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Avoiding stimuli that predict danger is required for survival. However, avoidance can become maladaptive in individuals who
overestimate threat and thus avoid safe situations as well as dangerous ones. Excessive avoidance is a core feature of anxiety
disorders, post-traumatic stress disorder (PTSD), and obsessive-compulsive disorder (OCD). This avoidance prevents patients from
confronting maladaptive threat beliefs, thereby maintaining disordered anxiety. Avoidance is associated with high levels of
psychosocial impairment yet is poorly understood at a mechanistic level. Many objective laboratory assessments of avoidance
measure adaptive avoidance, in which an individual learns to successfully avoid a truly noxious stimulus. However, anxiety disorders
are characterized by maladaptive avoidance, for which there are fewer objective laboratory measures. We posit that maladaptive
avoidance behavior depends on a combination of three altered neurobehavioral processes: (1) threat appraisal, (2) habitual
avoidance, and (3) trait avoidance tendency. This heterogeneity in underlying processes presents challenges to the objective
measurement of maladaptive avoidance behavior. Here we first review existing paradigms for measuring avoidance behavior and
its underlying neural mechanisms in both human and animal models, and identify how existing paradigms relate to these
neurobehavioral processes. We then propose a new framework to improve the translational understanding of maladaptive
avoidance behavior by adapting paradigms to better differentiate underlying processes and mechanisms and applying these
paradigms in clinical populations across diagnoses with the goal of developing novel interventions to engage specific identified
neurobehavioral targets.

Neuropsychopharmacology (2022) 47:978–986; https://doi.org/10.1038/s41386-021-01263-4

INTRODUCTION
Avoidance is a central and highly impairing feature of anxiety and
related disorders, preventing individuals from engaging fully in
their lives [1]. Avoidance refers to any behavior that allows an
individual to minimize exposure to stimuli or situations that are
unpleasant, distressing, or threatening. While avoiding stimuli that
predict danger is required for survival, avoidance can become
maladaptive when an individual avoids situations that are
relatively safe, resulting in negative consequences [2]. This
maladaptive avoidance is a core feature of anxiety disorders and
related conditions such as post-traumatic stress disorder (PTSD)
and obsessive-compulsive disorder (OCD) [3]. For example,
avoidance is a diagnostic feature of social anxiety disorder and
PTSD, and excessive worry in generalized anxiety disorder may
allow patients to avoid distressing visual imagery, negative
emotional contrast, or feeling unsafe [4, 5].
Avoidance is a major driver that maintains anxiety pathology; it

is an appealing coping strategy because it effectively reduces
anxiety in the short term, but can maintain anxiety in the long
term by preventing patients from learning that their feared
situations are, in fact, safe [6]. Reducing avoidance is, therefore, an
important treatment goal and a crucial part of interventions such
as exposure therapy (e.g., [7]). However, while we have a thorough

translational understanding of the neural mechanisms underlying
defensive reactions to acute threats such as fear and freezing,
mechanisms underlying avoidance are comparatively unexplored,
representing a major gap in our understanding of anxiety
pathology [8].
To advance our understanding of avoidance behavior and its

neural mechanisms, it will be critical to objectively measure
avoidance [9]. Current clinical assessment of avoidance behavior
largely relies on retrospective self-report (though novel
approaches based on passive smartphone sensing are under
development [10]). Due to the often subtle and ingrained nature
of avoidance, however, retrospective self-report may not be
reliable. Furthermore, most clinical assessment of avoidance is
disorder-specific (e.g., [11]), and assessment of avoidance inde-
pendent of excessive fear is lacking. There is, therefore, an unmet
need for objective behavioral measurement of avoidance, outside
the context of any one disorder. Such measurement would
facilitate comparison across individuals, across anxiety pathology,
and across species, making it critical for mechanistic laboratory
work as well as trans-diagnostic application.
In this paper, we will present three biobehavioral processes that

may underlie maladaptive avoidance, describe how avoidance is
most commonly measured in laboratory settings in both animals
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and humans, and summarize what is already known about its
neural mechanisms. We then discuss how existing paradigms
could be modified to improve our understanding of avoidance
behavior and identify more precise novel targets for tailored
intervention. This narrative review therefore complements and
extends existing reviews of avoidance mechanisms in rodents [12],
avoidance learning in clinical anxiety [2, 13, 14], anticipation and
uncertainty [15], and approach-avoidance conflict [16].

