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Alcohol use disorder (AUD) is closely linked to the brain regions forming the neurocircuitry of addiction. Postmortem human brain
tissue enables the direct study of the molecular pathomechanisms of AUD. This study aims to identify these mechanisms by
examining differential DNA-methylation between cases with severe AUD (n= 53) and controls (n= 58) using a brain-region-specific
approach, in which sample sizes ranged between 46 and 94. Samples of the anterior cingulate cortex (ACC), Brodmann Area 9 (BA9),
caudate nucleus (CN), ventral striatum (VS), and putamen (PUT) were investigated. DNA-methylation levels were determined using
the Illumina HumanMethylationEPIC Beadchip. Epigenome-wide association analyses were carried out to identify differentially
methylated CpG-sites and regions between cases and controls in each brain region. Weighted correlation network analysis
(WGCNA), gene-set, and GWAS-enrichment analyses were performed. Two differentially methylated CpG-sites were associated with
AUD in the CN, and 18 in VS (q < 0.05). No epigenome-wide significant CpG-sites were found in BA9, ACC, or PUT. Differentially
methylated regions associated with AUD case-/control status (q < 0.05) were found in the CN (n= 6), VS (n= 18), and ACC (n= 1). In
the VS, the WGCNA-module showing the strongest association with AUD was enriched for immune-related pathways. This study is
the first to analyze methylation differences between AUD cases and controls in multiple brain regions and consists of the largest
sample to date. Several novel CpG-sites and regions implicated in AUD were identified, providing a first basis to explore epigenetic
correlates of AUD.

Neuropsychopharmacology (2022) 47:832–839; https://doi.org/10.1038/s41386-021-01228-7

INTRODUCTION
Every year, ~5.3% of all deaths worldwide are a result of the
harmful use of alcohol and ~230 diseases are associated with
alcohol use [1]. The lifetime prevalence of alcohol use disorder
(AUD) varies globally, with North African/Middle Eastern countries
having the lowest (0.59%) and Eastern European countries the
highest (4.25%) prevalence. With a global prevalence of 1.32%,
AUD is an important contributor to global disease burden [2]. AUD
is a moderately heritable disease; a meta-analysis of twin studies
estimated a heritability of 49% [3].
It has been proposed that drug-induced alterations in gene

expression in the neurocircuitry of the brain contribute to
addiction [4]. Recent evidence suggests that alterations in DNA-
methylation, an epigenetic mechanism affecting gene expression,
play an important role in addiction (for reviews see: [5, 6]).
Differential DNA-methylation is associated with alcohol consump-
tion and AUD both in peripheral blood and postmortem brain
tissue (for an overview see: Wedemeyer et al. [7]). Examining
alterations in DNA-methylation in epigenome-wide association
studies (EWAS) allows for the investigation of inter-individual

differences which are attributable to a phenotype [8]. For example,
a recent EWAS of AUD in peripheral blood suggests that networks
in glucocorticoid signaling and inflammation-related genes are
associated with AUD [9].
Human postmortem brain tissue is a sparse and valuable

resource and allows a more direct characterization of AUD
mechanisms than possible by analyzing peripheral blood [10].
So far, a small number of postmortem brain studies have been
conducted, mostly investigating the prefrontal cortex (PFC), which,
due to its role in reward regulation and higher-order executive
function, is thought to be disrupted in addiction [11]. An EWAS
comparing individuals with AUD with age-matched controls
detected a range of differentially methylated CpG-sites in
Brodmann Area 9 (BA9) in 16 pairs of males, but not in seven
pairs of females [12]. Another study identified AUD-associated
differentially methylated CpG-sites in Brodmann Area 10, which
did not remain significant after multiple testing correction [13].
However, downstream analyses implicated NR3C1, a gene coding
for the glucocorticoid receptor, which is crucial to stress regulation
and found to be functionally relevant in AUD. The increased DNA-
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methylation in individuals with AUD was also associated with
reduced NR3C1 mRNA and protein expression levels [13].
Investigating DNA-methylation in the wider addiction neuro-

circuitry may give deeper insights into the pathophysiological
mechanisms of AUD, and may reveal potential targets for
treatment or prevention [14, 15]. Dysfunction in the addiction
neurocircuitry, which comprises areas involved in cognitive
control such as the dorsolateral PFC, the anterior cingulate cortex
(ACC), and regions in the basal ganglia, can have impairing
consequences associated with disrupted reward-related decision-
making, alcohol craving, and compulsive alcohol consumption
[11, 16]. Of particular interest is the striatum, which is divided into
ventral and dorsal subdivisions based on function and connectiv-
ity. The ventral striatum (VS), comprises the nucleus accumbens
(NAcc) and olfactory tubercle while the dorsal striatum contains
the caudate nucleus (CN) and putamen (PUT) [17]. The NAcc is
thought to be important in addiction due to its role in processing
motivation, more precisely aversion and reward [17]. The CN and
PUT both influence motor function; in addition, the caudate is
involved in goal-directed action, executive functioning, and
cognitive control, while the PUT is implicated in various types of
learning, including reinforcement learning and habit formation
[18]. In a study investigating DNA-methylation in PFC and NAcc,
CpG-sites in DLGAP2 emerged as differentially methylated

