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Incubation of craving is a well-documented phenomenon referring to the intensification of drug craving over extended abstinence.
The neural adaptations that occur during forced abstinence following chronic drug taking have been a topic of intense study.
However, little is known about the transcriptomic changes occurring throughout this window of time. To define gene expression
changes associated with morphine consumption and extended abstinence, male and female rats underwent 10 days of morphine
self-administration. Separate drug-naive rats self-administered sucrose in order to compare opioid-induced changes from those
associated with natural, non-drug rewards. After one or 30 days of forced abstinence, rats were tested for craving, or nucleus
accumbens shell tissue was dissected for RNA sequencing. Morphine consumption was predictive of drug seeking after extended
(30 days) but not brief (1 day) abstinence in both sexes. Extended abstinence was also associated with robust sex- and reinforcer-
specific changes in gene expression, suggesting sex differences underlying incubation of morphine and sucrose seeking
respectively. Importantly, these changes in gene expression occurred without re-exposure to drug-paired cues, indicating that
chronic morphine causes long-lasting changes in gene expression that prime the system for increased craving. These findings lay
the groundwork for identifying specific therapeutic targets for curbing opioid craving without impacting the natural reward system
in males and females.
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INTRODUCTION
Relapse rates for substance use disorder are nearly 85% within the
first year of sobriety [1]. Cues associated with previous drug use—
such as environment, friends, and paraphernalia—trigger intense
cravings to use [2, 3], which often precipitates relapse. Cue-
induced craving intensifies over the course of abstinence, which is
a phenomenon known as “incubation of drug craving”. This has
been documented in both rodent models [4, 5], as well as clinical
populations [6–9]. Cue-precipitated seeking of the natural reward
sucrose also intensifies following a period of abstinence in rats
[10]. Identifying the molecular underpinnings that contribute to
increased craving represents a promising avenue to improve
therapeutics for substance use disorders. Importantly, disentan-
gling the mechanisms underlying sucrose seeking from those
involved in drug craving is critical for delineating opioid-specific
therapeutic targets that are unlikely to affect the natural reward
system.
Males and females experience some differences in the

progression, susceptibility, and intensity of drug addiction and
relapse [11, 12]. However, many of these findings are derived from
cocaine use disorder research. Sex differences in opioid craving
are far more equivocal, and in some cases, non-existent [13]. Some
studies report higher opioid relapse rates in women during early
[14], but not protracted abstinence [15]. In preclinical models, sex

differences are not observed in incubation of opioid craving
[13, 16–18]. Males and females also show similar fentanyl self-
administration and cue-induced relapse behavior following
14 days of voluntary abstinence [19]. The goal of this study was
to compare the mechanisms underlying incubation of opioid and
sucrose craving in males and females to delineate sex- and
reinforcer-specific molecular correlates of cue-induced craving.
Changes in gene expression within the nucleus accumbens core

accompany cue-induced reinstatement of heroin seeking [20]. The
two sub-regions of the nucleus accumbens are functionally
dissociable, in that the core is critical for learning reward-cue
pairings, and the shell is important for enacting cue-elicited
responses [21, 22]. Changes in gene expression produced by
heroin self-administration are distinct when comparing the shell
and core regions of the nucleus accumbens [23]. The current
studies focused on the accumbens shell, which is part of a critical
circuit involved in contextual reinstatement of heroin seeking [24],
and potentially involved in cue-induced cocaine and alcohol
seeking, although pharmacological inactivation studies provide
differing results [25, 26]. The mGluR2/3 agonist LY379268 [27], and
D1-receptor antagonist SCH 23390 [28] in the shell also reduce
contextual reinstatement of heroin seeking after extinction. Others
have explored neural adaptations following re-exposure to drug-
associated cues. However, cue re-exposure itself can induce gene
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expression changes [29]. Much less is known about transcriptomic
alterations following drug exposure and abstinence without re-
exposure to the drug-paired cues, which could prime the nucleus
accumbens shell to respond when re-exposed to such cues. A
better understanding of these mechanisms is critical for isolating
the processes that contribute to craving. These data can inform
potential treatments that mitigate enhanced craving prior to an
individual re-integrating into their previous environment.

METHODS AND MATERIALS
Subjects
For all experiments, 60–180-day-old male (n= 192) and female (n= 156)
Long-Evans rats were bred in house and pair-housed after weaning. There
was counterbalancing within each cohort and each group so that all
cohorts included equal representation of age within the range used in the
study. Rats were handled daily for at least 5 days prior to the start of any
behavioral procedure or test. All rats had ad libitum access to water and
standard laboratory chow. The Institutional Animal Care and Use
Committee of Temple University approved all animal care and
experiments.

Drugs
Morphine sulfate was gifted by the NIDA drug supply and was dissolved in
sterile 0.9% saline.

Catheter implantation surgery
Rats were anesthetized and the jugular vein was catheterized according to
previous methods [30]. Catheters were flushed daily with 0.2 mL of
timentin (0.93 mg/mL) dissolved in heparinized saline to prevent clogging.

