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unipolar disorder during depressive episodes: a transdiagnostic
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Patients with depressive episodes (PDE), such as unipolar disorder (UD) and bipolar disorder (BD), are often defined as distinct
diagnostic categories, but increasing converging evidence indicated shared etiologies and pathophysiological characteristics across
different clinical diagnoses. We explored whether these transdiagnostic deficits are caused by the common neural substrates across
diseases or disease-sensitive mechanisms, or a combination of both. In this study, we utilized a Bayesian model to decompose the
resting-state brain activity into multiple hyper- and hypo-activity patterns (refer to as “factors”), so as to explore the shared and
disease-sensitive alteration patterns in PDE. The model was constructed over a total of 259 patients (131 UD and 128 BD) with 100
healthy controls as the reference. The other 32 initial depressive episode BD (IDE-BD) patients who had symptoms of mania or
hypomania during follow-up were taken as an independent set to estimate the factor composition using the established model for
further analysis. We revealed three transdiagnostic alteration factors in PDE. Based on the distribution of factors and the tendency
of factor composition at the group level, these factors were defined as BD sensitive factor, UD sensitive factor and shared basic
alteration factor. We further found that the factor composition and the ROIs-based alteration degree (mainly involving in
orbitofrontal gyrus and part of parietal lobe) were associated with the bipolar index in IDE-BD patients. Our findings contributed to
understanding the core transdiagnostic shared and disease-sensitive alterations in PDE and to predicting the risk of emotional state
transition in IDE-BD patients.
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INTRODUCTION
Unipolar disorder (UD) and bipolar disorder (BD), both of which
have depressive episodes symptoms, are defined as distinct
diagnostic categories according to Diagnostic and Statistical
Manual of Mental Disorders (DSM) Fifth Edition. However, the
validity of psychiatric classification based on DSM classification is
still questionable [1]. Studies combining genetics, epidemiology
and neuroscience showed that groups of patients with depressive
episodes (PDE) have no sharp or discrete neurobiological
boundaries between diagnostic categories [2]. For example, there
is evidence that UD and BD share a common genetic cause [3].
Furthermore, PDE show the same pattern of disrupted neural
circuits and networks associated with cognition and adaptive
emotional responses, regulation [4, 5]. Therefore, a promising
alternative approach has been proposed as a transdiagnostic
approach [6], which is expected to go beyond existing diagnostic
categories and improve the way we classify and treat PDE [1].
Several studies have reported shared and specific functional or

structural changes in PDE with different diagnoses. Meta-analysis
has revealed that the gray matter volume reduction in prefrontal
cortex, anterior cingulate cortex and insula was observed in both
UD and BD, while the gray matter volume of right dorsolateral

prefrontal cortex (DLPFC) and parietal regions decreased only in
UD [7]. Moreover, several studies have found significant alterations
in the amplitude of low-frequency fluctuation (ALFF) across both
UD and BD compared to healthy controls (HC), most prominently
in frontal, parietal and occipital regions [8–10], which was also
found based on the regional homogeneity [11]; however,
inconsistencies have also been reported and suggested further
exploration [12, 13]. By identifying physiological characteristics
through functional connectivity (FC), studies have found that both
BD and UD show decreased FC between default mode network
(DMN) and central control network [14] or limbic system network
[15], and the interruption of topological properties within DMN
and limbic [16, 17]. Patient groups could be differentiated by
large-scale network alterations: significantly increased FC within
DMN in UD, increased FC within frontoparietal network in BD, and
increased FC within cingulo-opercular network in both two
diseases [18]. Furthermore, a recent review suggested that
functional and structural changes in the neural circuits involved
in emotional and reward processing may be the common
neurological characteristics for PDE [19].
The MRI studies above have found some transdiagnostic

