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Perinatal exposure to fluoxetine and maternal adversity affect
myelin-related gene expression and epigenetic regulation in
the corticolimbic circuit of juvenile rats
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Many pregnant women experience symptoms of depression, and are often treated with selective serotonin reuptake inhibitor (SSRI)
antidepressants, such as fluoxetine. In utero exposure to SSRIs and maternal depressive symptoms is associated with sex-specific
effects on the brain and behavior. However, knowledge about the neurobiological mechanisms underlying these sex differences is
limited. In addition, most animal research into developmental SSRI exposure neglects the influence of maternal adversity. Therefore,
we used a rat model relevant to depression to investigate the molecular effects of perinatal fluoxetine exposure in male and female
juvenile offspring. We performed RNA sequencing and targeted DNA methylation analyses on the prefrontal cortex and basolateral
amygdala; key regions of the corticolimbic circuit. Perinatal fluoxetine enhanced myelin-related gene expression in the prefrontal
cortex, while inhibiting it in the basolateral amygdala. SSRI exposure and maternal adversity interacted to affect expression of genes
such as myelin-associated glycoprotein (Mag) and myelin basic protein (Mbp). We speculate that altered myelination reflects altered
brain maturation. In addition, these effects are stronger in males than in females, resembling known behavioral outcomes. Finally,
Mag and Mbp expression correlated with DNA methylation, highlighting epigenetic regulation as a potential mechanism for
developmental fluoxetine-induced changes in myelination.

Neuropsychopharmacology (2022) 47:1620–1632; https://doi.org/10.1038/s41386-022-01270-z

INTRODUCTION
The use of selective serotonin reuptake inhibitor (SSRI) antide-
pressants during pregnancy has greatly increased [1–4]. Every
year, hundreds of thousands of babies are born that have been
exposed to SSRI medication in Europe and the US alone [5–8].
SSRIs cross the placental barrier [9] and target the fetal serotonin
transporter (SERT) at a time during development when serotonin
serves as a neurotrophic factor. SSRIs potentially affect brain
circuit formation [10], evidenced by altered white and gray matter
architecture [11] and connectivity [12–14] in babies. Although not
all studies identify long-term associations between in utero SSRI
exposure and cognitive and behavioral outcomes [15–17], many
have reported higher anxiety [18], lower motor-, social- emotional-
and adaptive behavior [19] and a higher risk of developing mental
and behavioral disorders [20]. Some of these associations are sex
specific [21–23]. A limitation of this field is the confounding factor
of maternal depression [20, 24, 25], which has been associated
with neurodevelopmental outcomes resembling those of SSRI
exposure [16, 26–29], again with sex-specific effects observed
[30–33]. Since prenatal exposure to SSRIs and maternal depression
both affect the developing brain [34], in particular corticolimbic
structures [12, 31, 32, 35, 36], it remains a challenge to assess the
relative contribution of each.

Rodent experiments offer the ability to causally investigate the
separate and combined effects of SSRI administration and aspects
of maternal depressed mood. Neurodevelopmental patterns,
including serotonin system-specific ones [37–39], are remarkably
conserved between rodents and humans [40]. Meta-analysis of
rodent behavioral outcomes after perinatal SSRI exposure revealed
reduced activity and exploration behavior, a more passive stress-
coping style, and less efficient sensory processing [41]. The
neurobiological correlates of these behavioral changes likely
include the serotonergic system [42], with roles for the prefrontal
cortex (PFC) [43, 44], limbic structures [45], and the dorsal raphe
nucleus [44, 45]. Rodent models recapitulate basic neurobiological
changes seen in women with peripartum depression and their
children [46]. In utero exposure to maternal stress alters behavioral
outcomes in rodents, such as anxiety-like behavior and cognitive
performance [47].
Rodent studies also enable investigation of molecular changes

during fundamental neurodevelopmental periods that may trigger
these long-term effects [48–51]. Whereas prenatal SSRI exposure
and/or stress showed no effects in the amygdala, hippocampus or
hypothalamus [52], early postnatal SSRI exposure altered tran-
scriptomic status of the hippocampus [53]. Developmental
screening of gene expression revealed that the hippocampus
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showed the largest paroxetine-induced differences in the first 2
postnatal weeks, and the amygdala around PND21 [54], suggest-
ing that the transcriptomic response to SSRIs depends on brain
region. Despite evidence for sex-specific effects of neurodevelop-
mental outcomes after both perinatal SSRI exposure [55–57] and
prenatal stress [55, 58], transcriptome-wide analyses were only
performed in males [52–54], and only one study considered
prenatal stress [52].
To address these gaps in the literature, we aimed to investigate