Morphine self-administration, forced abstinence, and relapse
tests
During morphine self-administration experiments, rats were pair-housed on
a regular 12-h light/dark cycle. All morphine self-administration and tissue
collection occurred during the dark phase. During self-administration, the
rats were in the operant chambers with access to food and water from 9:00
P.M. to 9:00 A.M. (12-h self-administration sessions during the dark cycle). A
small number of rats had to be euthanized due to complications stemming
from surgery or other health concerns. Out of 207 morphine-treated rats, 25
were singly housed for the duration of the study. None of the morphine-
treated rats used for RNA sequencing were singly housed. Rats self-
administered morphine (0.75mg/kg/infusion over 5 s) on a fixed ratio 1
(FR1) schedule. A 5-s cue light was activated during infusion delivery,
followed by a 20-s timeout during which responses were recorded, but no
drug was delivered. There was a maximum of 75 infusions per session. An
“inactive lever” with no programmed consequence was also included in all
studies. Control rats from these cohorts underwent identical procedures,
but only had access to intravenous saline. For each comparison presented
in the manuscript, cohorts included equal representation of subjects for
each of the groups and ages. This design precluded the possibility of
“cohort”/“batch” effects for all sex- and reinforcer-specific comparisons.
Moreover, every cohort of rats included subjects that were processed for
behavioral endpoints (drug seeking) and subjects that were dedicated to
tissue collection. Tissue processing for library preparations and RNA
sequencing was also done side-by-side with equal representation for each
of the groups (i.e. controls, Day 1 of abstinence, and Day 30 of abstinence).
Differentially expressed genes (DEGs) were identified using comparisons of
groups that were run, processed, and sequenced together. For comparisons
across groups that were not run together (i.e. male vs. female or morphine
vs. sucrose), only the list of DEGs and/or enrichment terms were compared.
Several cohorts of rats were run to collect sufficient tissue and behavioral
data for each comparison. Each of these cohorts contained comparable
number of rats in each of the groups included in the comparison. Following
self-administration, rats from each cohort were randomly sub-divided into
those that were sacrificed on abstinence Day 1 versus those that were
sacrificed on abstinence Day 30. Regardless of condition or sex, all rats
underwent either 24 h or 30 days of forced abstinence in a between-
subjects design. During the abstinence period, rats were housed with ad
libitum access to food and water, but had no access to the self-
administration chambers and were handled regularly. At the end of each
abstinence time point (24 h=Morphine Day 1/D1; 24 h= saline; 30 days=

Morphine Day 30/D30), a subset of rats were tested for morphine seeking
during 1-h “cue tests”. Therein, responses on the previously drug-paired
active lever resulted in illumination of the cue light, but no infusion of
morphine.

Sucrose experiments
Separate (drug-naive) male and female rats were used for oral sucrose self-
administration. Rats were housed in reverse light/dark cycle colony rooms
with lights on from 9:00 P.M. to 9:00 A.M. All self-administration and tissue
collection occurred during the dark phase. Self-administration experiments
took place from 9:00 A.M. to 11:00 A.M. (2-h self-administration sessions in
the dark cycle). Out of 141 sucrose-exposed rats; seven were singly housed
at some point during the study. The same operant chambers and
FR1 schedule were used; active lever presses resulted in one sucrose pellet
paired with a 5-s cue light. There was a maximum of 90 sucrose pellets
per session. For each comparison presented in the manuscript; the subjects
were run in cohorts that included equal representation of subjects in each
of the groups. Control (“cue only”) rats were run on identical conditions but
no sucrose pellets were delivered. All rats had ad libitum access to water
and standard laboratory chow throughout the experiment. At the end of
one or 30 days of forced abstinence (“Sucrose Day 1/D1” and “Sucrose Day
30/D30”), male and female rats were tested for sucrose seeking for 1 h
starting at 9:00 A.M. (dark phase). Lever presses resulted in cue
presentation but no sucrose was available during the tests.

Tissue collection and RNA sequencing
Rats used for RNA sequencing were never re-exposed to the drug- or
sucrose-taking context after completing self-administration. Tissue collec-
tion occurred during the dark phase (between 9:00 A.M. and 11:00 A.M.)
either 24 h or 30 days after the final self-administration session. Tissue from
saline and cue only control rats was collected on abstinence Day 1 only.
Immediately following decapitation, fresh brains were sectioned on a 1
mm brain block. Nucleus accumbens shell tissue was quickly micro
dissected using a 2mm puncher, flash-frozen on dry ice, and stored at
−80 C. Each group contained 7–11 biological replicates. All samples
prepared for RNA extraction contained bilateral nucleus accumbens shell
(NAcSh) from one rat. Total RNA was isolated using QIAzol lysis reagent
and purified using the RNeasy micro kit (Qiagen). RNA quality was assessed
via Nanodrop (260/280 nm and 260/230 nm). RNA quantity was measured
using the Qubit™ RNA HS Assay kit (Invitrogen, USA). All RNA samples used
for sequencing had an RNA integrity number >8. Library preparation was
performed using the NEBNext Ultra II Directional RNA Library Prep Kit (New
England BioLabs). Samples were sequenced by Genewiz (South Plainfield,
NJ) according to sex and condition (i.e. all male heroin-exposed samples
together, all female heroin-exposed samples together, etc.). No compar-
isons were made across sequencing runs in order to help mitigate
variability across mRNA extraction and subsequent library preps. The
criteria to define DEGs was a 50% change in the expression (|log 2 Fold
change | > 0.58) and an adjusted p-value < 0.1. R statistical software
(version 4.0.1) was used for downstream analysis and visualization of the
RNA sequencing analysis output [31–33], including, but not limited to
drawing heat maps and Venn diagrams. Pathways (from KEGG) and gene
ontology terms (biological process, molecular function and cell compart-
ment) by adjusted p-value < 0.1 were selected for further analysis. To
compare gene expression agnostically, the Rank–Rank Hypergeometric
Overlap (RRHO) analysis was used. This algorithm compares two gene lists
ranked by the p-value of differential expression observed in two
experiments and estimates the number of overlapping genes. Subse-
quently, a heat map is created showing the strength and pattern of
correlation between two expression profiles [34]. RRHO2 library in R [34]
was used to compare early and late abstinence DEGs in males and females
for overlap in upregulated and downregulated DEGs, respectively. Only the
resulting list of genes from each group was compared across groups.