A NEUROBEHAVIORAL MODEL OF MALADAPTIVE AVOIDANCE
BEHAVIOR
A key translational need is to understand maladaptive avoidance,
which we define as avoidance of a relatively safe stimulus often
resulting in negative consequences for the individual. Existing
laboratory paradigms to study maladaptive avoidance have,
therefore, examined avoidance in relative safety or in situations
where negative consequences follow from the avoidance
behavior. However, even within each of these laboratory
paradigms, observed avoidance behavior could be driven by
different underlying processes. Throughout this review, we will
discuss three neurobehavioral processes that could drive mala-
daptive avoidance: (i) heightened threat appraisal, (ii) habitual
avoidance, and (iii) trait avoidance tendency, defined below. Note
that while there is a technical distinction between the terms ‘fear’
and ‘anxiety’ related to acuity of threat, both acute and distant
threats can lead to avoidance behavior [17], and we therefore
discuss studies of both fear and anxiety.
By heightened threat appraisal, we mean a tendency to

overestimate threat, leading to a higher level of fear evoked by a
stimulus. Heightened threat appraisal can, therefore, drive
excessive avoidance behavior because of the relationship
between fear and avoidance [18]. When heightened threat
appraisal is primarily responsible for maladaptive avoidance, the
cause of the problem may therefore be upstream of the avoidance
behavior itself, and the avoidance may simply be a byproduct of
heightened fear. For example, individuals with panic disorder may
erroneously perceive an elevated heart rate from exercise as
dangerous, and subsequently avoid exercising. In this case, the
mistaken perception of elevated heart rate as dangerous is the
issue, and in a situation where elevated heart rate was indeed
dangerous, the same avoidance behavior would not be consid-
ered maladaptive. This neurobehavioral model is consistent with
Mowrer’s classical two-factor theory, which proposes that
avoidance is primarily motivated by high levels of fear and
reinforced by fear reduction [19, 20]. However, more contempor-
ary work has demonstrated that fear and avoidance may not
always be so tightly coupled (as reviewed in [14]), and avoidance
may be driven by other processes independent of high fear levels,
such as habitual avoidance and/or trait avoidance tendency.
Habitual avoidancemay emerge when avoidance is repeatedly

reinforced over time. Avoidance habits are cue-based, non-goal-
directed behaviors that are insensitive to outcomes [21], and have
been particularly implicated in OCD as one way to conceptualize
compulsive behavior [22]. For example, a behavior such as
excessive lock-checking may initially be driven by the goal of
preventing burglary, then reinforced by the feeling of brief relief
from anxiety, and eventually become a habitual response to the
cue of leaving home. In this case, the habitual avoidance behavior
may no longer be goal directed, and unlike avoidance driven by
threat appraisal, habitual avoidance can become decoupled from
the level of fear an individual feels.
By trait avoidance tendency, we mean that there may be

stable individual differences such that even when experiencing
comparable threat appraisal, some individuals may have an innate
propensity to avoid to a greater extent. As with habitual
avoidance, trait avoidance tendency would therefore likely be
decoupled from the level of fear (as in [23]). However, in contrast

to habitual avoidance, trait avoidance tendency implies high levels
of avoidance broadly across situations, rather than specific to
particular reinforced or over-learned behaviors. Although there are
effective interventions that address threat appraisals (e.g.,
cognitive therapy [24]) and habitual behavior (e.g., habit reversal
[25]), assessment and treatment of broad trait avoidance
tendencies remain relatively underdeveloped.

ADAPTIVE AVOIDANCE
As a foundation to understanding maladaptive avoidance, we first
review existing paradigms that assess adaptive avoidance, in
which individuals avoid a truly noxious stimulus. Adaptive
avoidance behaviors fall into two broad categories: “active
avoidance”, which is defined as performing a learned action to
prevent harm; and “passive avoidance”, which is defined as
withholding a behavioral response to prevent harm [12]. In
rodents, active avoidance has been traditionally studied using a
“shuttle box” consisting of two chambers with metal bar floors
capable of delivering shocks. A neutral sensory cue (the
conditioned stimulus, or CS; e.g., an auditory tone) is presented
in one of the chambers and signals an impending electric shock
(the unconditioned stimulus, or US). Animals learn that “shuttling”
to the other chamber in response to the CS prevents the shock
from occurring. Active avoidance is thought to involve two types
of learning: (i) Pavlovian fear conditioning, in which animals learn
the CS-US association (i.e., the sensory cue predicts shock); and (ii)
instrumental conditioning, in which animals learn that shuttling
prevents shock [26, 27]. During early active avoidance training,
Pavlovian processes dominate, as animals exhibit fearful freezing
responses. Gradually throughout training, instrumental processes
dominate as animals learn that they can avoid the shock by
shuttling. This paradigm is considered a measure of adaptive
avoidance because animals are avoiding the very real threat of an
electric shock. Variations include “platform-mediated avoidance”
[28], which adds a “safe” platform in one corner where the animals
can step to avoid the shock, and Sidman avoidance [29, 30], in
which an aversive outcome occurs at a regular time interval
instead of in response to a cue, resulting in repeated uncued
avoidance behavior. A related type of task, called aversive
Pavlovian Instrumental Transfer (PIT), explicitly separates the
Pavlovian and instrumental learning processes enabling investiga-
tions into the relationship between each of these learning
processes [31, 32].
The active avoidance paradigm has also been adapted for use in