similarities and disease-specific changes between BD and UD.
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However, existing methods of analysis, such as standard FC
analysis, tended to be limited to several key areas. First, the
traditional case-control approach used in most researches, which
independently identifies a single disease from HC, may lead to an
illusion of group specificity [2]. To make a breakthrough in
understanding how brain function changes to cause depressive
episodes, a transdiagnostic neuroimaging study is urgently
needed. Secondly, there is evidence that differences in individual
behavior may be reflected in the variability of the whole brain,
which can serve as a stable and reliable fingerprint [20, 21].
Namely, individual patients, whether UD or BD, are biologically
highly heterogeneous [22–24], who may be clinically diffuse. Thus,
the Latent Dirichlet Allocation (LDA), a data-driven Bayesian
framework, was utilized in this study, which reconciles categorical
and dimensional perspectives of individual heterogeneity. This
mathematical framework has been successfully used to reveal
latent atrophy factors in Alzheimer’s disease with structural MRI
[25] and the novel subtype study of autism spectrum disorder [26].
The LDA model allows each individual to express multiple latent
factors to varying degrees rather than categorizing them via a
certain standard, which represents the unique characteristics of
this patient’s disease.
In this study, we applied the LDA to decompose the resting-

state ALFF patterns in transdiagnostic PDE into multiple latent
hyper- and hypo-activity patterns (i.e., factors). We hypothesized
that there are shared and disease-sensitive functional patterns in
patients with different diagnostic categories even though all are in
a depressive state. Our study was conducted along with the
following three points: (1) the dominant patients without labels of
UD or BD were put into the LDA model to estimate the
transdiagnostic latent factors in the whole brain, enabling in-
depth exploration of alteration patterns across PDE; (2) the
compositions of these transdiagnostic alteration factors in patients
were further deduced to find various expression tendency over
patients with different diagnosis categories; (3) a particular group
of patients with an early major depressive episode, whose nature
was found to be BD during their following-up, were taken as an
independent sample set to further validate the value of alteration
factors suggested via LDA model in emotional state prediction.

MATERIALS AND METHODS
Participants
All participants were recruited from September 2011 to December 2018.
Using the Mini-International Neuropsychiatric Interview (M.I.N.I, Chinese

version), all patients were diagnosed by at least two psychiatric attending
physicians based on the DSM-IV. Then, the 17-item Hamilton Depression
Rating Scale (HAMD-17) was used to quantify the severity of depression in
patients. The resulting sample comprised 259 PDE (131 UD and 128 BD)
patients and 100 HC, for primary analyses (age, gender and education
matched). An independent sample of 32 initial depressive episode BD (IDE-
BD) patients, who were initially strictly diagnosed as UD during scanning
and then convert to BD with the episodes of mania or hypomania during
follow-up, was used for secondary analyses. As described in our previous
study [27], the IDE-BD patients had never experienced a manic episode
when seeking treatment.
The recruitment and exclusion criteria for patients and HC are detailed in

Supplementary Material. All participants were 18–55 years old, native Han
Chinese, right-handed and had normal intelligence (Table 1). All
participants have signed a written informed consent after a full written
and verbal explanation. This research was approved by the Research Ethics
Review Board of Affiliated Brain Hospital of Nanjing Medical University.

MRI acquisition and preprocessing
Resting-state fMRI data in this study were obtained from the Department
of Psychiatry of Affiliated Brain Hospital of Nanjing Medical University. The
MRI scan parameters and preprocessed pipeline were detailed in
Supplementary Methods. All data satisfied the criteria of maximum motion
in translation <2mm, rotation <2 degrees. Linear regression of multiple
nuisance variables was applied, which consisted of head motion (Friston
24-parameter), white matter, cerebrospinal fluid and global signal. We
chose to regress out global signal because of its effectiveness in removing
motion-related and respiratory artifacts [28, 29].

Latent factors based on LDA model
The LDA [30], which is a hierarchical Bayesian model, was applied over
those resting-state voxel-level ALFF to capture latent alteration factor for
transdiagnostic PDE. The LDA model consists of a three-tier structure of
voxels, latent factors and patients (as shown in Supplementary Fig. S1).
Given the ALFF data for all patients and the predefined factor number K,
the model can estimate K latent alteration factors. The brain activity of
patients was estimated as approximations of latent factor Pr(Voxel | Factor)
multiplied by personalized factor composition Pr(Factor | Patient). The
following steps were followed to estimate the latent factors for 259 PDE.

Step one: feature extraction and dimension reduction
The ALFF reflects spontaneous fluctuations of a given voxel, which has
higher test-retest reliability than other functional measures [31]. We
computed the ALFF within the frequency band of 0.01–0.08 Hz as previous
[32]. In this study, we chose the automated anatomical labeling atlas as a
predefined mask. Specifically, only the cortical and subcortical regions of
the brain were selected for subsequent analysis, while the cerebellum was
excluded due to the incomplete MRI scan coverage for some of the

Table 1. Demographic and clinical characteristics among three groups.

