Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Medial orbitofrontal cortex and nucleus accumbens mediation in risk assessment behaviors in adolescents and adults

Abstract

Risk assessment behaviors are necessary for gathering risk information and guiding decision-making. Risky decision-making heightens during adolescence, possibly as a result of low risk awareness and an increase in sensitivity to reward-associated cues and experiences. Higher adolescent engagement in high-risk behaviors may be, in part, due to developing circuits that contribute to risk assessment behaviors. Nucleus accumbens (NAc) activity is linked to risky decision-making and receives inputs carrying sensory and emotional information. Namely, the medial orbitofrontal cortex (MO) contributes to behavior guided by reward probability and sends direct projections to the NAc (MO→NAc), which may permit risk assessment in a mature circuit. Here, we evaluated risk assessment behaviors in adult and adolescent rats during elevated plus maze (EPM) exploration, including stretch and attend postures, head dips, and rears. We found that adolescents exhibited fewer EPM risk assessment behaviors than adults. We also quantified MO→NAc projections using a fluorescent anterograde tracer, Fluoro-Ruby, in both age groups. Labeled MO→NAc pathways exhibited greater total fluorescence in adults than in adolescents, indicating MO→NAc fibers increase over development. Using a disconnection approach to measure the contribution of the MO-NAc pathway in adults, we found that ipsilateral inactivation of the MO-NAc did not alter risk assessment behavior; however, MO-NAc disconnection reduced the number of stretch-and-attend postures. Together, this work suggests that the development of MO-NAc pathways can contribute to age-dependent differences in risk assessment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of the elevated plus maze and quantified risk assessment behaviors.
Fig. 2: Adolescents exhibited fewer elevated plus maze risk assessment behaviors than adults.
Fig. 3: Density of MO projections terminating in the NAc is greater in adults than adolescents.
Fig. 4: Disconnection approach for the inactivation of MO-NAc interactions.
Fig. 5: Disconnection of MO-NAc interactions reduces stretch and attend posture exhibition.

References

  1. Adriani W, Laviola G. Elevated levels of impulsivity and reduced place conditioning with d-amphetamine: two behavioral features of adolescence in mice. Behav Neurosci. 2003;117:695–703.

    Article  CAS  PubMed  Google Scholar 

  2. Doremus-Fitzwater TL, Barreto M, Spear LP. Age-related differences in impulsivity among adolescent and adult Sprague-Dawley rats. Behav Neurosci. 2012;126:735–41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Casey BJ, Jones RM, Hare TA. The adolescent brain. Ann N. Y Acad Sci. 2008;1124:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simon NW, Moghaddam B. Neural processing of reward in adolescent rodents. Developmental Cogn Neurosci. 2015;11:145–54.

    Article  Google Scholar 

  5. Arnett J. Reckless behavior in adolescence: a developmental perspective. Developmental Rev. 1992;12:339–73.

    Article  Google Scholar 

  6. Van Den Bos W, Hertwig R. Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making. Sci Rep. 2017;7:40962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Winston FK, Kallan MJ, Senserrick TM, Elliott MR. Risk factors for death among older child and teenaged motor vehicle passengers. Arch Pediatr Adolescent Med. 2008;162:253–60.

    Article  Google Scholar 

  8. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the global burden of disease study 2013. Injury Prevention. 2016;22:3–18.

    Article  PubMed  Google Scholar 

  9. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recommendations Rep. 2015;64:1–138.

    Google Scholar 

  10. Maggs JL, Almeida DM, Galambos NL. Risky Business: the paradoxical meaning of problem behavior for young adolescents. J Early Adolescence. 1995;15:344–62.

    Article  Google Scholar 

  11. Somerville LH, Hare T, Casey BJ. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J Cogn Neurosci. 2011;23:2123–34.

    Article  PubMed  Google Scholar 

  12. Peeters M, Oldehinkel T, Vollebergh W. Behavioral control and reward sensitivity in adolescents’ risk taking behavior: a longitudinal TRAILS study. Front Psychol. 2017;8:231.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meyer HC, Bucci DJ. Imbalanced activity in the orbitofrontal cortex and nucleus accumbens impairs behavioral inhibition. Curr Biol. 2016;26:2834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mar AC, Walker ALJ, Theobald DE, Eagle DM, Robbins TW. Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. J Neurosci. 2011;31:6398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stopper CM, Green EB, Floresco SB. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. Cereb Cortex. 2014;24:154–62.