transcriptomic alterations in the corticolimbic circuitry of male and
female juvenile rats exposed to maternal adversity and/or
perinatal SSRIs. To this end, we used a genetic rat model of
maternal vulnerability (MV). MV females exposed to early life stress
(sMV) show a depressive-like phenotype in adulthood compared
to control (cMV) females [59]. We treated sMV and cMV dams with
the SSRI fluoxetine (FLX) or vehicle (Veh) throughout pregnancy
and lactation. We collected brains from juvenile offspring for RNA
sequencing of micropunched tissue from the medial PFC and the
basolateral amygdala (BLA). To examine a potential role for
epigenetic regulation, we quantified DNA methylation levels of
differentially expressed genes in the same samples.

MATERIALS AND METHODS
Experimental animals
Heterozygous SERT knockout (SERT+/−, Slc6a4Hubr) female Wistar rats were
used as MV females [60], because of their vulnerability to the effects of
early life stress [59]. Animals were supplied with ad libitum chow (RMH-B,
AB Diets; Woerden, the Netherlands) and water and kept on a 12:12 h light-
dark cycle (lights off at 11:00 a.m., temperature 21 ± 2 °C, humidity 50 ±
5%). Cages were enriched with wooden gnawing sticks and nesting
material (Enviro-dri™, Shepherd Specialty Papers, Richland, MI, USA), and
cleaned weekly. Pregnant dams were housed individually in type III
Makrolon cages. Pups were weaned at PND21 and group-housed in same-
sex cages (type IV Makrolon) of 3–5 animals. All experimental were
conducted in accordance with the governmental guidelines for care and
use of laboratory animals (Centale Commissie Dierproeven) and were
approved by the Institutional Animal Care and Use Committee of the
University of Groningen.

Maternal adversity and fluoxetine treatment
SERT+/− female rats (MV) were exposed to early life stress (sMV) to induce
anhedonia [59, 61] as previously described [62] (Fig. 1). In adulthood, sMV−
and control (cMV) females were mated with wild-type males (gestational
day (GD)0). Throughout pregnancy and lactation, dams received an oral
gavage of 10mg/kg fluoxetine (FLX, Fluoxetine 20 PCH, Pharmachemie BV,
the Netherlands) or vehicle (Veh, Methylcellulose, Sigma-Aldrich Chemie
BV, Zwijndrecht, the Netherlands) daily at 11:00 a.m. (Fig. 1). FLX (5mg/mL)
and MC (1%) solutions were prepared with autoclaved water. Oral
treatment was given by gently picking up the animal without restraint,
and using flexible PVC feeding tubes (40 cm length, Vygon, Valkenswaard,

the Netherlands) in order to minimize discomfort. It should be noted that
our lab has been confronted with thus far unexplained mortality in about
one fourth of MV females as a result of fluoxetine treatment, a
phenomenon we have described elsewhere. [63]. None of the females
included in the current study showed any signs of toxicity as a
consequence of FLX, except for one. The pups from this sMV-FLX female
who died at PND17 were cross-fostered to a same-treated mother and
included in the study.

Offspring brain collection and nucleic acid isolation
Wild-type pups from N= 31 nests were used (cMV-Veh N= 9, sMV-Veh
N= 8, cMV-FLX N= 8, and sMV-FLX N= 6). Between PND14 and PND20,
ear punches were taken for SERT genotyping as described previously [62].
On PND21, approximately 24 h after the last FLX or Veh injection of the
mother, N= 8 males and N= 8 female offspring per group (Fig. 1,
Supplementary File 1) were killed by rapid decapitation. Brains were
isolated, snap-frozen in isopentane (Acros Organics) on dry ice, and then
stored at −80 °C.
On a Leica CM3050 cryostat, 200 μM coronal brain sections were sliced.