human research with three major differences. First, human
analogues typically do not involve moving to a different location
to avoid an aversive outcome but often rely on behaviors such as
a button press in computer-based tasks (though see also [33]).
Second, in human analogues the experimenter often verbally
instructs the participant on the CS-US association, resulting in a
minimal contribution of Pavlovian learning. When Pavlovian
learning is included in the paradigm, it usually is conducted
without any opportunity to engage in avoidance behavior [34].
This has the benefit of isolating the fear and avoidance learning
components, with the drawback of fewer parallels to rodent
paradigms. Third, while in rodent paradigms avoidance behavior is
always learned through trial-and-error, human avoidance para-
digms can either be learned (e.g., “one of these buttons will
prevent shock”; [35]) or fully instructed (e.g., “press here to prevent
shock”; [36]).
Rodent and human studies employing these active avoidance

tasks have converged on three critical neural structures: the
medial prefrontal cortex (mPFC), the amygdala, and the striatum
[28, 30, 35, 37–40]. The mPFC is implicated in top-down control of
emotion and decision-making and is thought to modulate
subcortical structures such as the central and basolateral
amygdala [29, 41, 42] and the ventral and dorsal striatum

T.M. Ball and L.A. Gunaydin

979

Neuropsychopharmacology (2022) 47:978 – 986



[12, 43–45] that are implicated in valence processing and
defensive behaviors including active avoidance [39, 46, 47].
Indeed, greater synchrony between mPFC and both the amygdala
and striatum predicts effective avoidance learning [30]. Amygdala-
striatal circuitry is also thought to be important for avoidance
learning [35], although some studies indicate that the amygdala
may no longer be required for avoidance expression after
extensive training, suggesting that frontostriatal mechanisms of
habitual avoidance may dominate after avoidance is well learned
[29]. However, the majority of work on frontostriatal circuitry in
instrumental learning has used positive reinforcement [48–51],
whereas active avoidance learning can be a form of negative
reinforcement. Whether the frontostriatal circuit mechanisms
underlying positive reinforcement are also relevant to avoidance
remains an open question of critical importance to understanding
avoidance mechanisms [52].
In contrast to active avoidance, passive avoidance involves

withholding a behavioral response in order to prevent harm.
Passive avoidance has traditionally been conceptualized as a
readout of fear memory [53–56], and work in rodents and non-
human primates have implicated the amygdala and extended
amygdala in passive defensive responding [57–59]. However, little
is known mechanistically about passive avoidance behavior at the
circuit level, likely because it is difficult to identify neural correlates
in the absence of a behavior. In addition, few studies have directly
compared active and passive avoidance behavior to identify
similarities and differences in neural mechanisms (though see
[45, 60] for paradigms that facilitate this comparison).

MALADAPTIVE AVOIDANCE
While much is known about the neural circuitry underlying
adaptive avoidance (i.e., avoidance of a truly noxious stimulus),
anxiety disorders, OCD, and PTSD are typically characterized by
maladaptive avoidance. We define maladaptive avoidance as
avoidance of a relatively safe stimulus and/or resulting in
negative consequences for the individual, such as loss of reward.
To model avoidance of a relatively safe stimulus, paradigms
typically examine either extinction-resistant avoidance, or
generalization of avoidance to a cue perceptually similar to a
conditioned stimulus. To model negative consequences from
avoidance, paradigms often introduce competing rewards that
the individual must forgo to perform the avoidance behavior.
Common and promising examples of paradigms that model
maladaptive avoidance are reviewed below and summarized in
Table 1.

EXTINCTION-RESISTANT AVOIDANCE
Extinction-resistant avoidance is defined as avoidance behavior
that persists even after Pavlovian extinction training in which
the CS (cue) is repeatedly presented in the absence of the US
(aversive stimulus), and is maladaptive because the CS no longer
predicts threat. Extinction-resistant avoidance has clear clinical
relevance because continued avoidance following exposure
therapy (which is thought to work through extinction) may put
patients at higher risk for relapse [61, 62]. However, extinction-
resistant avoidance could be due to more than one underlying
neurobehavioral process. Extinction-resistant avoidance may be
due to heightened threat appraisal, particularly if both fear and
avoidance persist following extinction training. Such incomplete
extinction of both fear and avoidance is more common when
avoidance behavior is not prevented during extinction training.
In this case, animals continue to avoid during extinction training,
thereby receiving fewer opportunities to extinguish the CS-US
association and resulting in persistent fear [63]. Alternatively,
despite the often strong coupling between fear and avoidance,
extinction-resistant avoidance behavior can occur even when Ta

bl
e
1.

Se
le
ct
ed

ex
am

p
le
s
o
f
co

m
m
o
n
an

d
/o
r
p
ro
m
is
in
g
m
al
ad

ap
ti
ve

av
o
id
an

ce
p
ar
ad

ig
m
s.