Correlation analysis
Pearson correlations between total morphine or sucrose consumption
during self-administration and number of active lever presses during the
Day 1 or Day 30 cue test were calculated using ggscatter code from
ggpubr library (ver 0.4.0) in R (ver 4.0.3).

Data analysis
GraphPad Prism (version 9.0.1) was used for ANOVAs. Mixed model
ANOVAs were used to compare infusions/pellets during self-
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administration. Session was used as the within-subject factor, and
condition (saline or “cue only” control vs. abstinence Day 1 vs. abstinence
Day 30) were used as between-subject factors. Two-way repeated-
measures ANOVAs were used to compare active lever responses during
the Day 1 or Day 30 cue test. Lever (active vs. inactive) was used as the
within-subject factor, and abstinence condition (Day 1 vs. Day 30) was used
as the between-subjects factor. In all cases, if a significant interaction was
found post-hoc comparisons were made using Bonferroni’s multiple
comparisons test. If data were not spherical, the Geisser–Greenhouse
correction was applied.

RESULTS
Incubation of morphine craving is accompanied by sex-
specific changes in gene expression in the nucleus accumbens
shell
Following 10 days of intravenous self-administration (IVSA), rats
underwent either one or 30 days of forced abstinence. Rats were
then tested for craving, or tissue was collected from the nucleus
accumbens shell and processed using RNA sequencing (Fig. 1A).
Over 10 days of IVSA, male rats earned more morphine infusions
compared to saline-treated rats (Fig. 1B; condition, [F2,126= 17.82,
p < 0.0001], time, [F9,1134= 1.450, p= 0.1619, Geisser–Greenhouse
epsilon= 0.2752]; interaction, [F18,1134= 7.567, p < 0.0001]). Rats
that underwent 1 or 30 days of abstinence earned a similar
number of morphine infusions (Fig. 1B; Saline vs. Morphine Day 1,
p= 0.0003; Saline vs. Morphine Day 30, p < 0.0001; Morphine Day
1 vs. Morphine Day 30, p= 0.1313). During morphine seeking
tests, active, but not inactive lever presses were higher on Day 30
compared to Day 1 (Fig. 1C; condition, [F1,21= 10.57, p= 0.0038],
lever [F1,21= 37.67, p < 0.0001]; interaction, [F1,21= 9.165, p=
0.0064]; active lever presses, p= 0.0001; inactive lever presses,
p= 0.7160), indicating that incubation of morphine seeking
occurred in male rats.
Female rats underwent the same regimen. The number of

morphine infusions increased over 10 days of self-administration,
and females self-administered more morphine than saline controls
(Fig. 1D; condition, [F2,75= 10.52, p < 0.0001], time, [F9,675= 4.027,
p < 0.0001, Geisser–Greenhouse epsilon= 0.3368]; interaction,
[F18,675= 5.531,p < 0.0001]). There were no differences in mor-
phine taking between rats that eventually underwent one or
30 days of abstinence (Fig. 1D; Saline vs. Morphine Day 1, p=
0.0012; Saline vs. Morphine Day 30, p= 0.0003; Morphine Day 1 vs.
Morphine Day 30, p= 0.9290). Female rats also exhibited
incubation of drug seeking after 30 days (Fig. 1E; condition,
[F1,10= 7.325, p= 0.0221], lever [F1,10= 7.008, p= 0.0244]; inter-
action, [F1,10= 1.853, p= 0.2033]; active lever presses, p= 0.0163;
inactive lever presses, p= 0.5256). Females earned more mor-
phine infusions than males overall and both sexes showed in an
increase in the number of infusions earned over the 10 days of
morphine self-administration (sex [F1,140= 7.117, p= 0.0085]; time
[F2.509,351.2= 17.29, p < 0.0001]; interaction [F9,1260= 1.694, p=
0.0857]). Morphine seeking increased on Day 30 compared to Day
1 of abstinence similarly for males and females (sex [F1,31= 2.441,
p= 0.1283]; Day [F1,31= 15.43, p= 0.0004]; interaction [F1,31=
1.499, p= 0.2300]).
Rats used for tissue collection and RNA sequencing did not

undergo cue tests. However, all rats from which tissue was
collected were part of cohorts in which morphine seeking was
tested and shown to increase over extended abstinence (Fig. 1A).
RNA sequencing of the accumbens shell revealed sex-specific
changes in gene expression following forced abstinence. Genes
that were unchanged between control saline-treated rats and Day
1 of abstinence from morphine, but showed a large change in
expression after 30 days of abstinence were of particular interest.
These “incubation-induced” changes in gene expression—those
that occur over prolonged abstinence—mirror the increase in
craving behavior that co-occurs over the same period.