To locate brain areas of interest, a stereotaxic atlas of the PND21 rat brain
was used [64]. The medial PFC was collected from Bregma 2.8 mm
to Bregma 1.8 mm (Supplementary Fig. 1A), and the BLA from Bregma
−1.6 mm to Bregma −3.0 mm (Supplementary Fig. 1B), using a 2.0 mm
punch (Harris Uni-Core). Samples were stored in 2.0 mL safe-lock tubes
(Sarstedt) at −80 °C.
The AllPrep DNA/RNA Mini Kit (Qiagen) was used to simultaneously

isolate DNA and RNA according to the manufacturer’s protocol, using 350
μL Buffer RLT Plus, 3.5 μL β-mercaptoethanol (Sigma-Aldrich) and 1.75 μL
Reagent DX (Qiagen). Samples were lysed using a TissueLyser II (Qiagen)
and 5mm stainless steel beeds, 2 times for 2:00 at 30 Hz. Nucleic acid
isolation concentration and purity were checked using a NanoDrop 2000
(Thermo Scientific), and RNA concentration and integrity were quantified
using an RNA 6000 Nano Kit 2100 on a Bioanalyzer Instrument (Agilent
Technologies, CA, USA).

RNA sequencing
RNA isolated from the PFC and BLA from N= 5 male and N= 5 female
offspring per treatment group (N= 80 in total, Supplementary File 1) was
selected for sequencing based on RNA quantity and quality. RNA integrity
scores ranged from 8.2 to 9.6. Only one animal per litter was used. RNAseq,
including library preparation, quality control and mapping of reads was
performed by Novogene, Hong Kong.

Library preparation and sequencing. RNA concentration was measured
using Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, CA,
USA). Sequencing libraries were generated from 3 μg RNA per sample
using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA)
following manufacturer’s recommendations. Clustering of the index-coded
samples was performed on a cBot Cluster Generation System using HiSeq
PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s
instructions. After cluster generation, the library preparations were
sequenced on an Illumina HiSeq platform and 125 bp/150 bp paired-end
reads were generated.
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Fig. 1 Overview of study design. Maternal vulnerability (MV) rats were either exposed to stress (sMV) or control handled (cMV) early in life. In
adulthood, sMV and cMV females were bred. Throughout pregnancy and lactation, from gestational day (GD)1 until PND21, females received a
daily oral injection of either 10mg/kg fluoxetine (FLX) or methylcellulose (Veh). This resulted in eight offspring groups: cMV-Veh males, cMV-
Veh females, sMV-Veh males, sMV-Veh females, cMV-FLX males, cMV-FLX females, sMV-FLX males, and sMV-FLX females. Offspring brains were
taken at PND21 for molecular analysis (N= 8/group).
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Quality control. Raw FASTQ reads were first processed through in-house
Perl scripts. Clean reads were obtained by removing reads containing
adapter, reads containing poly-N, and low quality reads. Final clean bases
ranged from 5.7G to 7.8G per sample. To ascertain the quality of the reads,
the Q20, Q30 and GC content were calculated. Q30 ranged from 88 to 92%,
indicating a high quality.

Reads mapping. To map the reads to their respective genes, the Ensembl
reference genome release 79 for Rattus Norvegicus was used [65]. Index of
the reference genome was built using Bowtie v2.2.3 and paired-end reads
were aligned to the reference genome using TopHat v2.0.12. The number
of reads that could be mapped to the reference genome ranged from 80 to
87%. HTSeq v0.6.1 was used to count the number of reads mapped to each
gene (Supplementary File 2). The number of reads that could be uniquely
mapped to the reference genome ranged from 78 to 84%, and the number
of non-splice reads ranged from 51 to 61%.

RNAseq data exploration
The Novogene read count file was used or further analyses using DESeq2
v1.22.2, Bioconductor release 3.8 [66] in R v3.5. First, the data was
preprocessed with a variance stabilizing transformation and explored
using heat maps of the highest expressing genes and the sample-to-
sample distances, and through principal component analysis (PCA). The
PCA plot showed that PFC and BLA samples cluster separately. One BLA
sample did not cluster with any other samples, suggesting its gene
expression pattern is entirely different (Supplementary Fig. 2A). It was
excluded, leaving the cMV-Veh male BLA group with N= 4.

Gene set enrichment analysis
To examine changes in sets of related genes, Gene Set Enrichment Analysis
(GSEA) v4.0.1 was used through the Broad Institute desktop application
[67]. We ran GSEA on the control group (cMV-Veh) versus 1. the maternal
adversity group (sMV-Veh) and 2. the FLX-exposed group (cMV-FLX) and 3.
the maternal adversity- and FLX-exposed group (sMV-FLX) per combina-
tion of sex and brain area. The gene sets database was generated by
generating a list of Gene Ontology (GO) terms for all genes in our data
using the Biomart database system of Ensembl genes 95, dataset Rnor_6.0
[65]. The GSEA results yield a list of gene sets that differentiate between
the two phenotypes, and also which genes within these sets contribute the
most to the observed difference. The Normalized Enrichment Score (NES) is
the degree to which the gene set is overrepresented in a phenotype.
Significance cutoff was set at False Discovery Rate (FDR) <0.25.