Variables UD BD IDE-BD HC p value

(n= 131) (n= 128) (n= 32) (n= 100)

Gender (male/female) 68/63 49/79 16/16 40/60 0.106a

Age (year) 30.38 ± 9.00 29.53 ± 9.84 30.97 ± 7.85 31.47 ± 9.36 0.465b

Education (year) 14.28 ± 2.91 13.90 ± 3.00 14.09 ± 2.86 14.87 ± 2.60 0.086b

HAMD‐17 21.92 ± 6.17 22.16 ± 5.19 21.91 ± 7.19 – 0.940b

Current episode duration (month) 7.00 ± 11.26 4.31 ± 9.89 4.61 ± 4.45 – 0.103b

Number of depressive episodes 1.40 ± 1.17 3.07 ± 2.09 2.06 ± 1.34 – <0.0001c*

Family history of AD 21 (16.03%) 54 (42.19%) 11 (34.38%) – –

Polarity of the first episode (depressive/manic) 131/0 97/31 32/0 – –

Data are presented as the range of minimum–maximum (mean ± SD).
BD bipolar disorder, IDE-BD bipolar disorder with initial depressive episode but manic or hypomanic symptoms during follow-up, UD unipolar disorder,
HAMD-17 Hamilton depression rating scale 17 items, AD affective disorder.
*p < 0.05.
aThe p value was obtained by two-tailed Pearson χ2 t-test.
bThe p value was obtained by one-way analysis of variance.
cThe p value was obtained by Kruskal–Wallis test.
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subjects. Furthermore, the ALFF of each voxel was divided by the global
mean value for standardization. Age, gender, education and head motion
(mean frame-wise displace [33]) were regressed out from all participants’
ALFF via a general linear model. To identify principal ALFF alterations, we
extracted the voxels with significant differences in ALFF after two-sample t-
test (p < 0.05, no correction) between each group pairs in BD, UD and HE,
respectively. The union of three voxel sets was retained as the mask for
further analysis.

Step two: applying LDA to fMRI data
To map the resting-state fMRI data to the LDA model, the continuous ALFF
images of PDE calculated in the previous section were discretized via
z-normalized with respect to 100 HC participants, so that the greater
alteration corresponded to the higher word frequency. A z-score greater
(or less) than zero in patient indicates hyper-activity (or hypo-activity)
relative to the activity (ALFF value) observed in HC. Finally, the z-scores
were multiplied by 10 and rounded to the nearest integer. Although the
discretization of the ALFF data might lead to some loss of information, we
note that a sufficiently large multiplicative factor can minimize the loss of
information [26]. It is worth noting that traditional LDA can only deal with
positive input variables, such as the positive frequency of dictionary words.
However, PDE are associated with both hyper- and hypo-activity of the
brain (represented by ALFF), and the positive (or negative) values cannot
simply be ignored or taken as absolute values here. Therefore, in this study,
we used an improved LDA model, named polar LDA [34], to indicate the
information of hyper-activity or hypo-activity for each voxel with an
additional binary variable. Details about our LDA can be found in
Supplementary Methods.

Step three: estimation of latent alteration factors in PDE
The discrete z-scores of ALFF within the predefined mask above for 259
PDE were fed into the polar LDA model to estimate the latent alteration
factors. We chose factor number K= 2–5 to estimate the reasonable
setting. Solutions were calculated 100 times from 100 random initializa-
tions, where the variational expectation-maximization algorithm was
applied to estimate Pr(Factor | Patient) and Pr(Voxel | Factor) under each
setting of K. The detailed algorithm flow of model estimation was shown in
the Supplementary Methods. Then, a bootstrapping procedure, which
generated 100 new sample sets by randomly sampling 259 subjects from
the original sample set, was used to estimate the confidence intervals for
the factor-specific patterns (i.e., Pr(Voxel | Factor)). To further explore the
statistically significant brain regions of each factor in more detail, the
Human Brainnetome Atlas [35] based on both anatomical and functional

connections was applied over the estimated latent alteration factors in
subsequent analyses, which included refined 210 cortical and 36 sub-
cortical subregions. The bootstrapped z-scores were averaged across 246
brain regions. The p values were converted from the z-scores that were
calculated by dividing factor-specific patterns by the bootstrapping-
estimated standard deviation. In addition, we applied separate general
linear models (or logistic regression for binary variables) to the factor
compositions and each clinical characteristic (age, gender, education,
HAMD-17, etc.) of PDE (outside of diagnosis) to explore if there were any
particular behavioral or clinical differences between individuals that loaded
onto a particular factor (Supplementary Methods).