In males, 315 DEGs were identified after 30 days of abstinence
compared to one day of abstinence (Morphine D1 vs. Morphine
D30); 89 DEGs were identified comparing one day of abstinence to
controls (saline vs. Morphine D1); and 173 DEGs were identified
comparing 30 days of abstinence to controls (saline vs. Morphine
D30) (Fig. 2A; Supplementary Table 1). In females, 79 Morphine D1
vs. Morphine D30 DEGs, 155 saline vs. Morphine D1 DEGs, and
155 saline vs. Morphine D30 DEGs were identified (Fig. 2B;
Supplementary Table 1). Only 22 overlapping DEGs were identified
between males and females when comparing the saline and
Morphine D30 groups (Fig. 2C; Supplementary Table 1), indicating
sex-specific gene expression changes following extended forced
abstinence from morphine self-administration. Heatmaps sorted
by fold change comparing saline to Morphine D30 DEGs revealed
sex-specific, incubation-induced patterns of gene expression
(Fig. 2D, E). In both sexes, the majority of DEGs comparing 30 days
of abstinence from morphine to saline were unchanged in the
comparison of one day of abstinence to saline, mirroring the
pattern of craving-like behavior.
RRHO analyses were used to compare the overlap in overall

gene expression patterns in males and females between saline
controls and morphine-exposed rats after one (Fig. 2F) or 30
(Fig. 2G) days of abstinence. RRHO analyses compared genes
across sex that show similar (top right and bottom left quadrants)
or opposite patterns (top left and bottom right quadrants) of
expression following abstinence. Warm colors (“hot spots”)
indicate significant overlap in the direction of the change,
whereas cooler colors represent minimal overlap in expression.
At day one of abstinence from morphine compared to saline
(Fig. 2F) males and females showed similar patterns of upregu-
lated (hot spots in bottom left quadrant) and downregulated (hot
spots in top right genes. At Day 30 (Fig. 2G), there was some
overlap between males and females for genes downregulated by
extended abstinence (upper right quadrant) but substantially less
overlap for genes upregulated (cool colors in bottom left
quadrant). Interestingly, many genes showed a sex-specific
change (highlighted in bottom right and top left quadrants),
showing upregulation in one sex but downregulation in the other.
Gene Ontology KEGG pathway enrichment analysis of DEGs

identified biological pathways altered by abstinence from
morphine self-administration comparing Day 30 of abstinence to
saline. ShinyGo analysis was used to identify predicted transcrip-
tion factors. In males, 28 KEGG pathways (Fig. 2H) and six
transcription factors (Fig. 2I) were identified. In females, 12 KEGG
pathways (Fig. 2J) and 13 transcription factors (Fig. 2K) were
identified. Interestingly, only four common KEGG pathways were
identified in both males and females (Fig. 2L). However, the
majority of predicted transcription factors were common to both
males and females (Fig. 2M).

Incubation of sucrose craving is accompanied by reinforcer-
and sex-specific changes in gene expression
In order to examine incubation of craving for a non-drug reward,
separate cohorts of male and female rats self-administered oral
sucrose for 10 days; controls received only cues and no sucrose.
Importantly, rats had free access to food and water throughout
the studies. The number of earned sucrose pellets increased over
10 days of self-administration and was higher than “cue only”
controls (Fig. 3A; condition, [F2,60= 180.1, p < 0.0001], time,
[F2.678,160.7= 56.10, p < 0.0001, Geisser–Greenhouse epsilon=
0.2975]; interaction, [F18,540= 12.65, p < 0.0001]). There were no
differences in the number of pellets earned between rats that
eventually underwent one compared to 30 days of abstinence
(Fig. 3A; Control vs. Sucrose Day 1, p < 0.0001; Control vs. Sucrose
Day 30, p < 0.0001; Sucrose Day 1 vs. Sucrose Day 30, p= 0.9921).
During the cue tests, active, but not inactive lever presses, were
higher on Day 30 of abstinence from sucrose compared to Day 1
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Fig. 1 Self-administration and incubation of morphine craving behavior in male and female rats. A Experimental timeline including
10 days of morphine or saline intravenous self-administration (IVSA), followed by either 1 or 30 days of forced abstinence. Separate cohorts
self-administered oral sucrose with the same experimental timeline. BMale morphine-treated rats earned more infusions over 10 days of IVSA,
whereas controls earned fewer infusions of saline. Morphine infusions did not differ between rats that eventually underwent one or 30 days of
abstinence. C Males demonstrated incubation of morphine craving, as indicated by an increase in active, but not inactive lever presses during
a 1-h cue test following 30 days of abstinence. D Female morphine-treated rats earned more infusions over 10 days of IVSA, whereas controls
earned fewer infusions of saline. Infusions did not differ between rats that eventually underwent one or 30 days of abstinence. E Female rats
also demonstrated incubation of morphine craving, as shown by an increase in active, but not inactive lever presses after 30 days of
abstinence. Data show mean ± SEM; ***p < 0.001, **p < 0.01, *p < 0.05.
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for male rats (Fig. 3B; condition, [F1,6= 30.02, p= 0.0015], lever
[F1,6= 27.34, p= 0.0020]; interaction, [F1,6= 16.73, p= 0.0064];
active lever presses, p= 0.0010; inactive lever presses, p= 0.7281).
RNA sequencing of the accumbens shell revealed robust changes
in gene expression associated with 30 days of abstinence from
sucrose in males (Fig. 3C, D).

