of the LHb could be reliably
activated by 5ms light pulses at 20 Hz for the same amount of
time of our training protocol (≈ 8min, Supplementary Fig. 11),
demonstrating the feasibility of our approach. To achieve
sustained stimulation of the LHb during FC training we infused
an AAV encoding oChIEF and implanted optic fibers bilaterally
immediately above the LHb (Fig. 5A, B). Three weeks later, subjects
were trained in cued FC under a sustained 20 Hz optogenetic
excitation. Light stimulation did not modify freezing during FC
training (Supplementary Fig. 12). Seven and eight days later,
memory was evaluated in a pure cued memory recall session at
day 7, followed the next day by a context+ tone session. During
pure cued memory recall session, oChIEF stimulated animals
showed lower levels of freezing to the tone than the control group
(freezing to the tone during tone test: 31.4 ± 12.85% for oChIEF+
light group vs. 83.76 ± 3.87% for control group, t(42)= 4.454, p=
0.0004; nControl= 7, noChIEF + light= 6; Fig. 5C, E). The next day,
during “context+ tone” session, oChIEF stimulated animals
showed a pronounced reduction in contextual freezing (pre-tone
freezing during context + tone test: 2.97 ± 1.84% for oChIEF+
light group vs. 36.51 ± 6.61% for control group, t(42)= 3.874, p=
0.0026; Fig. 5D, E). Notably, following cue presentation, oChIEF+
light group displayed freezing levels higher than in pure cued
memory recall session performed the previous day, replicating the
profile of memory deficits generated by pharmacological and
optogenetic inhibition of the LHb (tone freezing in the oChIEF+
light group: Day 7 vs. Day 8: t(42)= 3.810, p= 0.0031; Fig. 5D, E).
However, freezing levels of the oChIEF+ light group were still
lower than in the control group (tone freezing during context+
tone test: 57.97 ± 13.55% for oChIEF+ light group vs. 88.1 ± 2.37%
for control group, t(42)= 2.995, p= 0.0317; Fig. 5D, E).

DISCUSSION
There is a paucity of information regarding the role of the LHb in
fear learning [17–19]. Here we investigated this subject and
defined a new role for the LHb in FC, while simultaneously
highlighting previously overlooked aspects of the paradigm. Our
data indicate that, if conditioning takes place without proper

activity of the LHb, neither context nor cued memories could be
independently expressed. However, memory expression is evident
when both contextual and cued components of FC are reactivated
by the presentation of the cue in the conditioning context. Hence,
if activity of the LHb is disrupted during FC learning, memory
retrieval requires the synergy of contextual and cue information.
To the best of our knowledge, that observation turns the LHb into
the first brain structure implicated in the regulation of the
independent expression of contextual and cued components of
FC. Thus, our observation assigns a critical and previously
undescribed role to the LHb within the brain circuits implicated
in fear learning.

The LHb during fear learning
Three different strategies were used here to study the role of the
LHb in FC. These were: pharmacological inhibition, optogenetic
inhibition during cue and US, and optogenetic excitation during
the entire training. Neither of them affected freezing behavior
during training. Previous reports have shown that the LHb
regulates the balance between active and passive coping in
aversive tasks such as the forced swim test [20, 26], the tail
suspension test [27], or the looming task [13]. Thus, our results
indicate that the participation of the LHb in the development of
passive coping strategies might be a fine-tuned process related to
task-specific variables. In contrast, those manipulations affected
fear memory recall. A closer examination of those results could
provide information about the involvement of the LHb in
contextual and cued FC.
The behavioral outcomes of sustained optogenetic excitation

and pharmacological inhibition of the LHb during training were, to
a great extent, similar. The equivalence of those two manipula-
tions could seem odd, but it is totally predicted if their effects are
interpreted as a disruption of LHb encoding during fear
acquisition. Indeed, many examples of equivalent behavioral
effects of excitation and inhibition of brain structures are present
in the literature [28–34]. However, optogenetic excitation and
pharmacological inhibition markedly differ in their temporal
resolution. While muscimol-mediated inhibition of the LHb
extends for at least 2 h beyond the training period [35, 36],
optogenetic excitation was precisely limited to it. Hence, the
similar outcome of both manipulations suggests that the
participation of the LHb in FC is limited to the learning/acquisition
phase and does not extend over the consolidation period. This
interpretation is in agreement with our previous work describing
an acquisition-limited role of the LHb in the Inhibitory Avoidance
paradigm of aversive learning [21].
Neuronal activity of the LHb increases during presentation of

the cue and the US [14–16]. Furthermore, the LHb is a source of
aversive prediction error in monkeys [37] and rats [38]. Thus, it is
conceivable that, during cued conditioning, the LHb encodes, as a
transient increase in neuronal activity, a signal informing about
the aversive value of the US and the cue [39]. Consistent with this
hypothesis, we found that optogenetic inhibition of the LHb