between 39 male AUD cases and 47 controls in both brain
regions; the differences were genotype-dependent [19].
In the present study, we aimed to identify epigenetic

mechanisms associated with AUD, in five brain regions previously
implicated in the neurocircuitry of addiction [17]. Brain-region-
specific EWAS of AUD were performed in the BA9, ACC, VS, CN,
and PUT.

MATERIALS AND METHODS
Samples
In total, 395 human postmortem brain samples from 111 subjects (53 AUD,
58 controls) were obtained from the New South Wales Tissue Resource
Center (University of Sydney, Australia) under study reference number
2009-238N-MA by the Ethics Committee II of the Medical Faculty
Mannheim. AUD and control subjects were matched by age and sex. All
individuals met the following inclusion criteria, which were determined by
next-of-kin interviews: age >18, no history of severe psychiatric,
neurodevelopmental, or other substance use disorders (except nicotine
use disorder), and Western European ancestry. Individuals with AUD were
classified according to DSM-IV criteria and had consumed at least 80 g
alcohol daily, whereas controls had consumed less than 20 g. Methylation
data was generated in two batches and each batch was analyzed
separately. The first batch comprised 220 samples of BA9, ACC, CN, and VS
from 28 cases and 27 controls. In the second batch, 175 samples from 56
additional individuals from the CN, VS, and PUT were analyzed. Material
from one to five brain regions was available for each individual. Therefore,
the sample composition varies between the brain-region-specific analyses.
A sample description can be found in Table 1. Table 2 shows the number
of samples for each brain region and each batch. Additional phenotype
information, such as cause of death and detailed exclusion criteria can be
found in the Supplementary Information (Table S1 and Text S1).

Epigenome-wide methylation
DNA was extracted from bulk brain tissue using the DNeasy extraction kit
from Qiagen (Qiagen, Hilden, Germany). The genomic DNA samples were
stored at −20 °C. For the microarray analysis, the samples were
randomized based on AUD case/control status and sex, and pipetted on
processing plates. Due to the sample and different group sizes, samples
from each brain region were processed on separate plates. Epigenome-
wide methylation levels were determined using the Illumina Human-
MethylationEPIC Beadchip and Illumina HiScan array scanning systems
(Illumina, San Diego, CA).

Data preprocessing, quality control, and filtering
All data preprocessing and analysis steps were performed using the R
statistical environment, version 3.6.1. An updated version of the CPACOR-
pipeline published by Lehne et al. [20] was used to extract methylation
data from raw intensity data and perform quality control. Samples were
removed if (i) DNA quality was not sufficient (missing rate >0.10) or (ii) a
discrepancy between methylation-based and phenotypic sex emerged.
Probes were removed when (i) the call-rate was insufficient (<0.95), (ii)
SNPs with a minor allele frequency >0.10 were located in the probe
sequence, (iii) the probes were located on the X or Y chromosome. After
quality control 381 samples remained. Depending on the brain region,
657 593–694 791 sites were available for analysis after filtering. Detailed

Table 1. Descriptive statistics of demographic data.

Characteristic Cases Controls p

N 53 58

Age, years 56.72 (10.81) 56.69 (10.29) 0.989

Sex (M/F) 34/19 40/18 0.737

pH-value 6.5 (0.28) 6.57 (0.32) 0.189

PMI (hours) 35.46 (16.1) 28.17 (15.29) 0.038a

Estimated smoking 0.72 (0.26) 0.51 (0.31) >0.001a

Blood alcohol level (N) 8 0

Blood alcohol level (g/100
ml)

0.211 (0.179)

Number of brain regions

5 19 (35.8%) 19 (32.8%)

4 9 (17.0%) 8 (13.8%)

3 18 (34.0%) 21 (36.2%)

2 0 (0%) 3 (5.1%)

1 7 (13.2%) 7 (12.1%)

Data are presented as count (n/n; n (%)) or mean (±SD), PMI postmortem
interval, pH pH-value of the brain, p p-value of t-Test comparing cases and
controls, estimated smoking is the likelihood of smoking estimated based
on the methylation data.
aSignificant difference between cases and controls.

Table 2. Sample overview.