Sucrose-treated female rats took increasing amounts of sucrose
over 10 days of self-administration and earned more sucrose than
“cue only” controls (Fig. 3E; condition, [F2,75= 103.7, p < 0.0001],
time, [F2.261,169.6= 41.69, p < 0.0001, Geisser–Greenhouse epsilon=
0.2512]; interaction, [F18,675= 8.168, p < 0.0001]). Active lever
presses were higher on Day 30 of abstinence from sucrose
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compared to Day 1 for females (Fig. 3F; condition, [F1,32= 26.68,
p < 0.0001], lever [F1,32= 67.16, p < 0.0001]; interaction, [F1,32=
13.52, p= 0.0009]; active lever presses, p < 0.0001; inactive lever
presses, p= 0.6007) indicating that incubation of cue-induced
sucrose craving occurred in both sexes. The total number of
sucrose pellets earned increased over the 10 days of self-
administration and was comparable in males and females (sex
[F1,100= 0.5802, p= 0.4480]; time [F9,900= 123.2, p < 0.0001];
interaction [F9,900= 1.244, p= 0.2642]). Sucrose seeking increased
on Day 30 compared to Day 1 of forced abstinence similarly for
males and females (sex [F1,22= 0.1087, p= 0.7448]; Day [F1,22=
31.32, p < 0.0001]; interaction [F1,22= 0.0147, p= 0.9046]).
Females also showed abstinence-specific patterns in gene

expression (Fig. 3G, H). Comparison of the 230 DEGs between
controls and the Sucrose Day 30 abstinence group revealed only
10 overlapping genes between males and females (Fig. 3I;
Supplementary Table 2). KEGG pathway analyses also showed
that there are no common KEGG pathways for sucrose-treated
males and females (Supplementary Fig. 1), suggesting a sex-
specific mechanism. When comparing controls to 30 days of
abstinence from either morphine or sucrose in males, the resulting
DEGs were largely unique to the reinforcer: 93 sucrose-specific
DEGs, 202 morphine-specific DEGs, and only 10 DEGs that
overlapped across reinforcers (Fig. 3J). Similarly, females had 121
sucrose-specific DEGs, 178 morphine-specific DEGs, and 6
common DEGs between morphine and sucrose (Fig. 3K). Further-
more, KEGG pathway analyses revealed morphine- and sucrose-
specific terms (Supplementary Table 3 and Supplementary
Table 4).

The amount of morphine consumed is positively correlated
with drug seeking in late abstinence
Pearson correlations comparing total consumption during self-
administration and reward-seeking behavior during early or late
abstinence revealed that morphine and sucrose exposure impact
craving at opposite time points. In males, total morphine infusions
earned during IVSA was positively correlated with active lever
presses at Day 30 of forced abstinence (Fig. 4A; Day 30, [R= 0.7,
p= 0.0018) but there was no correlation between total consump-
tion and morphine seeking at Day 1 (Fig. 4A; Day 1, [R=−0.27,
p= 0.45]). Females showed a similar pattern, with total morphine
infusions correlating positively to morphine seeking only in late
abstinence (Fig. 4B; Day 1, [R= 0.52, p= 0.19], Day 30, [R= 0.85,
p= 0.016]). This effect was reversed in sucrose self-administering
rats. In males, total sucrose pellets earned was positively
correlated with sucrose seeking during the Day 1, but not Day
30 cue test (Fig. 4C; Day 1, [R= 0.51, p= 0.0015], Day 30, [R=
−0.11, p= 0.46]). The same pattern was observed in sucrose self-
administering females (Fig. 4D; Day 1, [R= 0.26, p= 0.017], Day 30,
[R= 0.073, p= 0.6]).

DISCUSSION
Opioid consumption produces long-lasting changes in gene
expression in the brain, some of which persist after extended
abstinence [35–37]. However, whether these molecular changes
mediate the intensification of drug seeking remains an open
question and little is known about how these mechanisms differ
across biological sex. Our results indicate that, although incuba-
tion of craving occurred similarly in both sexes, the transcriptomic
signature associated with extended abstinence and craving was
sex- and reinforcer-specific in the nucleus accumbens shell. In
comparison to saline controls, hundreds of genes were
unchanged in early abstinence and became either upregulated
or downregulated over the course of prolonged abstinence from
morphine (“incubation-induced”). These genes are of particular
interest, given that their expression patterns mirror the change in
drug-seeking behavior observed after extended abstinence. The
saline and “cue only” control groups served as a baseline to
determine the direction of observed changes, which cannot be
determined by comparing abstinence Day 1 to abstinence Day 30
groups. One notable limitation of this study is that tissue from the
control groups was only collected on Day 1 of abstinence. Hence,
the possibility that some of the transcriptomic changes are caused
by the passage of time alone cannot be completely excluded.
“Incubation-induced genes” are potential targets for novel
treatment development and drug discovery to mitigate craving.
Interfering with the development of some of these changes and/
or aiming to reverse them after extended abstinence has the
potential to remedy the root of craving behavior, rather than
treating the symptoms that emerge during extended abstinence.
One critical first step in this endeavor will be to functionally
validate the role of some of the identified transcripts in mediating
the intensification of drug craving over time.