RESULT
Latent alteration factors in PDE
With the predefined mask (13,059 voxels remaining), the
unsupervised polar LDA model was applied to the voxel-wise
ALFF of 259 PDE. The solutions were robust for K= 2 and 3 factors
but unstable for K= 4 and 5 factors (see Supplementary Fig. S2). As
K increased, the stability of factor estimation decreased gradually.
Therefore, more factors were not considered in our study. The Pr
(Voxel | Factor) for each latent factor could be visualized as a
probabilistic map overlaid brain (each row in Fig. 1), which
represented a factor-specific hyper- and hypo-activity pattern in
the brain regions. The pattern distribution of each alteration factor
indicated that these estimated factors from K= 2–3 were
presented in a hierarchical manner. Factor 1 in two-factor model
was highly similar to factor 1 in three-factor model (with a
correlation of 0.99), while another two factors in three-factor model
seemed to be the inheritance and extension of factor 2 in two-
factor model (Supplementary Fig. S3). Suggested via pattern
distribution of each alteration factor, we focused on the three-
factor model for the subsequential analysis. In addition, we
performed control analyses without the global signal regression
when preprocessing the fMRI data and the results were generally
consistent (see Supplementary Results and Supplementary Fig. S7).

The hyper- and hypo-activity patterns across three factors
Statistically significant brain regions were obtained via a boot-
strapping procedure for LDA model re-estimation and the
probabilities were summed within them (Fig. 2A–C). Factor 1

Fig. 1 Visualization of the latent alteration factors. The Pr(Voxel | Factor) for each latent factor was visualized as a probabilistic alteration
map overlaid on the Montreal Neurological Institute template (each row), which was a probability distribution over all the voxels in the
defined mask. Bright colors indicated the higher probability of hyper- or hypo-activity at this spatial location for a specific alteration factor.
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was associated with hyper-activities within precentral gyrus (PrG),
postcentral gyrus, superior parietal lobule (SPL), and occipital
cortex (OC). By contrast, there were hypo-activities within DLPFC,
orbital frontal gyrus (OFG), precuneus and posterior cingulate
cortex (PCC). The patterns of hyper- and hypo- activities in factor 2
were almost opposite to those in factor 1 (with a correlation
of −0.71), however with some slight deviations. For example, the
parietal lobe and OFG were significant only in factor 1. Factor 3
was also associated with strong hyper-activity in OFG and hypo-
activity in precuneus and PCC. Furthermore, we binarized these
regions (ignoring directionality of abnormality) and summed them
across the three factors (Supplementary Fig. S4) to explore the
shared and specific hyper- and hypo-activity patterns among
these three factors.
In order to further analyze the functional pattern of factor-

specific activity on large-scale neural circuits, six neural circuits
associated with PDE [36] were selected to map to the latent
alteration factors based on the Human Brainnetome Atlas,
including default mode circuit, salience circuit, threat circuit,
reward circuit, attention circuit and cognitive control circuit (see
Supplementary Table S1 for details). As shown in Fig. 2D, except
for the cognitive control circuit, the polarity of ALFF activity
patterns between factor 1 and factor 2 was completely opposite,
that is, the circuits exhibiting hypo-activity in factor 1 happened to
be hyper-activity in factor 2. Secondly, factor 3 was similar to
factor 1 on the default mode and attention circuits, while similar
to factor 2 on the threat and salience circuits, suggesting that

factor 3 might work as the impairment basis of PDE. Particularly,
on the reward circuit, factor 3 showed a significantly higher
degree of functional impairment than the other two factors.

Factor composition of the PDE
The Pr(Factor | Patient) is the probability distribution based on the
latent factors estimated by the polar LDA model, which represents
the patients’ factor composition. After false discovery rate (FDR,
q < 0.05) multiple comparisons correction, only age and gender
showed significant differences across three factors (Supplemen-
tary Results and Supplementary Fig. S5). As shown in Fig. 3, most
patients expressed multiple latent alteration factors rather than
only one. Notably, the tendency of factor expression was different
in these two diseases: BD tended to express factor 1, while UD
tended to express factor 2. Thereafter, the averaged Pr(Factor |
Patient) in different groups were calculated to explore whether
patients with BD or UD were biased in terms of factor
composition. The mean factors composition of BD groups was
43.98%, 30.98%, 25.04% (corresponding to factors 1–3), while
25.65%, 45.89%, 28.46% in UD groups.