Differential expression analysis
DESeq2 was used to identify the genes that were differentially expressed
depending on maternal adversity exposure, FLX treatment, or a combina-
tion of both. Although male and female gene expression did not differ
based on PCA (Supplementary Fig. 2B), we decided to analyze them
separately based on literature and previous findings from our lab [63]. A
sMV+ FLX+ sMV*FLX model was applied to every combination of sex and
brain area (PFC males, BLA males, PFC females, BLA females). Significance
cutoff was set at FDR < 0.1.

qPCR validation of RNAseq results
cDNA synthesis and qPCR. To validate key RNAseq results, we performed
quantitative reverse transcriptase PCR (qRT-PCR) validation of four genetic
targets in independent biological samples. RNA isolated from the PFC and
BLA from N= 3 male and N= 3 female offspring per treatment group (N=
48 in total, Supplementary File 1) were used as input for complementary
DNA (cDNA) synthesis using oligo(dT)18 primers and RevertAid H Minus
Reverse Transcriptase (Thermo Scientific) according to the manufacturer’s
protocol using a Veriti 96 well thermal cycler (Applied Biosystems).
qRT-PCR reactions were performed using one custom designed

TaqMan® gene expression assay—Actb—and five pre-mixed assays—
Gapdh, Cldn11, Cnp, Mag, Mbp—(Supplementary File 3, Thermo Scientific).
Each reaction volume was 20 µL, including 10 µL iTaq Universal Probes
Supermix (Bio-Rad) and 20 ng cDNA. Reactions were run in triplicate on 96
fast half skirt qPCR plates (Sarstedt). An Applied Biosystems 7500 Fast Real-
Time PCR System (Life Technologies, the Netherlands) was used with the
following conditions: 2 min 95 °C; 40 cycles of 15 s 95 °C, 1 min 60 °C.

qPCR analysis. PCR efficiencies and Cq values were calculated using
LinRegPCR v. 2021.1 [68]. If the standard deviation (SD) of the mean Cq

value of a triplicate was ≥0.3, the most deviating measurement was
excluded. If the two remaining measurements still had an SD ≥ 0.3, we
repeated the qPCR for that triplicate and used the new measurements.
Because of the low yield of the starting material, we were unable to
perform repeat qPCR reactions for some samples (Supplementary File 8).
To calculate target gene expression, we used the mean normalized
expression (MNE), based on the ratio between the Cq values of the target
and the reference genes (Actb and Gapdh), and the PCR efficiency [69]. For
BLA samples, RNA yield was especially limited and therefore we used only
one reference gene (Actb) for these samples. Results are visualized as log
(MNE).
R v4.0.2 was used for statistical analysis. Log(MNE) results were visually

inspected using a Q–Q plot and deemed to be normally distributed. Two-
way ANOVAs were used to analyze each target gene per combination of
sex and brain region, with maternal adversity sMV and FLX as factors.
Statistical significance was set at p < 0.05. Figures were produced using
GraphPad prism v5.

DNA methylation analysis
Pyrosequencing was used to examine epigenetic regulation of genes of
interest in the same samples that were used for RNA sequencing. Genomic
DNA (240 ng) was bisulfite-treated using the EZ DNA methylation gold kit
(Zymo Research, Leiden, The Netherlands) according to manufacturer’s
protocol. This treatment converts cytosine but not 5-methylcytosine
residues to uracil. Bisulfite-specific primers for the promoter regions of
Cldn11, Cnp, Mag and Mbp were designed using PyroMark Assay Design
Software 2.0 (Qiagen) (Supplementary Fig. 3; Supplementary File 4).
HotStarTaq master mix (Qiagen, Hilden, Germany) was used for amplifica-
tion of 1 μL bisulfite-treated DNA using the following steps: DNA
polymerase activation (95 °C, 15min), 3-step denaturation cycle (94 °C,
30 s), annealing (variable temperatures, 30 s), and extension (72 °C, 30 s)
repeated for variable number of cycles (Supplementary Fig. 4). The final
extension was performed at 72 °C for 7min. Three samples (2 cMV-Veh
male, 1 cMV-FLX female) failed to amplify during the PCR reaction, and
were replaced by samples from the same treatment group but not
previously used for RNAseq. Percentage methylation of selected CpG
positions was determined using a PyroMark Q48 Autoprep Instrument
(Qiagen) and PyroMark Q48 software (Qiagen). CpG positions 2 and 7 for
Cnp and CpG position 3 for Mbp were excluded due to high peak height
deviation. Since the DNA methylation of CpGs of the same gene correlated
highly, we used the average DNA methylation per gene for further analyses.
DNA methylation percentages for every combination of sex and brain