Brain region Total N Case Control Number of CpG sites Genomic inflation

Batch I Batch II Batch I Batch II

Anterior cingulate cortex 54 28 26 657 593 0.958

Brodmann Area 9 46 25 21 657 593 0.942

Putamen 94 44 50 694 572 0.963

Caudate nucleus 94 28 17 27 22 694 790 0.919

Ventral striatum 93 28 18 26 21 694 790 0.962

Number of individuals per brain region after quality control. Number of CpG-sites refers to the number of sites remaining after quality control, for VS and CN
union of the two batches.
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descriptions of sample size, the number of sites remaining after QC, and
the inflation coefficient lambda for each model can be found in Table 2.

Statistical analysis
Methylation values were log-transformed (base 2) and included as
dependent variables in the association analyses, as recommended by Du
et al. [21]. Control for batch effects and technical quality was applied by
extracting signals of the internal control probes of the EPIC array,
performing principal component analysis, and extracting the first ten
principal components. These were included as covariates in all association
tests. To control for cell-type heterogeneity, cell counts were estimated
using the method by Houseman et al. [22], with the dorsolateral PFC
reference data [23]. This approach results in two estimates, one for neurons
and one for other cell types. These were standardized so that the sum of
both counts added up to one. The estimate for neurons was included as a
covariate in all analyses. Data on smoking was not available for all
participants (missing for n= 11, 10.81%). Smoking status was therefore
estimated based on a validated set of sites [24]. Estimated smoking was
included as a continuous covariate. 86% of current smokers were correctly
classified; according to the regression model their likelihood of smoking
was >50%.

Epigenome-wide association analysis. Tests of methylation differences
between individuals with AUD and control subjects were performed with
linear models, adjusting for sex, age, postmortem interval (PMI), pH-value,
estimated smoking, standardized neuronal cell count, and the first ten
principal components of the internal control probes. Each region and each
batch was analyzed separately. The summary statistics for CN and VS were
then meta-analyzed based on effect estimates and standard errors using
METAL [25]. P-values were corrected for multiple testing using the
Benjamini–Hochberg (FDR) correction [26]; resulting values are reported as
q-values. CpG-sites were annotated using the manufacturer’s manifest
(http://webdata.illumina.com.s3-website-us-east-1.amazonaws.com/
downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-
b4-manifest-file-csv.zip; downloaded on 10th of August 2018). Regression
coefficients of differential methylation for the epigenome-wide significant
CpG-sites were summarized for each brain region. As each brain region
was processed on a separate plate, no inferential statistical procedure was
applied to compare DNA-methylation levels between brain regions (due to
confounding of batch and regions). Test statistics from all epigenome-wide
significant CpG-sites were reported for each brain region and also for an
independent EWAS in peripheral blood, in which DNA-methylation levels
of male patients with AUD, who had just entered withdrawal treatment
were compared with healthy controls [27]. As the cause of death of two
control subjects from the second batch was “toxicity”, a sensitivity analysis
excluding these subjects was performed in CN, VS, and PUT.

Differentially methylated regions (DMRs). DMRs were identified using the
comb-p algorithm [28], which accounts for autocorrelation between tests
of adjacent methylation sites and combines these sites to regions of
enrichment, in a given window. The following settings were used: Seed-p
value <0.01, minimum of 2 probes, sliding window 500 bp. The Šidák
correction as implemented in comb-p was applied to correct for multiple
testing. comb-p was applied to the result statistics for all brain regions.

Pyrosequencing and TaqMan assay. The DMR in DDAH2 was replicated by
pyrosequencing and gene expression levels were determined using a
TaqMan Assay (for details see Supplementary Text S3).

Gene-ontology (GO) overrepresentation analysis. Functional analysis to
identify gene pathways targeted by differentially methylated CpG-sites
was performed for sites with a threshold of pnominal < 0.001 using
missMethyl [29]. missMethyl controls for probe number bias, the increased
likelihood of a gene to be differentially methylated, if more probes cover
the gene and multi-gene bias, and the fact that probes can be annotated
to more than one gene.

GWAS-enrichment analysis. Gene-sets were created consisting of the
genes to which the differentially methylated CpG-sites were annotated.
Two gene-sets were created for each of the CN and VS results, one for
genes implicated by epigenome-wide significant CpG-sites, and one for
genes implicated by nominally significant CpG-sites, giving a total of four
gene-sets. Multi-marker Analysis of GenoMic Annotation [30] was used to

test enrichment of those gene-sets in the results of a genome-wide
association study (GWAS) of AUD [31].

Weighted correlation network analysis (WGCNA). The WGCNA R package
[32] was used to generate co-methylated modules and relate those to AUD
case-/control status. For each brain region the quantile-normalized beta
values of CpG-sites nominally associated (p < 0.05) with AUD status were
used as input. Soft power thresholds were picked according to the criterion
of approximate scale-free topology (Rsigned

2 > 0.90). The number of CpG-
sites and the soft power thresholds picked can be found in Supplementary
Table S2. Unassigned CpG-sites were clustered in the “gray” module, which
was not taken into account for further analyses. For each brain region, the
module of correlated CpG-sites with the highest association with AUD was
identified. A GO analysis with the CpG-sites comprising the module was
performed using missMethyl [29].