Emotional state prediction based on the latent alteration
factors
To validate the effect of the factors obtained from the polar LDA
model on emotion prediction, we took the IDE-BD patients as an
independent data set to infer their factor compositions from the
model trained by the 259 PDE. By multiplying Pr(Voxel | Factor)

Fig. 2 Patterns of significant hyper- and hypo-activity involved in all three alteration factors. A–C Statistically significant patterns of hyper-
and hypo-activity associated with each factor, summed within regions. Different colors represent different polarities (red, hyper-activity; blue,
hypo-activity). D After mapping the six functional circuits associated with depressive disorder, the probability sum of hyper- or hypo-activity
patterns for each factor was displayed on a radar chart. The number represented the scale of web and the dotted lines represented no
impairment compared to healthy controls. DLPFC dorsolateral prefrontal cortex, OC occipital cortex, PCC posterior cingulate cortex, OFG
orbital frontal gyrus.
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and Pr(Factor | Patient), the alteration degree of each patient in
voxel-level (i.e., D(Voxel | Patient)) could be calculated. Then,
according to the spatial location, polarity and specificity of the
factor distribution, all the above significant regions after the
bootstrapping procedure for LDA model re-estimation were
divided into five regional sets (i.e., five regions of interest, ROIs)
(see Supplementary Fig. S6): OFG, PrG+SPL, SFG+middle frontal
gyrus (MFG), precuneus+PCC+IPLr (inferior parietal lobule ros-
trodorsal area) and OC+fusiform gyrus (FuG)+IPLc (inferior
parietal lobule caudal area). The alteration degree of patients in
each ROI (i.e., D(ROI | Patient)) was obtained accordingly by
averaging the D(Voxel | Patient) in this region.
Then, we used the bipolar index to explore the risk indicators

for the transition from depression to mania in IDE-BD patients. The
bipolar index is a clinical rating scale used to determine whether a
patient is at risk for BD, a higher score indicating greater risk. The
correlation between the expression on each factor and bipolar
index was analyzed over these IDE-BD patients, with age, gender,
education and head motion as covariates. We found that the
expression of factor 1 was positively correlated with bipolar index
in IDE-BD patients (r= 0.4271, p= 0.0148) (Fig. 4A). Then, we
applied canonical correlation analysis to find an optimal linear
combination of ROI alteration degrees D(ROI | Patient) in the
whole brain between that maximally correlated with bipolar index.
Age, gender, education and head motion were also regressed out
before canonical correlation analysis. After 10,000 runs of
permutations to test the statistical significance, the results showed
that the alteration degrees in these five ROIs were positively
correlated with bipolar index (r= 0.5935, p= 0.005) (Fig. 4B), and
the regions with the highest absolute importance were mainly in
OFG and PrG+SPL.

The difference of factor compositions and ROI alteration
degree among three groups
Using one-way analysis of covariance, the group differences,
including BD, IDE-BD and UD, on the factor compositions of
patients in each factor were examined (Fig. 4C). Significant group
differences on the expression of factor 1 and factor 2 were
observed (all p < 0.0001, FDR corrected), with a descending
(ascending) order of BD, IDE-BD, and UD for mean values in
factor 1 (factor 2), but not in factor 3. The post hoc analyses
revealed that compared with BD, IDE-BD and UD significantly

decreased on the expression of factor 1 (all p < 0.016), while
significantly increased on the expression of factor 2 (all p < 0.012).
Due to the heterogeneity of variance between groups, statistical

analysis utilizing the Kruskal–Wallis test revealed significant differ-
ences in the four ROIs except OFG (all p < 0.0001, FDR corrected). In
Fig. 4D, the corrected pairwise comparison results indicated that
both IDE-BD and UD had significant differences with BD in
SFG+MFG and OC+FuG+IPLc (all p < 0.044), while only UD and
BD had significant differences in PrG+SPL and precuneus+PCC+IPLr
(all p < 0.0001). Interestingly, compared with HC, BD and UD showed
the opposite polarity of alterations (hyper-activity vs hypo-activity) in
SFG+MFG and OC+FuG+IPLc. In addition, although no significant
results were found, BD, IDE-BD, and UD tended to increase (decrease)
in OFG (PrG+SPL).