area were visually inspected using a Q–Q plot in R v3.5 and deemed to be
normally distributed. GraphPad prism v8 was used for linear regression
analyses and two-way ANOVAs, with statistical significance set at p < 0.05.
Error bars in graphs represent SEM.

RESULTS
Brain region- and sex-specific effects of perinatal fluoxetine
and maternal adversity on myelin-related gene sets
First, we used GSEA to investigate the effects of maternal adversity
and FLX exposure on the expression of gene sets. To this end, we
compared the cMV-Veh group to the cMV-FLX group, the sMV-Veh
group, and the sMV-FLX group for every combination of sex and
brain area, yielding 12 comparisons (Supplementary File 5). The
top 30 gene sets with the largest enrichment score for the cMV-
Veh group versus the cMV-FLX group (effect of FLX) and versus
the sMV-Veh group (effect of sMV) were plotted (Fig. 2A–D).

FLX-exposed males. In males, several gene sets related to
oligodendrocytes and myelin formation were positively associated
with the cMV-FLX phenotype in the PFC, but negatively associated
with the cMV-FLX phenotype in the BLA (Fig. 2A). More specifically,
FLX exposure was associated with an upregulation of the gene
sets Oligodendrocyte differentiation (NES= 2.38, FDR < 0.001),
Oligodendrocyte development (NES= 2.25, FDR < 0.05), Myelin
sheath (NES= 2.23, FDR < 0.01) and Myelination (NES= 2.12,
FDR < 0.05) in the PFC, but with a downregulation of the gene
sets Myelin sheath (NES=−2.66, FDR < 0.001), Oligodendrocyte
differentiation (NES=−2.19, FDR < 0.05) and Myelination (NES=
−2.18, FDR < 0.05) in the BLA (Figs. 2A, 3A).
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sMV-exposed males. Maternal adversity had a similar effect on
gene set enrichment in males; myelin-related gene sets were
among the top gene sets positively associated with sMV in the
PFC, while they were negatively associated with sMV in the BLA
(Fig. 2B). In the PFC, maternal adversity was associated—although
not with an FDR lower than 0.25—with an upregulation of the
gene sets Myelination (NES= 1.83, FDR= 0.47), Oligodendrocyte

development (NES= 1.83, FDR= 0.39) and Myelin sheath (NES=
1.61, FDR= 0.60). In the BLA, however, maternal adversity was
associated with a downregulation of the gene sets Myelin sheath
(NES=−2.57, FDR < 0.001), Oligodendrocyte differentiation
(NES=−2.13, FDR < 0.01), Myelination in peripheral nervous
system (NES=−2.11, FDR < 0.05) and Myelination (NES=−1.94,
FDR < 0.05) (Figs. 2B, 3B). Maternal adversity was also negatively
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Fig. 2 Brain region- and sex-specific effects of perinatal fluoxetine and maternal adversity on gene expression. A The effect of fluoxetine
exposure (cMV-FLX vs. cMV-Veh) in males. B The effect of maternal adversity (sMV-Veh vs. cMV-Veh) in males. C The effect of fluoxetine
exposure (cMV-FLX vs. cMV-Veh) in females. D The effect of maternal adversity (sMV-Veh vs. cMV-Veh) in females. Myelin-related gene sets are
highlighted in yellow. Asterisk (*) indicates FDR <0.25. Related to Supplementary File 5.
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associated with several gene sets related to neuronal commu-
nication in the male BLA, such as Learning (NES=−2.39,
FDR < 0.001) and Synapse (NES=−2.22, FDR < 0.01) (Fig. 2B).