Se
le
ct
ed

Pa
ra
d
ig
m
s

W
h
at

m
ak

es
it
m
al
ad

ap
ti
ve

av
oi
d
an

ce
Li
ke

ly
n
eu

ro
b
eh

av
io
ra
l
p
ro
ce
ss
(e
s)

in
vo

lv
ed

Ex
am

p
le
s

B
ra
in

re
g
io
n
s

im
p
lic
at
ed

A
vo

id
an

ce
in

re
la
ti
ve

sa
fe
ty
?

A
vo

id
an

ce
h
as

a
n
eg

at
iv
e

co
n
se
q
ue

n
ce
?

H
ei
g
h
te
n
ed

th
re
at

ap
p
ra
is
al

H
ab

it
ua

l
av

oi
d
an

ce
Tr
ai
t
av

oi
d
an

ce
te
n
d
en

cy
A
n
im

al
m
od

el
s

H
um

an

Ex
ti
n
ct
io
n
-r
es
is
ta
n
t

av
o
id
an

ce
X

X
X

B
ra
vo

-R
iv
er
a

et
al

20
15

Ve
rv
lie
t
et

al
20

15
m
PF

C
,v

en
tr
al

st
ri
at
u
m
,
B
LA

Ex
ti
n
ct
io
n
-r
es
is
ta
n
t

av
o
id
an

ce
w
it
h

o
ve

rt
ra
in
in
g

X
X

M
ar
ti
n
ez

-
R
iv
er
a

et
al

20
20

G
ill
an

et
al

20
14

an
d
20

15
Fr
o
n
to
st
ri
at
al

ci
rc
u
it
ry
,c

au
d
at
e

Ex
ti
n
ct
io
n
-r
es
is
ta
n
t

av
o
id
an

ce
w
it
h

re
sp
o
n
se

p
re
ve

n
ti
o
n

X
X

R
o
d
ri
g
u
ez

-
R
o
m
ag

u
er
a
et

al
20

16
Ve

rv
lie
t
&

In
d
ek
eu

20
15

La
te
ra
l
O
FC

A
vo

id
an

ce
g
en

er
al
iz
at
io
n

X
X

X
X

–
va
n
M
eu

rs
et

al
.2

01
4;

D
ym

o
n
d
et

al
20

14
–

Pl
at
fo
rm

-m
ed

ia
te
d

av
o
id
an

ce
te
st

X
X

B
ra
vo

-R
iv
er
a

et
al

20
21

–
B
LA

,m
PF

C

Se
m
i-n

at
u
ra
lis
ti
c
cl
o
se
d

ec
o
n
o
m
y

X
X

Fa
n
se
lo
w

et
al

19
88

;
K
im

et
al
.2

01
4

–
B
LA

Th
re
at

d
is
co

u
n
ti
n
g

p
ar
ad

ig
m

X
X

X
(a
ls
o
re
w
ar
d

se
n
si
ti
vi
ty
)

–
Pi
tt
ig

&
Sc
h
er
b
au

m
20

20
;A

u
p
p
er
le

et
al

20
15

A
n
te
ri
o
r

in
su
la
,m

PF
C

A
b
b
re
vi
at
io
n
s:
m
PF
C
M
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex
;B

LA
B
as
o
la
te
ra
l
am

yg
d
al
a;

O
FC

O
rb
it
o
fr
o
n
ta
l
co

rt
ex
.

T.M. Ball and L.A. Gunaydin

980

Neuropsychopharmacology (2022) 47:978 – 986



extinction training has successfully reduced conditioned fear
responding [63, 64]. In these cases, avoidance may have become
a habit and thus governed by different neural circuitry.
Animal studies of extinction-resistant avoidance behavior have

largely built on active avoidance paradigms. After avoidance
learning, animals undergo extinction training in which the CS is
presented in the absence of the US. Although most animals learn
that there is no longer a need to avoid the CS, there are large
individual differences in avoidance following extinction training,
with a substantial fraction of animals continuing to persistently
avoid [63, 64]. However, it is hard to distinguish whether this
extinction-resistant avoidance is simply a product of insufficient
fear extinction without measuring both fear and avoidance.
Human studies of extinction-resistant avoidance have more
consistently measured both fear and avoidance, allowing stronger
conclusions to be drawn about the neurobehavioral process
underlying the observed avoidance behavior. For example, greater
avoidance behavior has been observed in OCD patients than in
healthy controls, in the absence of fear-related differences
indexed by skin conductance [65]. Furthermore, greater avoidance
in OCD was only seen after a large number of avoidance trials,
suggesting a habitual component to the avoidance. In contrast,
extinction-resistant avoidance behavior has been observed in the
context of incomplete extinction of fear, which suggests that this
persistent avoidance behavior may be driven by continued threat
appraisal [36]. Further supporting the notion that a threat-related
process drives avoidance was the relationship between trait
anxiety and extinction-resistance avoidance, as well as the
relatively small number of avoidance training trials in this study
[36].
Another approach to disentangling the relative contribution