    Article  PubMed  Google Scholar 

  16. Dalton GL, Wang NY, Phillips AG, Floresco SB. Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. J Neurosci. 2016;36:1996–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burton AC, Kashtelyan V, Bryden DW, Roesch MR. Increased firing to cues that predict low-value reward in the medial orbitofrontal cortex. Cereb Cortex. 2014;24:3310–21.

    Article  PubMed  Google Scholar 

  18. Lopatina N, McDannald MA, Styer CV, Peterson JF, Sadacca BF, Cheer JF, et al. Medial orbitofrontal neurons preferentially signal cues predicting changes in reward during unblocking. J Neurosci. 2016;36:8416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoover WB, Vertes RP. Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol. 2011;519:3766–801.

    Article  PubMed  Google Scholar 

  20. Sugam JA, Saddoris MP, Carelli RM. Nucleus accumbens neurons track behavioral preferences and reward outcomes during risky decision making. Biol Psychiatry. 2014;75:807–16.

    Article  PubMed  Google Scholar 

  21. Stopper CM, Floresco SB, Floresco SB. Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn Affect Behav Neurosci. 2011;11:97–112.

    Article  PubMed  Google Scholar 

  22. Floresco SB, Montes DR, Tse MMT, van Holstein M. Differential contributions of nucleus accumbens subregions to cue-guided risk/reward decision making and implementation of conditional rules. J Neurosci. 2018;38:1901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sugam JA, Day JJ, Wightman RM, Carelli RM. Phasic nucleus accumbens dopamine encodes risk-based decision-making behavior. Biol Psychiatry. 2012;71:199–205.

    Article  CAS  PubMed  Google Scholar 

  24. Yang JH, Liao RM. Dissociable contribution of nucleus accumbens and dorsolateral striatum to the acquisition of risk choice behavior in the rat. Neurobiol Learn Mem. 2015;126:67–77.

    Article  PubMed  Google Scholar 

  25. Adriani W, Boyer F, Gioiosa L, Macrì S, Dreyer JL, Laviola G. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience. 2009;159:47–58.

    Article  CAS  PubMed  Google Scholar 

  26. Loh MK, Rosenkranz JA. Shifts in medial orbitofrontal cortex activity from adolescence to adulthood. Cereb Cortex. 2021:1–12.

  27. Kuhnen CM, Knutson B. The neural basis of financial risk taking. Neuron. 2005. 2005. https://doi.org/10.1016/j.neuron.2005.08.008.

  28. Rao H, Korczykowski M, Pluta J, Hoang A, Detre JA. Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI Study of the Balloon Analog Risk Task (BART). NeuroImage. 2008;42:902–10.

    Article  PubMed  Google Scholar 

  29. Matthews SC, Simmons AN, Lane SD, Paulus MP. Selective activation of the nucleus accumbens during risk-taking decision making. NeuroReport.2004;15:2123–7.

    Article  PubMed  Google Scholar 

  30. Blanchard DC, Blanchard RJ, Rodgers RJ. Risk assessment and animal models of anxiety. Animal Models in Psychopharmacology, Basel: Birkhäuser Basel; 1991. p. 117–34.

  31. Grant EC, Mackintosh JH. A comparison of the social postures of some common laboratory rodents. Behaviour. 1963;22:246–59.

    Google Scholar 

  32. Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF. Corticosterone response to the plus-maze: High correlation with risk assessment in rats and mice. Physiol Behav. 1999;68:47–53.

    Article  CAS  PubMed  Google Scholar 

  33. Macrì S, Adriani W, Chiarotti F, Laviola G. Risk taking during exploration of a plus-maze is greater in adolescent than in juvenile or adult mice. Anim Behav. 2002;64:541–6.

    Article  Google Scholar 

  34. Mikics É, Barsy B, Barsvári B, Haller J. Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Hormones Behav. 2005;48:152–62.