FLX-exposed females. In females, FLX exposure was negatively
associated with an array of gene sets related to general cell
maintenance and proliferation in the PFC, such as Ribosome
(NES=−2.40, FDR < 0.001) and Translation (NES=−2.29,
FDR < 0.001) (Fig. 2C). In the BLA, there was only one

si-
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if-
ic-
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tl-
y
(-
F-
D-
R
<
0-
.-
2-
5)
d-
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wnregulated pathway in the cMV-FLX females, which was
Cellular oxidant detoxification (NES=−1.97, FDR < 0.25)
(Fig. 2C). Although not significantly, the gene set Myelin
sheath in the female BLA showed the same negative associa-
tion with FLX as in the male BLA (NES=−1.55, FDR= 0.47)
(Fig. 3C).

sMV-exposed females. Maternal adversity was associated with
changes in many pathways in the female PFC. For example, gene
sets related to endocrine signaling such as Thyroid gland
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Fig. 4 Maternal adversity and perinatal fluoxetine exposure interact to affect myelin-related gene expression in the BLA. Heat maps of
the expression of all individual genes in the gene set “Myelin sheath”, and bar plots of the gene counts of 4 selected genes: Cldn11, Cnp, Mag,
and Mbp for: A The male PFC. B The male BLA. C The female PFC. D The female BLA. Related to Supplementary Files 2, 6, 7.
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(NES=−2.03, FDR < 0.05) were downregulated in the PFC in sMV
females (Fig. 2D). In the BLA, gene sets related to neuronal cell
proliferation and synaptic plasticity were upregulated in sMV
females, such as Postsynaptic density (NES= 2.17, FDR < 0.05) and

Regulation of postsynaptic membrane potential (NES= 2.06,
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Fig. 5 DNA methylation of Mag and Mbp correlates to gene expression. Scatter plots of DNA methylation percentages and gene counts,
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BLA. Related to Supplementary Files 2, 8.
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sMV-FLX-exposed offspring. To examine the effect of the combina-
tion of sMV and FLX on enrichment of gene sets, we also performed
GSEA on the cMV-Veh vs. the sMV-FLX groups for each combination
of sex and brain area (Supplementary File 5). Gene sets associated
with exposure to both sMV and FLX are highly similar to those
exposed to either treatment. In males, Myelin Sheath is the top gene
set upregulated in sMV-FLX-exposed animals (NES= 2.20, FDR < 0.05),
while in the male BLA it is downregulated (NES=−1.79, FDR < 0.25).

Differential expression analysis reveals that maternal
adversity and perinatal fluoxetine exposure interact to affect
myelin-related gene expression in the BLA
Interactions on the single-gene level we examined constructing a
FLX * maternal adversity interaction model using DESeq2 for every
combination of sex and brain area, yielding 4 models (Supplemen-
tary File 6). Overall, FLX was associated with the most significantly
differentially expressed genes in the male BLA (17 genes at FDR < 0.1,
Supplementary Figs. 4B, 5B), and maternal adversity was associated
with the most significantly differentially expressed genes in the
female PFC (29 genes at FDR < 0.1, Supplementary Figs. 4C, 5C). In
the BLA of both sexes, the top genes that showed a FLX * maternal
adversity interaction effect were related to myelin, although not
significantly (FDR < 0.1) in females (Supplementary File 6). Some of
these genes were also the main contributors to the effects found on
the gene set Myelin sheath (Supplementary File 7, Fig. 4). Specifically,
claudin-11 (Cldn11), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase
(Cnp), myelin−associated glycoprotein (Mag) and myelin basic
protein (Mbp) showed a FLX * maternal adversity interaction effect
in the BLA (Fig. 4B, D). These genes were downregulated by FLX in
cMV animals, but upregulated by FLX in sMV animals in the BLA. In
the PFC, no significant effects of FLX and maternal adversity on the
expression of Cldn11, Cnp,Mag andMbp were found (Supplementary
File 6, Fig. 4A, C).
In order to validate these single-gene results from the RNAseq

analysis, we used N= 3 independent biological replicates per
combination of sex and brain area (N= 48 in total) to measure gene
expression of Cldn11, Cnp, Mag, and Mbp using qRT-PCR (Supple-
mentary File 8). Although small sample sizes limited statistical
power, an overall pattern of lower myelin-related gene expression in
the BLA in FLX-treated groups was observed in both males
(Supplementary Fig. 6B) and females (Supplementary Fig. 6D). This
effect was statistically significant for Mag in the male BLA (FLX main
effect p < 0.01, Supplementary Fig. 6B) and for Mbp in the female
BLA (FLX main effect p < 0.05, Supplementary Fig. 6D).