of threat appraisal and habit in extinction-resistant avoidance is
using response prevention (i.e., removing the opportunity to
avoid during extinction training) to ensure that fear responses
are completely extinguished. Rodent studies have directly
compared neural correlates of persistent avoidance following
extinction training with and without response prevention.
Extinction-resistant avoidance was correlated with increased
activity in the prelimbic cortex and ventral striatum regardless of
response prevention, but when response prevention was absent,
extinction-resistant avoidance was also correlated with impaired
recruitment of regions associated with fear extinction (i.e.,
increased basal amygdala and decreased infralimbic cortex
activity) [63]. These results suggest that without response
prevention, animals may not have sufficient opportunity to
extinguish fear, and this heightened threat appraisal may be
driving persistent avoidance. In contrast, persistent avoidance
following extinction with response prevention may be due to
habitual avoidance (though spontaneous recovery of fear or lack
of cost for continuing to perform the avoidance response may
also contribute). Habitual avoidance has been particularly
implicated in OCD, and clinical treatment of OCD typically
involves exposure to feared stimuli (e.g., dirty objects) combined
with response prevention of compulsive avoidance behavior
(e.g., hand-washing). A recent study showed that overtraining
on avoidance behavior biased rats toward habitual avoidance
following extinction training with response prevention, which
was associated with increased activity in frontostriatal regions
[66]. This paradigm is a promising model of habitual avoidance
that may be present in OCD, and presents an opportunity for
further investigation into circuit mechanisms underlying
extinction-resistant avoidance. Furthermore, at least one inacti-
vation study in rodents suggests that extinction-resistant
avoidance following response prevention depends on the lateral
orbitofrontal cortex [67], which has been implicated in both
habit [68] and OCD [69]. Functional neuroimaging of adults with
OCD has also implicated the caudate nucleus in persistent
habitual avoidance in this population [70].

AVOIDANCE GENERALIZATION
Generalization is a phenomenon in which individuals apply
learning from past experiences to similar related situations or
stimuli [71]. Generalization can be adaptive by allowing us to
navigate complex risks based on limited experience. However,
over-generalization of avoidance behavior is maladaptive, as it
leads to avoidance of related but safe situations. Avoidance over-
generalization is a core feature of anxiety and related disorders
[13]. For example, someone with PTSD as a result of a car accident
may not only avoid the intersection where the crash occurred, but
may generalize to avoiding driving altogether. Avoidance general-
ization could be driven by the underlying processes of heightened
threat appraisal, if the avoidance generalization is proportional to
the generalization of fear, or by trait avoidance tendency.
Although few rodent studies have examined avoidance general-

ization, many have focused on fear generalization. These studies
have shown that tonic activity of central amygdala neurons
correlates with the degree of fear generalization [72], and
increased synchrony between basolateral amygdala and medial
prefrontal neurons occurs in animals demonstrating less fear
generalization [73]. However, little is known about whether these
same circuits regulate generalization of avoidance responses. In
contrast to the limited rodent models of avoidance generalization,
there has been a surge of interest in human avoidance general-
ization paradigms (e.g., [74–76]). For example, in the virtual farmer
game [77], participants first undergo Pavlovian conditioning to
associate a shape (CS) with a shock. Next, participants must move
a farmer icon between images of a shed and crops, aiming to
arrive at the crops before virtual birds interfere. They are given the
option of a short path, which results in shock when the CS is
present, or a long path, which interferes with the goal of the game
but is always safe from shock. Avoidance generalization is
measured by the extent to which participants select the long
path when generalization stimuli (with some perceptual similarity
to the CS but never paired with shock) are present.
As with extinction-resistant avoidance, experimentally measur-

ing both fear and avoidance in the same tasks will help distinguish
the underlying neurobehavioral processes driving avoidance
generalization. In the virtual farmer paradigm, individuals who
exhibited greater fear generalization (measured by skin conduc-
tance) demonstrated greater avoidance generalization (measured
by selecting the long path), suggesting that heightened threat
appraisal may be a driver of avoidance generalization in this
paradigm [77]. This paradigm could also be used to identify
individual differences in trait avoidance tendency, for example, if
individuals avoid a generalization stimulus in the absence of
significant fear responding. Greater avoidance generalization in
the virtual farmer game was associated with individual differences
in avoidant coping styles such as distraction or suppression [77],
consistent with the notion that trait avoidance tendency may play
a role in avoidance generalization for some individuals. Neural
mechanisms of avoidance generalization are not well understood
relative to other paradigms (Table 1). Extending animal models of
fear generalization to avoidance behavior would help delineate
neural mechanisms, and is an important future direction.