DISCUSSION
In this study, the polar LDA was used in a resting-state fMRI cohort
of PDE to reveal three transdiagnostic latent alteration factors,
each of which was associated with the hyper- and hypo-activity
pattern of ALFF compared to HC. The majority of participants
expressed multiple latent alteration factors rather than a single
one, thus retaining interindividual variability. These three factors
could be correspondingly referred to as the BD sensitive factor,
the UD sensitive factor and the shared factor that characterized
the basis of functional impairment in PDE. Finally, using an
independent set of IDE-BD patients who had never experienced a
manic episode during the fMRI scan, we could predict the
emotional state transition risk of these patients based on the
expression of BD sensitive factor or the alteration degrees of five
ROIs (including OFG, PrG+SPL, SFG+MFG, precuneus+PCC+IPLr
and OC+FuG+IPLc).
As the typical diseases of depressive episode, UD and BD with

different diagnoses clinically had a neurobiological alteration
overlap obviously. The alteration factor 3 was suggested to be the
basis of functional impairment over the PDE, mainly involving the
increased frontal region (OFG, subgenual anterior cingulate cortex,
basal ganglia) and decreased posterior region (precuneus, PCC,
IPL) ALFF, which was consistent with previous findings [37, 38].
Furthermore, in the archetypal major psychiatric disorder group
obtained by ALFF-based transdiagnostic clustering, ALFF was also
significantly increased in prefrontal cortex, limbic, and striatum
and significantly decreased in posterior primary cortices, com-
pared to HC [39]. Altogether, these findings further supported that
the alteration pattern of factor 3 reflected the impaired balance
between regions conventionally known for emotional perception
and processing and the visual cortex, which was prevalent in the
PDE. Moreover, our study also found that factor 3 manifested as
highly hyper-activity in the reward circuit. Several studies have
shown that both UD and BD patients had reduced activation in
the reward-related brain regions or circuits while performing
reward-related tasks, and BD showed significantly decreased
activity compared with UD [40, 41]. This is consistent with our
results, demonstrating that reward processing abnormalities share
similar substrates across different PDE, with varying degrees of
impairment [42].
In the absence of diagnostic labels, the factor composition

estimated by our polar LDA model showed a significant clinical
diagnostic group-level bias over factor 1 and factor 2, suggesting
that these two factors may be disease-sensitive alteration patterns.
Interestingly, the polarity of activity patterns between factor 1 (BD
sensitive) and factor 2 (UD sensitive) was opposite in SFG, MFG,
precuneus, PCC, FuG and OC. According to the spatial distribution,
SFG and MFG in our factors belong to the DLPFC, which is
primarily associated with cognitive control of perception and
decision making and plays an important role in the top-down
regulation of emotional processing [43]. Regarding structural MRI,
UD patients revealed significant reduced gray matter volume in

Fig. 3 Factor compositions of patients with depressive disorder.
Each patient corresponds to a point, with the location in barycentric
coordinates representing the factor composition (i.e., Pr(Factor |
Patients)). The angles of the triangle represent pure factors, and the
point closer to the angle indicates the higher probability of the
corresponding factor. Different colors represent different sets of
patients with depressive episodes. The tendency of factor expres-
sion was different: BD patients tended to express factor 1, while UD
patients tended to express factor 2. BD bipolar disorder, UD unipolar
disorder.
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DLPFC compared to BD [7], while BD showed thinner cortical
thickness [44, 45]. Furthermore, previous studies had shown that
DLPFC activation in UD patients significantly increased [46] or
decreased [47] compared to BD when performing various
cognition-related tasks. We speculated that compared to BD,

there was greater frontal control to external stimuli in UD patients
whose DLPFC may be preferentially active for perpetuating
negative bias processing in the resting state [37].
Next, the precuneus and PCC are the core regions of the DMN,