Incubation of morphine craving is associated with sex-specific
alterations
The overwhelming majority of research examining opioid-induced
changes in gene expression has been conducted in males. Of the
374 DEGs associated with extended abstinence from morphine,
only 22 overlapped between males and females. It should be
noted that transcriptomic changes are likely sex- and region-
specific throughout the reward circuitry [38, 39] and further
studies are needed to test this possibility. Opioid exposure induces
changes in the expression and phosphorylation states of
transcription factors ERK, CREB, and ΔFosB, as well as plasticity-
related genes and nuclear receptors [36, 40–43]. These plasticity-
related changes persist after the cessation of exposure and
therefore provide likely mechanisms for stable behaviors such as
incubation of craving [36, 44, 45]. Many of these documented
changes were observed only in males that were re-exposed to the
drug-paired cues [20, 35], which itself induces changes in gene

Fig. 2 Transcriptomics associated with incubation of morphine craving in male and female rats. A RNA-sequencing was performed on
nucleus accumbens shell tissue from cue test-naive rats after either one (D1) or 30 (D30) days of forced abstinence from morphine self-
administration or saline self-administration (Sal). Venn diagram shows the number of differentially expressed genes (DEGs) across conditions
(Sal= Saline controls, D1= rats that underwent one day of forced abstinence, D30= rats that underwent 30 days of forced abstinence) in
males. B Venn diagram shows the number of DEGs across conditions in females. C Venn diagram shows the number of D30 vs. Sal DEGs
between males and females. D Heatmap sorted by fold change of D30 vs. saline DEGs compared to D1 vs. Sal DEGs in males. E Heatmap
sorted by fold change of D30 vs. Sal DEGs compared to D1 vs. Sal DEGs in females. F Rank rank hypergeometric overlap analysis comparing
gene expression patterns between D1 vs. Sal in males and females. G Rank rank hypergeometric overlap analysis comparing gene expression
patterns between D30 vs. Sal in males and females. H Top five (out of 28 total) KEGG enrichment terms identified using D30 vs. Sal DEGs in
males. The number of genes identified in each term is identified in parentheses to the right of the bar graph. I Transcription factors predicted
by ShinyGo to regulate D30 vs. Sal DEGs in males. J Top five (out of 12 total) KEGG enrichment terms identified using D30 vs. Sal DEGs in
females. The number of genes identified in each term is identified in parentheses to the right of the bar graph. K Transcription factors
predicted by ShinyGo to regulate D30 vs. Sal DEGs in females. L Common KEGG enrichment terms identified using D30 vs. Sal DEGs in both
males and females. The number of genes identified in each term is identified in parentheses to the right of the bar graph. M Transcription
factors predicted by ShinyGo to regulate D30 vs. Sal DEGs in both males and females.
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expression [46–48]. Here, we used cue-naive rats to characterize
the transcriptomic changes that occur throughout abstinence
independently of re-exposure to drug-paired cues. In all cohorts of
rats, a subset of rats were re-exposed to cues to ensure that
enhanced drug seeking occurred for that particular cohort.

Therefore, we are confident that the RNA sequencing results are
representative of neural adaptations occurring in rats displaying
incubation of morphine craving.
Morphine dependence produced by chronic non-contingent

injections elicits long-lasting changes in gene expression of
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molecules involved in GPCR and neurotrophic signaling, as well as
GABA and glutamate neurotransmission in multiple brain regions
of the reward pathway [37, 43, 49, 50]. We found many DEGs that
fall in the aforementioned categories in our male data sets. Gria2
and Gria3, which encode AMPA receptor subunits, were upregu-
lated in males during late abstinence and in females during early
abstinence, respectively, with no changes in the expression of
NMDA or kainate receptor subunits in either sex. Genes related to
GABA-B receptor function, including Gabbr1, were upregulated in
both sexes at Day 30, and expression of this gene was also lower
in females at the early abstinence time point. Consistent with
previous reports [37], neurotrophic Ntrk1 expression was
unchanged in males in late abstinence. In sharp contrast, Ntrk1
was upregulated in females at Day 30. Incubation of oxycodone
craving is associated with access- and region-specific changes in
the expression of fibroblast growth factors following a relapse test
at abstinence Day 30. Fgf1, Fgf2, Fgfr1, Fgfr2, and Fgfr4 are
unchanged in the nucleus accumbens [51]. We corroborate that all
of these genes are unchanged in late abstinence for both sexes.
Protein kinase C beta (PRKCB), which helps regulate CREB
signaling, is downregulated in male human heroin users [52]. A
single nucleotide polymorphism in Prkcb is also associated with
alcohol cue reactivity in men and women [53]. Here, Prkcb
expression was unchanged in male rodents exposed to morphine,
but was drastically reduced at Day 1 and increased at Day 30 of
abstinence in female rats. These findings add to a growing list of
studies that identified sex-specific transcriptional changes follow-
ing exposure to cocaine [54] and fentanyl [55]. Interestingly,
others have found that females show greater drug-induced
transcriptional changes in the nucleus accumbens compared to
males [55]. Here, females had a greater number of DEGs in early
abstinence compared to males, though there was more overlap in
expression between sexes in early compared to late abstinence.
Another important consideration is that females consumed more
morphine overall than males during 10 days of chronic access,
which may also have contributed to the distinct signatures
observed in each sex. This sex difference in morphine intake is
consistent with other reports that females experience a faster
acquisition of opioid self-administration [56, 57], maintain more
self-administered morphine and heroin (though these findings are
dose-dependent), and exhibit higher progressive ratio breakpoints
for morphine and heroin compared to males [58–61]. It should be
noted that others fail to observe sex differences and/or observed
greater intake in males under different access conditions [62]. Sex
differences in opioid self-administration are inconsistent, and it is
highly likely that dose, drug, and route of administration play
critical roles [63]. However, our results that males and females
show similar opioid craving following extended abstinence is
consistent with other reports [13, 16–18].
KEGG pathway enrichment analyses revealed minimal overlap