DNA methylation of Mag and Mbp correlates to gene
expression
We next examined DNA methylation levels around the transcription
start sites of Cldn11, Cnp, Mag and Mbp (Supplementary Figs. 3, 9) in
the same samples. Linear regression analyses showed there was a
significant negative correlation between DNA methylation and Mag
gene expression in both the PFC (R2= 0.1689, p < 0.05, Fig. 5A) and
the BLA (R2= 0.2299, p < 0.01, Fig. 5B). There were no significant
interaction effects of FLX * maternal adversity on Mag DNA
methylation, but a strong trend in the female PFC (p= 0.059)
(Fig. 5A, B). For Mbp, there was a negative correlation between DNA
methylation and gene expression in the PFC (R2= 0.2525, p < 0.01,
Fig. 5C) but not in the BLA (R2= 0.0000, p= 0.9597, Fig. 5D). There
was a significant main effect of FLX on PFC Mbp methylation in
females (Fig. 5C, D). There were no correlations between DNA
methylation and gene expression of Cldn11 and Cnp (Supplemen-
tary Fig. 7), so these were not further examined for FLX * maternal
adversity interactions.

DISCUSSION
We found consistent alterations in gene sets related to myelina-
tion in juvenile rats exposed to perinatal fluoxetine and maternal

adversity. In fluoxetine-exposed males, myelin-related gene
expression was upregulated in the PFC, and downregulated in
the BLA. In fluoxetine-exposed females, myelin-related genes were
not affected in the PFC, but the BLA showed a similar response to
the male BLA. Myelination of axons by oligodendrocytes plays a
critical role in brain development and functioning; it influences
neuronal circuit formation, allows for fast nerve conduction, and
provides metabolic support to neurons [70]. Myelination starts in
mid-to-late gestation in humans [71] and shortly after birth in
rodents [72]. At PND21, the limbic system is among the last
regions to become fully myelinated [72]. Our results suggest that
developmental exposure to SSRIs and maternal adversity interfere
with myelination at a critical time in development.
This aligns with earlier research showing effects on myelin-

related genes after early SSRI exposure [73]. Moreover, constitutive
SERT knockout decreased Cldn11, Mag and Mbp expression at
PND8, increased it at PND14, and decreased it again at PND21
versus wildtypes in the male medial PFC [74]. This is contrary to
our findings of enhanced PFC myelin-related gene expression
after fluoxetine exposure at PND21, highlighting that total lack of
the SERT is not equal to pharmacological SERT inhibition. Another
study linked perinatal citalopram exposure to hypo- and
hypermyelination in the adult corpus callosum, and higher levels
of abnormal axons, with more severe deficits in males than in
females [45]. Work in SERT knockout versus wild-type rats also
indicated lower connectivity in the corpus callosum [75]. Overall,
the effect of developmental SSRI exposure or constitutive SERT
knockout on myelination appears to be highly dependent on
brain region, age and sex.
SSRI exposure may be directly linked to alterations in myelination,

as in vitro evidence showed that high serotonin levels damage
immature oligodendrocytes [76]. Alternatively, high serotonin levels
might indirectly affect myelination by affecting axons [76]. That is,
myelination is linked to neuronal differentiation [77] and activity
[71], while serotonin availability during neurodevelopment mod-
ulates the maturation of thalamocortical axons [78] and key brain
circuits [43, 44]. It has been suggested that increased perinatal
serotonin levels would lead to an accelerated rate of neurodevelop-
ment [79]. In line with this, developmental citalopram treatment is
associated with earlier onset of synaptogenesis [80] and in vitro
evidence suggests that human embryo development is accelerated
after treatment with fluoxetine [81]. The current findings may also
be reflective of accelerated brain maturation.
Further support of a fairly unspecific effect of perinatal fluoxetine

exposure on the rate of brain maturation is provided by our finding
that the effects of maternal adversity are remarkably similar. This
was true especially in the BLA, where myelin-related genes were also
downregulated in the maternal adversity offspring. In line with this,
the developing amygdala in both humans and animals is vulnerable
to the effects of prenatal stress on functional and structural
connectivity [82]. Although we did not find significant effects of
maternal adversity on myelin-related gene expression in the medial
PFC, other studies have identified an acute increase in myelination-
related genes including Mag, Mbp, Cldn11, and Cnp after early
postnatal stress at PND15 [83], but a decrease in these genes and
associated proteins in adulthood [84]. This again suggests an effect
on brain maturation, evidenced by a precocious differentiation of
oligodendrocytes in early life [83].
Our lab previously identified interactions between maternal