Fig. 4 Optogenetic inactivation of the LHb during cue and US, impaired cued but not contextual FC. A Experiment diagram: Top-Left:
animals were bilaterally transfected with AAV-ArchT-GFP or AAV-GFP in the LHb and implanted with optic fibers above the LHb 4 weeks
before training. Top-Right: during training, optogenetic light stimulation was delivered starting with the tone and stopping 5 s after the shock
(tone and shock presentations were as previously described for cued FC). Bottom: diagram of training and memory tests. Cued memory was
tested 7 days after training in Context B. The same animals were re-tested the following day in the training context to evaluate contextual FC
memory and tone freezing in context+ tone condition. B Microphotographs of the AAV-ArchT-GFP infection at ~3.6 mm posterior to Bregma
(top, middle, bottom: DAPI, GFP, and merge respectively). Dashed white lines in the middle panel delimitates brain structures. * indicates the
optic fiber tract. MHb: medial habenula, sm: stria medullaris, 3V: third ventricle. Scale bars: 1 mm. Freezing over time during tone test at day 7
(C) and during context+ tone test at day 8 (D). Dashed line delimits tone presentation. E Average freezing on tone test, and context+ tone
test sessions. During tone test ArchT group displayed lower levels of freezing to the tone than GFP group (t(66)= 3.410, p= 0.0078). The
following day, during context+ tone session, freezing levels of the ArchT group to both the context and the tone were equivalent to those of
the GFP group (t(66)= 0.178, p= 1.0000 and t(66)= 1.145, p= 0.8742 respectively; nGFP= 9, nArchT= 10). Additional statistics can be found in the
Statistics details section of Supplementary Material.
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during tone and shock presentation was sufficient to impair cued
memory, while the same amount of inhibition unpaired from cue
and US had no effect. The relevance of this phasic signaling of the
LHb for cued FC could be inferred from our work. While it would
not be required for the cue-US association to be formed, without it

the predictive value of the cue would be degraded to a context-
specific threat signal.
In contrast to pharmacological inhibition and optogenetic

excitation, optogenetic inhibition of the LHb during cue and US
did not affect contextual FC. This discrepancy suggests that the
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contribution of the LHb to context-US association extends beyond
its activation by the cue and the US [14–16]. It has been previously
proposed that the LHb influences context encoding through a
functional interaction with the hippocampus [22, 23]. This
hypothesis has received support from physiological and beha-
vioral data generated by us and other authors showing that firing
of LHb neurons is synchronized with hippocampal theta rhythm
[23, 40, 41] and that LHb-innervated brain-stem neurons regulates
hippocampal theta and contextual FC [12, 42]. Our results are
partially compatible with that hypothesis since interfering with
neuronal activity of the LHb during context encoding, either by
pharmacological inactivation or sustained optogenetic activation,
severely impaired contextual FC, while cue-US temporally limited
inactivation of the LHb did not. On the other hand, we found that,
although context by itself did not elicit freezing, it was required for
cue evoked freezing, evidencing the retention of some contextual
information. Further work is needed in to gain insight into this
subject.
In summary, our results suggest a scenario in which the LHb

would regulate contextual and cued FC by separate mechanisms
related to context encoding and aversion signaling respectively.
Both mechanisms have been already proposed separately by
other authors [17, 22, 23, 39].

Circuits of the LHb related to FC
The neuronal circuits linking the LHb to FC remain to be
elucidated and could not be unequivocally sketched based on
the current knowledge. The LHb projects directly to both
dopaminergic and serotoninergic systems as well as indirectly
through its projection to the Rostromedial Tegmental Nucleus
(RMTg [43]). Importantly, both neuromodulators regulate fear
learning [44–47] and the RMTg itself has been shown to regulate
FC [43]. In addition, many structures upstream of the LHb have
been implicated in FC, most notably the Central Amygdala, which
sends a dense projection to the LHb [48]. However, the LHb
receives sensory and motivational information relevant to FC from
multiple structures, such as the Lateral Hypothalamus [14, 16], the
Entopeduncular Nucleus [49], the Medial Septum [50], the Median
Raphe [12], or the Lateral Preoptic Area [51]. Thus, the LHb could
control FC by gating the transmission of aversive signals from
several of its inputs to several of its main downstream targets.
Recently, transcriptional profiling of LHb neurons identified a

specific cluster of neurons in which foot-shocks modulate
expression of immediate early genes [52]. That cluster of LHb
cells would be a suitable candidate to participate in FC. Further
characterization of their connectivity would allow to define a LHb
centered circuit participating in FC.

The LHb and memory strength
How easy a memory is retrieved, or how long it lasts, are
parameters of memory strength [53]. The FC memory formed
under inactivation of the LHb could be considered weaker in those

two aspects. It is harder to retrieve, since matching between
training and testing conditions should be increased for effective
retrieval, and is temporally less stable (Fig. 3C). We have previously
described that inactivation of the LHb before training in the
Inhibitory Avoidance generates a memory that is normally
expressed 24 h after training but could not be evidenced 7 days
later [21]. Taken together, our two works suggest that the LHb
could also be conceptualized as a regulator of aversive memory
strength.

Concluding remarks
Cued and contextual FC have been mostly considered two
independent associative learnings that take place in parallel
during a single experience. This assumption, which has deeply
influenced the interpretation of fear learning, has been mostly
unchallenged. Here we described for the first time that LHb
signaling during conditioning determines that those associations
could be independently expressed. Future work on the mechan-
isms underlying this observation will be critical to understand how
different brain regions involved in fear learning interact to
regulate the formation, strength, and generalization of fear
memories.
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