between males and females that underwent prolonged absti-
nence from morphine. In morphine-exposed rats, male-specific

pathways included cholinergic and dopaminergic synapses, and
amphetamine addiction. Genes within these pathways are
associated with alcohol cue reactivity, long-term heroin exposure
in humans, and chronic amphetamine exposure in rodents
[52, 53]. Female-specific pathways included spliceosome and
protein processing in the endoplasmic reticulum. Enrichment of
the spliceosome pathway may indicate differential involvement of
RNA polymerase II and epigenetic regulation via alternative
splicing [64]. Genes within these pathways include Pcbp1, which
is implicated in post-transcriptional regulation of mu opioid
receptor mRNA [65], and several heat shock proteins, which have
been broadly implicated in opioid exposure, withdrawal, and
behavioral sensitization [66, 67]. Hsp70 Binding Protein 1 (Hspbp1)
is downregulated in females, but not males after 30 days of
abstinence from morphine. Hspa1b, which encodes HSP70-2, is
upregulated in females, but not males in late abstinence. Others
have found that escalating doses of morphine over a 10-day
treatment period induces changes in Hsp70, Hsp27, Hsp40, and
Hsp105, though this was seen in the frontal cortex after
experimenter-delivered morphine, and was only studied in males
[49].
There were 25 overlapping predicted transcription factors

between morphine-exposed males and females. Only six male-
and 13 female-specific transcription factors were identified. Male-
specific transcription factors include TCFAP2C, which is involved in
hippocampal glutamatergic neurogenesis [68], and E2F1, which is
altered by nicotine and alcohol exposure [69, 70]. Female-specific
transcription factors include HES1 and HES7, which are linked to
synaptic plasticity, alcohol exposure, and cannabis dependence
[71–74]. KLF4—predicted to contribute in both sexes here—is a
transcription factor in the toll-like receptor 4 pathway involved in
incubation of heroin craving [75]. It is possible that sex-specific
transcription factors regulate the expression of sex-specific target
genes, which ultimately affect craving behavior similarly in males
and females.
Immediate early genes (IEGs) are thought to participate in drug-

induced neuroplasticity and have been shown consistently to
respond to many drugs of abuse, including heroin and cocaine
[20, 23, 35, 49, 76–87]. Several IEGs, including EGR1, EGR2 and
EGR3 were identified as potential upstream transcription factors;
however, we did not observed changes in the expression of Fos/c-
fos or JunB/c-jun, which are changed in the nucleus accumbens of
male rats that have been tested for incubation of craving after
30 days of abstinence from long-access oxycodone self-
administration [51]. We found Egr1 and Egr2 to be unchanged in
the shell of males and females at either point of abstinence. Our
results are consistent with previous studies for Egr1, the
expression of which does not change after 1 or 14 days of
abstinence from self-administered heroin [78]. However, Egr2
expression is altered in the accumbens during early abstinence
from experimenter-delivered morphine [37] or self-administered
heroin [78]. Egr2 is also upregulated in the accumbens after

Fig. 3 Transcriptomics associated with incubation of sucrose craving in male and female rats. A Males self-administering sucrose earned
increasing numbers of pellets over 10 days of self-administration and earned more sucrose pellets than cue presentations in controls. B Male
rats demonstrated incubation of sucrose craving, as indicated by an increase in active, but not inactive lever responses during a 1-h cue test.
C Tissue was collected from the nucleus accumbens shell of cue test-naive male rats after either one or 30 days of forced abstinence and
processed for RNA sequencing. Venn diagram shows the number of differentially expressed genes across conditions (Control= cue only
controls, D1= rats that underwent one day of forced abstinence, D30= rats that underwent 30 days of forced abstinence). D Heatmap sorted
by fold change of D30 vs. Control DEGs compared to D1 vs. Control DEGs in males. E Females self-administering sucrose earned increasing
numbers of pellets over 10 days of self-administration and earned more sucrose pellets than cue presentations in controls. F Females showed
incubation of sucrose craving. G Venn diagram shows the number of differentially expressed genes across in females. H Heatmap sorted by
fold change of D30 vs. Control DEGs compared to D1 vs. Control DEGs in females. I Venn diagram shows the number of differentially
expressed genes across males and females in the sucrose Day 30 vs. Control category. J Morphine vs. sucrose DEGs Venn diagram compares
DEGs between male morphine 30 days of abstinence from morphine vs. Control (D30 vs. Sal) alongside male 30 days of abstinence from
sucrose vs. Control (D30 vs. Control). K Morphine vs. sucrose DEGs Venn diagram compares DEGs between female 30 days of abstinence from
morphine vs. control (D30 vs. Sal) alongside female 30 days of abstinence from sucrose vs. Control (D30 vs. Control). Data show mean ± SEM;
****p < 0.0001, **p < 0.01.
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14 days of abstinence, but only in rats that received yolked heroin
infusions [78], and shows a dramatic downregulation after three
weeks of abstinence in rats that received experimenter-delivered
morphine [37]. The present results reinforce the idea that re-
exposure to cues, the route and regimen of exposure, as well as
biological sex are all critical considerations in establishing the
molecular correlates of drug seeking and drug craving behaviors
[20, 37, 78, 88].
Another important consideration are the well-researched