COMPETING REWARDS
Maladaptive avoidance behavior often results in negative
consequences such as loss of opportunity for positive outcomes.
Thus, a common strategy to study maladaptive avoidance
behavior is to pit avoidance against a competing reward, such
that avoidance results in both a decreased risk of harm and a
decreased potential for reward. This approach parallels clinical
situations such as in social anxiety, where avoidance of social
interaction results in loss of both potential negative outcomes
(e.g., being rejected) and potential positive outcomes (e.g., making
friends). Avoidance in the face of competing reward could be
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driven by either acquired habitual avoidance, or an innate
imbalance between trait avoidance tendency and reward
sensitivity. If behavior is habitual, it is by definition not goal-
directed and will persist regardless of the reward accrued. In
addition, individuals may differ in the extent to which they are
either predisposed to avoid and/or sensitive to the potential for
reward, either of which would result in greater avoidance
decisions when competing rewards are present [78].
One example of how competing rewards can be implemented

in animal models is the platform-mediated avoidance test [28], in
which animals can press a lever for a food reward as long as they
are on the shock floor. When they step onto the platform to avoid
the shock, however, they are no longer able to reach the lever and
therefore forgo this reward. This task has been further modified to
maximize competition between avoidance and reward by
presenting the lever for reward only during presentation of the
tone that signals impending shock. There were individual
differences in avoidance tendency such that rats that preferred
avoidance had increased amygdala activity compared to rats that
preferred reward approach, which had decreased prefrontal
activity [79]. The “risk-reward interaction” task [60] also adds an
element of reward into a traditional shuttle box style apparatus,
such that each chamber contains a shock floor and a reward port.
This task has been used to measure neural signals related to active
avoidance and reward-seeking behaviors on separate trials but
could also be adapted to make reward only accessible by crossing
a shock floor. This would allow researchers to measure how much
an animal is willing to forgo reward in order to avoid, and examine
if different neural mechanisms are involved when avoidance is
paired with competing rewards. Variations of the risk-reward
interaction task could also be used to assess how decisions to
forgo rewards relate to the acquisition of avoidance habits, and
whether different neural mechanisms are involved in this decision
once avoidance has become habitual. In addition, although these
paradigms have thus far been used with the fixed intensity of
threats and rewards, varying the intensity could better probe
individual thresholds for maladaptive avoidance behavior. A
complementary approach to these acute assays is the semi-
naturalistic “closed economy” paradigm in which animals live for
several weeks in the apparatus and must forage for food in a
location that also delivers random electric shocks, allowing for
ethologically relevant probing of avoidance behaviors as a reward
and/or shock schedules are varied [80–82].
Human studies have begun investigating the impact of varying

threat and reward intensities using computer games that provide
participants the opportunity to earn rewards (e.g., money) by
facing negative consequences, or avoid these consequences
without receiving any reward [78, 83]. While related work has
investigated loss of money as a negative consequence [84, 85], we
focus here on paradigms involving the addition of an aversive
outcome, such as viewing threatening images or receiving the
shock. In particular, recent work examined avoidance decision-
making under varying combinations of shock probability and
reward magnitude [83]. High anxiety individuals made more
avoidance decisions compared to low anxiety individuals as
reward magnitude increased, suggesting that avoidance decisions
in anxious individuals may be driven by low reward sensitivity.
Although the neural mechanisms underlying this paradigm have
not been examined, functional neuroimaging studies of similar
paradigms have implicated the anterior insula and medial
prefrontal cortex [16, 86]. In non-human primates, amygdala
lesions increase avoidance in the presence of competing rewards
[87], while stimulation of the anterior insula and ventral striatum
increases this avoidance behavior [88].
A related type of paradigm is an approach-avoidance conflict

task, which presents an animal with conflicting appetitive and
aversive cues that must be simultaneously weighed. In contrast to
the examples above, which use learned avoidance behavior,

approach-avoidance conflict tasks have traditionally examined
innate avoidance behavior. The most common approach-
avoidance conflict assay is the elevated plus maze, which is a
platform consisting of two “open” exposed arms and two “closed”
arms with tall walls that animals freely explore [89, 90]. This task
capitalizes on rodents’ conflicting innate aversion to open brightly
lit spaces (for risk of predation) and innate drive to explore novel
environments. There are many related tasks to study conflicting
costs and benefits. For example, the T-maze measures how willing
an animal is to avoid an innately aversive stimulus, such as bright
light, at the cost of losing a reward, such as food [91]. Semi-natural
foraging environments that employ food rewards and robotic
predators have likewise been used to study approach-avoidance
conflict behaviors [58]. In addition, human and non-human
primate studies have used a joystick to capitalize on the instinct
to pull desired stimuli closer and push aversive stimuli away [92].
Due to the innate nature of the avoidance behavior in approach-
avoidance conflict tasks, greater maladaptive avoidance in these
tasks can be considered a measure of trait avoidance tendency.
Approach-avoidance conflict tasks require the mPFC: ventro-

medial aspects that project to the basolateral amygdala control
open arm exploration in the elevated plus maze [47], whereas
dorsomedial aspects that project to the dorsal striatum control
cost-benefit decision-making in the T-maze task as well as innate
avoidance in the elevated plus maze [91, 93]. This suggests an
important role of frontostriatal projections in trait avoidance
tendency. There is also some encouraging evidence that these
tasks have relevance for human anxiety. Human analogues of
approach-avoidance conflict tasks have used movement tracking
to measure innate avoidance versus exploration behavior in real or
virtual settings [94–97]. These studies have generally found
greater innate avoidance behavior in those with higher anxiety,
and decreased avoidance following anxiolytic medication, validat-
ing the potential utility of this approach for understanding anxiety
disorders and trait-like individual differences.