adversity and fluoxetine on a behavioral level [63]. In the current
study, maternal adversity and fluoxetine interacted to affect
Mag, Mbp, Cldn11, and Cnp gene expression, especially in the
BLA. The group receiving both treatments resembled the control
group, suggesting that fluoxetine may normalize some effects of
in utero exposure to maternal adversity. This is in line with
earlier work showing that in utero citalopram exposure
prevented the increased fetal frontal cortex serotonin levels
induced by chronic prenatal stress [85]. Similarly, perinatal
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fluoxetine exposure largely reversed the effects of pre-
gestational maternal stress on increased serotonin levels in
the PFC [55], and stress-coping behavior and hippocampal
neurogenesis in adolescence [86].
Preclinical evidence suggests that males are more likely to

develop long-term behavioral effects after perinatal SSRI exposure
than females [41]. The current results also point to a stronger
phenotype in males. In females, the dampening effect of
fluoxetine on myelin-related genes in the BLA is present but
non-significant, whereas myelin-related gene sets in the PFC are
unaffected. Connectivity studies in humans suggest that white
matter development may occur earlier in girls than in boys [71],
potentially modulating the ability of SSRIs to alter this process. In
contrast, human studies have shown that girls usually are more
affected by exposure to maternal depressive symptoms during
pregnancy than boys on neuroimaging outcomes [31–33].
Accordingly, our results show that the transcriptomic state of
the male PFC at PND21 is rather insensitive to the effects of
maternal adversity, while a substantial number of genes and gene
sets are affected in the female PFC.
Epigenetic regulation of gene expression, in particular by DNA

methylation at CpG dinucleotides, is thought to link early life
experiences to later-life health and behavior [87]. SSRI exposure
did not affect whole-genome DNA methylation in human cord
blood [88], and effects of maternal depression on offspring DNA
methylation are difficult to replicate [89]. We investigated the
brain directly, and identified negative correlations between gene
expression and DNA methylation for Mag in the PFC and BLA, and
for Mbp in the PFC. No such correlations were found for Cldn11 or
Cnp, potentially because of low overall DNA methylation. DNA
methylation is suggested to contribute to the differentiation of
oligodendrocyte precursor cells and the process of myelination
[90]. In agreement with the current results, a negative correlation
between Mag expression and DNA methylation in
oligodendroglial-lineage cells has been reported [90]. Overall, we
provide the first indication that fluoxetine-induced changes in
myelination may be mediated by an epigenetic mechanism.
The most important strengths of our study are the investigation of

both the PFC and BLA, and both sexes, revealing clear brain region-
and sex-dependent effects. In addition, we directly correlated gene
expression and DNA methylation. Limitations are the inclusion of
only one time-point, precluding inferences about the long-term
effects of perinatal SSRI exposure and maternal adversity. In addition,
we did not validate our results at the protein level. Moreover, we
used SERT+/− rats as a vulnerable model for early life stress. These
animals have reduced SERT expression which may alter the
responses to fluoxetine. We previously showed that fluoxetine and
the metabolite norfluoxetine are within normal ranges during
pregnancy and lactation in SERT+/− dams, suggesting that they
metabolize FLX similarly to wild-type animals [63], but further
research is necessary to confirm this. Finally, we did not assess
maternal care behavior. FLX may influence maternal care patterns
and thereby influence myelination patterns. Future research should
include cross-fostering experiments to disentangle the effects of FLX
treatment from maternal care influences.
Human studies often observe similar neurodevelopmental out-

comes in children exposed to SSRIs and children exposed to
unmedicated depression, evoking questions about the source of the
effects. Here, we observe striking similarities between the effects of
SSRI exposure and maternal adversity on rat gene expression,
suggesting that they both contribute. The next step is to elucidate
whether these similarities are due to increased brain serotonin
levels. Furthermore, the time course of changes in myelination and
white matter development after perinatal insults needs to be
delineated. Both the causes of altered myelination, such as
differences in neuronal activity [83], and its consequences, such as
altered brain circuit formation [91], deserve to be further explored.
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