sexually dimorphic aspects of the reward circuitry, which are
established by organizational sex differences in reward-related
neurotransmission and anatomy [89]. As it relates to drug abuse,
males and females express different dopaminergic neuron density
[90] and cocaine-induced dopamine release [91]. Thus drug-
induced sex-specific transcriptional changes [54] may be partly
explained by evolutionarily conserved sex differences that support
divergent reproductive strategies and needs based on biological

sex [92]. In fact, drug addiction is likely one of many sexually
convergent behaviors influenced by sex-specific molecular
underpinnings.

Changes in gene expression after prolonged abstinence are
reinforcer-specific
Craving for sucrose, a non-drug reward, also increases over time
[10, 93–97]. Given that natural rewards produce similar effects in
the mesocorticolimbic reward pathway [98, 99], and induce similar
changes in transcription factors, such as ΔFosB [36, 100], a
comparison of the molecular changes associated with incubation
of opioid versus sucrose craving can parse opioid-specific
mechanisms that minimally affect the natural reward system.
Sucrose-treated rats demonstrated fewer changes in gene
expression overall; however, similar to morphine, robust altera-
tions were observed over 30 days of abstinence from sucrose.
Although the incubation-induced patterns are similar across

Fig. 4 Morphine consumption predicts drug seeking in late abstinence for males and females. A Total morphine infusions earned by males
during intravenous self-administration showed a significant positive correlation with morphine seeking, as measured by active lever presses,
during the Day 30 cue test, but not Day 1 cue test. B Total morphine infusions earned by females during intravenous self-administration
showed a significant positive correlation with morphine seeking during the Day 30 cue test, but not Day 1 cue test. C Total sucrose pellets
earned by males during self-administration showed a significant positive correlation with sucrose seeking during the Day 1, but not Day 30
cue test. D Total sucrose pellets earned by females during self-administration showed a significant positive correlation with sucrose seeking
during the Day 1, but not Day 30 cue test.
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reinforcers, the genes themselves show minimal overlap. In males,
only ten genes were changed consistently following extended
abstinence from sucrose or morphine; in females, only six genes
were found to overlap. KEGG enrichment terms were also unique
to sucrose versus morphine. This is consistent with other findings
that examined changes in gene expression following opioid or
sucrose self-administration, extinction, and re-exposure to drug-
paired cues, and found that very few alterations generalized
across reinforcers [3, 20, 78, 101]. Although others have compared
changes in gene expression in sucrose- versus opioid-exposed rats
[20], this study builds on previous findings by examining
transcriptional changes in controls, as well as opioid- and
sucrose-exposed rats of both sexes at different abstinence time
points. This provides a robust understanding of the patterns and
time course of gene expression changes. These data strongly
suggest that incubation of morphine and sucrose craving are
driven by distinct mechanisms.

Total intake is correlated with reward seeking
Total morphine consumption was correlated with drug-seeking
behavior in late abstinence. This effect was reversed in rats that
self-administered sucrose, such that sucrose consumption was
correlated with sucrose-seeking behavior in early abstinence. The
finding that increased morphine exposure is linked to higher
levels of relapse-like behavior is in line with previous findings that
long access self-administration is necessary for incubation of
oxycodone, methamphetamine, and cocaine craving [102–104].
Here, all rats were permitted extended access to intravenous
morphine; however, those that self-administered higher amounts
exhibited enhanced incubation of craving, thus indicating that
chronic exposure is necessary for relapse-like behavior. Con-
versely, extended access is not required for incubation of sucrose
craving, given that sucrose seeking is similar after 30 days of
abstinence, regardless of whether rats underwent 2- or 6-h access
daily self-administration sessions [94]. It is possible that heigh-
tened opioid exposure acts uniquely to induce robust transcrip-
tomic changes that affect drug-seeking behavior on a longer-term
scale. The finding that morphine, but not sucrose consumption
was linked to reward seeking in late abstinence is further evidence
that natural rewards act via distinct mechanisms and do not
require prolonged exposure to induce craving.

CONCLUSIONS
Male and female rats exhibited cue-induced incubation of craving
following 10 days of self-administration and 30 days of abstinence
from either morphine, or the non-drug reward sucrose. Morphine
consumption was correlated with drug-seeking behavior after
extended, but not protracted abstinence in both sexes, whereas
sucrose exposure was correlated with seeking behavior in early
abstinence only. RNA sequencing of the nucleus accumbens shell
of cue test-naive rats showed robust changes in gene expression
that emerged over prolonged abstinence. Comparison of tran-
scriptomic alterations in males and females indicated that although
the increase in drug-seeking behavior is similar across sexes, the
underlying genes and pathways are dissociable by biological sex.
Additionally, although abstinence from both morphine and sucrose
showed incubation-induced changes in gene expression, the
genes and pathways were reinforcer-specific. Overall, these results
are promising for developing treatments that target opioid craving
without interfering with the natural reward system. Additionally,
they provide insight into potentially sex-specific treatment options
that will improve efficacy in both men and women.
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