GAPS IN KNOWLEDGE
Moving forward, it will be important to address four key areas:
differentiating neurobehavioral alterations, translating insights
across species, testing paradigms in clinical populations, and
improving diagnosis and treatment (Table 2).

Differentiating neurobehavioral alterations
A major gap in the field is the lack of translational paradigms that
can differentiate which neurobehavioral alterations underlie a
particular individual’s maladaptive avoidance behavior. An impor-
tant next step will therefore be to develop tasks that better
differentiate the processes and circuitry underlying maladaptive
avoidance. Existing paradigms could be modified to determine
the extent to which fear and avoidance are correlated by including
quantifiable proxies for fear (e.g., autonomic measures such as
heart rate or skin conductance) and investigating how closely they
track with avoidance behavior over time. A close coupling
between fear and avoidance would suggest a greater contribution
of threat appraisal to the avoidance behavior, whereas lower
coupling would imply that habitual avoidance and/or avoidance
tendency are involved (Fig. 1). In addition, examining the temporal
dynamics of avoidance could help differentiate underlying
processes. For example, because habits are less sensitive to
action-outcome relationships, avoidance behavior driven by habit
would be less likely to diminish during extinction training (Fig. 1).
In animal studies, differentiating between these specific under-

lying processes will require longitudinal tracking of both behavior
and neural activity at a resolution that has not yet been brought to
the field. Greater specificity in differentiating underlying processes
will also require measuring defensive behaviors beyond avoidance
(e.g., freezing), and recording neural activity not only during
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avoidance expression but also during avoidance learning and
extinction. Combining these behavioral measurements with cell-
type-specific and neural projection-specific circuit dissection
techniques, such as optogenetics and in vivo calcium imaging,
will be critical for elucidating the real-time circuit dynamics
correlated with each of these behaviors.

Translating insights across species
Animal models can provide greater spatial and temporal precision
in identifying neural mechanisms, while human research can
assess internal experiences (e.g., feeling anxious), and provide
verbal instruction on available avoidance behaviors. Such
instructed avoidance paradigms may allow for better separation
of trait avoidance tendency and habit because instructed
avoidance behavior removes the possibility that repeated practice
of avoidance has led to habitual responding. However, while these
unique insights are important, it is also important to align
paradigms across human and animal models to better link the
unique insights from each species. This should include alignment
on the precise use of terminology, such as “relief” (a clinically-
relevant subjective experience) versus “shock omission” (an
objectively defined event). Human and animal paradigms will
have better alignment when they involve common behavioral
outputs and physiological measures during avoidance tasks.
Additionally, quickly-developing technology such as virtual reality
platforms [98] and smartphone-based passive sampling [99] offer
a unique ability to align tasks across species by re-creating for
humans the freely moving laboratory tasks from rodent work.
Computational models that can generate hypotheses indepen-
dent of the species being studied are another important approach
to facilitate translation [100]. Finally, while the majority of research
has focused on rodent and human models of avoidance behavior,
more work is needed to translate across non-human primate and

human studies, given the advantage of greater functional
homology of the brain relative to rodent models [101, 102].

Testing paradigms in clinical populations
Another crucial gap is understanding how avoidance behavior as
defined in laboratory paradigms applies in clinical populations. It
remains unclear whether the mechanisms uncovered from studies
of adaptive avoidance are the same as those that go awry in
clinical conditions that are defined by maladaptive avoidance. The
majority of paradigms described above have not been tested in
individuals with clinical levels of anxiety and avoidance; doing so
would allow for a more nuanced characterization of maladaptive
avoidance behavior within and across disorders. For example, the
distinction between active and passive avoidance strategies is
commonly made in animal models, yet rarely made in describing
clinical phenomena, highlighting a missing translational link.
Moreover, it is not known whether mechanisms underlying
external avoidance (e.g., of electric shock) are the same as those
underlying experiential avoidance (e.g., of unpleasant thoughts or
emotions) common in anxiety and related disorders. Despite large
interest in trans-diagnostic features of psychopathology, it is still
unclear whether avoidance involves the same neural mechanisms
across disorders. For example, does avoidance of social situations
in social anxiety disorder involve the same mechanisms as
avoidance of trauma reminders in PTSD? Understanding how
specific neurobehavioral processes map onto existing DSM
diagnoses or trans-diagnostic features (such as worry or intoler-
ance of uncertainty) will be an important step to bridge current
clinical practice and a neuroscience-based understanding of
maladaptive avoidance behavior. Finally, it will be important for
the field to develop paradigms that mimic the probabilistic nature
of safety in the real world, in addition to existing experimental
laboratory paradigms that can more objectively define safety.