    Article  CAS  Google Scholar 

  35. Griebel G, Rodgers RJ, Perrault G, Sanger DJ. Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav. 1997;57:817–27.

    Article  CAS  PubMed  Google Scholar 

  36. Torcaso A, Asimes AD, Meagher M, Pak TR. Adolescent binge alcohol exposure increases risk assessment behaviors in male Wistar rats after exposure to an acute psychological stressor in adulthood. Psychoneuroendocrinology. 2017;76:154–61.

    Article  CAS  PubMed  Google Scholar 

  37. Cruz APM, Frei F, Graeff FG. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav. 1994;49:171–6.

    Article  CAS  PubMed  Google Scholar 

  38. Rodgers RJ, Johnson NJT. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol Biochem Behav. 1995;52:297–303.

    Article  CAS  PubMed  Google Scholar 

  39. Holmes A, Rodgers RJ. Responses of Swiss-Webster mice to repeated plus-maze experience: Further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav. 1998;60:473–88.

    Article  CAS  PubMed  Google Scholar 

  40. File SE, Zangrossi H, Sanders FL, Mabbutt PS. Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology. 1994;113:543–6.

    Article  CAS  PubMed  Google Scholar 

  41. Setem J, Pinheiro AP, Motta VA, Morato S, Cruz APM. Ethopharmacological analysis of 5-HT ligands on the rat elevated plus-maze. Pharmacol Biochem Behav. 1999;62:515–21.

    Article  CAS  PubMed  Google Scholar 

  42. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    Article  CAS  PubMed  Google Scholar 

  43. Kennedy GC, Mitra J. Body weight and food intake as initiating factors for puberty in the rat. J Physiol. 1963;166:408–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Döhler KD, Wuttke W. Changes with age in levels of serum gonadotropins, prolactin, and gonadal steroids in prepubertal male and female rats. Endocrinology. 1975;97:898–907.

    Article  PubMed  Google Scholar 

  45. Clermont Y, Perey B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat. 1957;100:241–67.

    Article  CAS  PubMed  Google Scholar 

  46. Galef BG. The ecology of weaning parasitism and the achievement of independence by altricial mammals. Parental Care in Mammals. 1981:211–40.

  47. Lopes APF, da Cunha IC, Steffens SM, Ferraz A, Vargas JC, de Lima TCM, et al. GABAA and GABAB agonist microinjections into medial accumbens shell increase feeding and induce anxiolysis in an animal model of anxiety. Behavioural Brain Res. 2007;184:142–9.

    Article  CAS  Google Scholar 

  48. Bedwell SA, Tinsley CJ. Mapping of fine-scale rat prefrontal cortex connections: evidence for detailed ordering of inputs and outputs connecting the temporal cortex and sensory-motor regions. Eur J Neurosci. 2018;48:1944–63.

    Article  PubMed  Google Scholar 

  49. Schmued L, Kyriadis K, Heimer L. In vivo anterograde and retrograde transport of the flourescent rhodamine-dextran-amine, flouro-ruby, within the CNS. Brain Res. 1990;526:127–34.

    Article  CAS  PubMed  Google Scholar 

  50. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Sixth Edition. 2007.

  51. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laviola G, Macrì S, Morley-Fletcher S, Adriani W, Macrı̀ S, Morley-Fletcher S, et al. Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev. 2003;27:19–31.

    Article  PubMed  Google Scholar 

  53. Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–67.

    Article  CAS  PubMed  Google Scholar 

  54. Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of’fear’-motivated behaviour. Naunyn-Schmiedeberg’s Arch Pharmacol. 1984;327:1–5.

    Article  CAS  Google Scholar 

  55. Montgomery KC. The relation between fear induced by novel stimulation and exploratory drive. J Comp Physiological Psychol. 1955;48:254–60.

    Article  CAS  Google Scholar 

  56. Zhang W, Rosenkranz JA. Repeated restraint stress increases basolateral amygdala neuronal activity in an age-dependent manner. Neuroscience. 2012;226:459–74.

    Article  CAS  PubMed  Google Scholar 

  57. Jaisinghani S, Rosenkranz JA. Repeated social defeat stress enhances the anxiogenic effect of bright light on operant reward-seeking behavior in rats. Behavioural Brain Res. 2015;290:172–9.