which may be of great significance for self-consciousness and
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self-related mental representations during rest [48], which had
been shown to be involved in the major pathogenesis of MDD and
to play an important role in the successful retrieval of autobio-
graphical and self-related information [49]. The decreased resting-
state activity of precuneus both in BD and UD had been commonly
demonstrated [9, 50, 51]. Consistent with our results, a meta-
analysis showed that the ALFF in precuneus significantly increased
in UD patients relative to BD patients, but both decreased
compared to HC [52]. Furthermore, studies had shown that
compared with HC, resting-state activity of PCC was increased in
UD patients, associated with promoting ruminant self-awareness
[53], while decreased in BD patients, associated with impaired
integration of emotion and memory [54]. A transdiagnostic study
across several mental illnesses and symptoms also revealed that
the DMN may underlie a range of cognitive processes which were
impaired in a variety of diseases [2]. Our previous studies had also
confirmed that the dynamic connection of the DMN contributed to
the identification between UD and IDE-BD [27].
Although no statistical differences were observed between the

groups, the alteration degree of BD, IDE-BD, and UD on the OFG
showed a gradual upward trend clearly, which explained why it had
the highest absolute importance in the canonical correlation
analysis. The OFC is involved in learning, prediction, and decision
making for reward-related and emotional behaviors [55]. Alterations
to OFC may abolish the top-down control of the amygdala and
deeper limbic structures, which may account for the emotional and
cognitive disinhibition as the typical characteristics of PDE [56].
Compared with HC, the reduced gray matter volume [56] and
increased ReHo [11] or degree centrality [57] of patients with BD
and UD on OFC have been reported. It has also been found that the
activation of OFC in both BD and UD was related to the severity of
depressive state [58, 59]. Our result further found that changes in
OFC activity were also associated with the transformation of
emotional state. The manic episodes in BD patients may cause a
decrease in OFC activity, resulting in lower or higher than HC, which
may be the reason for the inconsistency of previous studies [60, 61].
In conclusion, the OFC was not only a common transdiagnosis
alteration region in PDE, but also a latent predictive risk factor for
emotional state transition from unipolar to bipolar in our study.
Although covariate removal and inter-group matching were

done, the significant differences for age and gender across factors
were found in our LDA model, which were similar to a previous
study [26]. In our study, with increasing age, patients tended to
express factors 1, 2 or 3, respectively, which might reflect a
neurodevelopmental stage. Furthermore, factor 2 was more
frequently expressed in females, which might be related to the
higher prevalence of depression among female participants.
Across the lifespan, depression is almost twice as common in
women as in men [62]. Studies have shown gender differences in
the neuronal circuitry underlying depression [63, 64], which may
be of relevance to sex differences in the clinical presentation of
depression [65].

Compared with other current transdiagnostic studies [2, 3, 66],
our study focused primarily on PDE, allowing us to better
understand the association between these two disorders with
similar clinical symptoms. Secondly, previous transdiagnostic
studies mostly used clustering to divide each patient into a single
subtype [39], which ignored the individual heterogeneity among
patients. Our approach allows each individual to express multiple
latent factors to varying degrees rather than a single factor. Finally,
although no patient’s diagnostic category was given at the time of
input, our results found that each factor has different sensitivity
for different categories of patients.

Limitations
There are several limitations in our study. First, our conclusions
need to be validated by additional clinical features or behavioral
characteristics, which can simultaneously characterize UD and BD.
We can use multiple modal data such as gene expression and
structural neuroimaging to further explore the spectra of
transdiagnostic PDE symptom profiles. Another limitation is the
number of participants that needs to be improved and multi-
center data may be more convincing. Moreover, the patients in
this study were all in a major depressive episode state, and the
inclusion of BD patients with manic episodes could better
contribute to understand the shared and disease-sensitive
impairment pattern between these two diseases. Finally, long-
itudinal data and medications are needed to explore the effects of
medication status.

CONCLUSIONS
Using the LDA, our study revealed three transdiagnostic alteration
factors associated with hyper- and hypo-activity patterns in PDE,
each patient displaying a unique composition of these factors. The
factors could be correspondingly divided into the BD sensitive
factor, the UD sensitive factor and the shared basic alteration
factor. Furthermore, our approach also contributed to the
prediction of emotional state in IDE-BD patients, where the major
brain regions involved include OFG and PrG+SPL. Understanding
these core alterations in PDE was critical for mapping the major
neural pathways resulting in psychopathology and the intersec-
tions in which distinct paths lead to varying clinical phenomen-
ology within and across diagnoses in the future.
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