Table 2. Four proposed areas for ongoing development, and corresponding key unanswered questions.

Areas for development Key questions

Differentiating neurobehavioral
alterations

1. Are the three neurobehavioral processes we have proposed independent routes to generating
maladaptive avoidance behavior?
2. Which circuit dysfunctions underlie these different types of maladaptive avoidance?

Translating insights across species 1. Do the same neural substrates support instructed avoidance behavior (observable in humans only)
and learned avoidance behavior?2. How do neural mechanisms in animal models compare with neural
mechanisms in humans when paradigms are matched on behavior and/or autonomic physiology?

Testing paradigms in clinical populations 1. How do clinically anxious individuals differ from healthy controls in dynamics of learning,
expression, and extinction of maladaptive avoidance behavior? 2. How does avoidance behavior and
its neural substrates differ across anxiety disorders and related diagnoses?

Improving diagnosis and treatment 1. Which maladaptive avoidance paradigms reliably quantify individual differences in avoidance? 2.
Which interventions most effectively decrease maladaptive avoidance behavior measured in such
laboratory paradigms? 3. Can identifying the specific neurobehavioral process underlying avoidance in
a patient help indicate which treatment will be effective for them?

Fig. 1 Illustration of how the relationship between fear and avoidance could differentiate underlying neurobehavioral processes. One
example of a paradigm that could be modified to better differentiate underlying neurobehavioral processes is extinction-resistant avoidance.
Successful extinction results in attenuation of both fear and avoidance responding (dashed and solid lines, respectively). In contrast,
extinction-resistant avoidance involves continued avoidance behavior following extinction training. We hypothesize that the underlying
neurobehavioral process driving the persistent avoidance—e.g., heightened threat appraisal (green), habitual avoidance (orange), or trait
avoidance tendency (magenta) -- could be better differentiated by examining both fear and avoidance responding over time.
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Improving diagnosis and treatment
Assuming that distinct neurobehavioral processes reflect different
root causes of maladaptive avoidance behavior, an open question is
whether they could someday provide a more precise and useful
classification system than a current clinical practice using DSM
symptom-based classification. This goal would require reliable and
valid measurement of avoidance behavior at the level of an
individual, with known population norms and/or clinical cut points.
While some studies have begun to examine construct validity
[36, 53], psychometric properties of avoidance paradigms have
largely not been established (for a notable exception, see [103]).
Psychometrically sound tasks will be essential for translation from
research to the clinical application [104], with test-retest reliability of
particular importance for paradigms assessing constructs that
should be stable over time, such as trait avoidance tendency. Using
a classification system based on reliable and valid measurement of
underlying neurobehavioral alterations, we may be able to better
tailor interventions to target specific avoidance problems unique to
each patient. Although the current gold-standard treatment
approach for anxiety and related disorders is exposure therapy, this
treatment is not successful for many patients [105]. Exposure
therapy is thought to work through fear extinction [106]; this
extinction-based view of exposure therapy suggests that exposure
therapy will be most effective in addressing avoidance behaviors
driven by heightened threat appraisal. However, it is unclear
whether exposure therapy can also effectively modify avoidance
behavior that has become decoupled from fear, as with trait
avoidance tendency or habitual avoidance, or whether maladaptive
avoidance behavior driven by these processes could be better
addressed by operant reinforcement principles rather than Pavlo-
vian and inhibitory learning processes. For example, one hypothesis
is that interventions such as acceptance and commitment therapy
(ACT) that focus on approach towards values-based behaviors
[62, 107] may be more effective treatments for trait avoidance. While
one study has found that avoidance is associated with more success
in CBT than ACT [9], the neurobehavioral process underlying this
avoidance is unclear. Ultimately, just as insights from the laboratory
paradigm of fear extinction have improved exposure therapy [106],
laboratory paradigms that can measure and manipulate maladap-
tive avoidance have the potential to identify and optimize new
treatment approaches to more directly target additional root causes
of maladaptive avoidance behavior.

CONCLUSION
Avoidance is a central and trans-diagnostic mechanism that leads
to impairment across anxiety pathology, including OCD and PTSD.
Reducing maladaptive avoidance is an important treatment goal
and a necessary part of evidence-based interventions such as
exposure therapy. We propose that maladaptive avoidance may
be caused by alterations in three distinct neurobehavioral
processes: (i) threat appraisal, (ii) habitual avoidance, and (iii) trait
avoidance tendency. Existing paradigms to measure maladaptive
avoidance have examined extinction-resistant avoidance, avoid-
ance generalization, and avoidance in the face of competing
rewards. An important next step for the field will be to adapt these
paradigms to more precisely differentiate which neurobehavioral
alterations underlie a particular individual’s maladaptive avoid-
ance behavior and use these paradigms to understand how
specific neurobehavioral processes map onto clinical diagnoses.
Ultimately, this work has the potential to lead to new interven-
tions to more effectively treat maladaptive avoidance behavior in
anxiety and related disorders.
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