    Article  Google Scholar 

  58. Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, et al. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behavior Immunity. 2019. 27 November 2019. https://doi.org/10.1016/j.bbi.2019.11.023.

  59. Blanchard DC, Blanchard RJ, Tom P, Rodgers RJ. Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology.1990;101:511–8.

    Article  CAS  PubMed  Google Scholar 

  60. Blanchard RJ, Magee L, Veniegas R, Blanchard DC. Alcohol and anxiety: ethopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry. 1993;17:171–82.

    Article  CAS  PubMed  Google Scholar 

  61. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [1]. Nat Neurosci. 1999;2:859–61.

    Article  CAS  PubMed  Google Scholar 

  62. Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci. 2006;26:6885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brenhouse HC, Sonntag KC, Andersen SL. Behavioral/Systems/Cognitive Transient D 1 Dopamine receptor expression on prefrontal cortex projection neurons: Relationship to Enhanced Motivational Salience of Drug Cues in Adolescence. 2008. 2008. https://doi.org/10.1523/JNEUROSCI.5064-07.2008.

  64. Arruda-Carvalho M, Wu WC, Cummings KA, Clem RL. Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci. 2017;37:2976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pattwell SS, Liston C, Jing D, Ninan I, Yang RR, Witztum J, et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat Commun. 2016;7:1–9.

    Article  CAS  Google Scholar 

  66. Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P, Parisot N, et al. Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol. 2010;518:2693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Foreman NP, Goodale MA, Milner AD. Nature of postoperative hyperactivity following lesions of the superior colliculus in the rat. Physiol Behav. 1978;21:157–60.

    Article  CAS  PubMed  Google Scholar 

  68. Pope SG, Dean P. Hyperactivity, aphagia and motor disturbance following lesions of superior colliculus and underlying tegmentum in rats. Behav Neural Biol. 1979;27:433–53.

    Article  CAS  PubMed  Google Scholar 

  69. Marshall JF. Comparison of the sensorimotor dysfunctions produced by damage to lateral hypothalamus or superior colliculus in the rat. Exp Neurol. 1978;58:203–17.

    Article  CAS  PubMed  Google Scholar 

  70. Dean P, Pope SG, Redgrave P, Donohoe TP. Superior colliculus lesions in rat abolish exploratory head-dipping in hole-board test. Brain Res. 1980;197:571–6.

    Article  CAS  PubMed  Google Scholar 

  71. Harley CW, Martin GM. Open field motor patterns and object marking, but not object sniffing, are altered by Ibotenate lesions of the hippocampus. Neurobiol Learn Mem. 1999;72:202–14.

    Article  CAS  PubMed  Google Scholar 

  72. Deacon RMJ, Croucher A, Rawlins JNP. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behavioural Brain Res. 2002;132:203–13.

    Article  Google Scholar 

  73. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron.2018;97:670–.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barth AM, Domonkos A, Fernandez-Ruiz A, Freund TF, Correspondence V, Varga V. Hippocampal network dynamics during rearing episodes. Cell Rep. 2018;23:1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA. 2005;102:2117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci. 1999;19:2401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Eliska Mrackova, Brittany Avonts, and Dr. Ryan Selleck for technical support.

Funding

This work was supported by the National Institutes of Health (MH084970 and MH118237 to J.A.R.). The funding agents did not have a role in study design, collection, analysis, interpretation of data, writing of the report, or in the decision to submit this work for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MKL and JAR; Methodology: MKL, NCF, and JAR; Data Curation: MKL and JMT; Validation: MKL; Analysis: MKL; Resources: JAR; Original Draft preparation: MKL; Draft Revisions & Edits: MKL, NCF, and JAR; Funding Acquisition: JAR.

Corresponding author

Correspondence to Maxine K. Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, M.K., Ferrara, N.C., Torres, J.M. et al. Medial orbitofrontal cortex and nucleus accumbens mediation in risk assessment behaviors in adolescents and adults. Neuropsychopharmacol. 47, 1808–1815 (2022). https://doi.org/10.1038/s41386-022-01273-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01273-w

Search

Quick links