GWAS ATLAS. The PheWAS tool from the publicly available database
GWAS ATLAS [33] [https://atlas.ctglab.nl/] was used to identify genome-
wide significant associations of the genes implied by the top hits in
the EWAS.

RESULTS
Epigenome-wide association analysis
In the CN, two CpG-sites were epigenome-wide significantly
hypomethylated in AUD cases compared to controls. The two sites
were annotated to the genes IREB2 (cg04214706) and HMGCR
(cg26685658). cg04214706 was also differentially methylated in
the ACC (pnominal= 0.005).
In the VS, 18 CpG-sites were epigenome-wide significantly

associated with AUD. Nine CpG-sites were hyper- and nine
hypomethylated. The top three hits were annotated to SLC30A8,
FAM20B, and PCAT29. Of the epigenome-wide significant CpG-
sites, cg12049992 in PIEZO2 and cg16767842 in GLANT9 were also
differentially methylated in CN (pnominal ≤ 0.023). Additionally,
cg1354575 in TCL1A was differentially methylated in PUT (pnominal

= 0.035) and cg02849689 (intergenic) in ACC (pnominal= 0.012).
Three of the epigenome-wide significant CpG-sites showed
nominally significant associations in an EWAS of AUD in peripheral
blood, namely cg27512762 in PCAT29, cg06427508 in KLHL6
(effect in opposite direction), and cg02849689, which was not
annotated to a nearby gene. In ACC, BA9, and PUT no epigenome-
wide significant differentially methylated CpG-sites were identified
(q ≥ 0.57). Epigenome-wide significant CpG-sites can be found in
Table 3 and the top 100 associations for each brain region,
together with more detailed information on location and
annotation to enhancers, in Supplementary Table (S3a–e). All
coefficients of CpG-sites with q < 0.05 for each brain region and in
peripheral blood are summarized in Supplementary Table S4.
Manhattan plots for EWAS in the ACC, CN, and VS are depicted in
Fig. 1. Post-hoc power analyses using the web app EPIC Array
Power Calculations (https://epigenetics.essex.ac.uk/shiny/
EPICDNAmPowerCalcs/) were conducted for sample sizes of n=
46 and n= 94, to adequately reflect our sample sizes and the
additional settings 2% mean difference and significance threshold
1 × 10−7, which was closest to the FDR-corrected thresholds in the
present study. This resulted in 11% of CpG-sites having a power
larger than 90% to detect mean methylation differences of 2% for
a sample size of 94 and 3.18% for a sample size of 46 (see also
Supplementary Fig. S1). It has to be noted, that the power
calculations assumed equal distributions between cases and
controls, which was not the case for all analyses. The sensitivity
analyses did not reveal major differences between the EWAS in
the complete sample and the reduced sample, in which control
subjects who died of toxicity were excluded. The effect sizes of the
nominally significant CpG-sites in each of the brain regions were
highly correlated (rCN= 0.99, rVS= 0.98, rPUT= 0.99, all p < 0.001).
Scatterplots of the effect sizes for nominally significant CpG-sites
in both analyses are depicted in Supplementary Fig. S2.
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Differentially methylated regions
In the CN, ten DMRs were associated with AUD. The top three
regions were annotated to the genes DDAH2, CCDC152, and
CAMSAP1. Six DMRs were associated with AUD (q < 0.05) in the VS,
with the three most strongly associated regions in TMEM232,
FANCD2OS, and HM13. All significant DMRs for CN and VS are
highlighted in Fig. 1 and can be found in Supplementary
Table S5a, b. In the ACC, one region in HLA9 was differentially
methylated (p Šidák -corrected= 3.25 × 10−6). No epigenome-wide
significant DMRs were observed in BA9 and PUT. The DMR in
DDAH2 was replicated by pyrosequencing (cg04074004: t(76.77)
= 2.39, p= 0.019). Differential expression was not observed (all p
> 0.136). For details see Supplementary Text S3.

Gene-ontology analysis
The strongest overrepresentation in the CN was for the biological
process “homophilic cell adhesion via plasma-membrane adhe-
sion molecules” (p= 5.37 × 10−6, q= 0.12) and “cell-cell adhesion
via plasma-membrane adhesion molecules” (p= 1.68 × 10−5, q=
0.187). In the VS, the cellular “Lsm1-7-Pat1 complex” showed the
strongest overrepresentation (p= 6.49 × 10−5, q ≈ 1). Both asso-
ciations did not remain significant after correction for multiple
testing. The ten GO-terms showing the strongest overrepresenta-
tion can be found in Supplementary Table S6a, b.

GWAS-enrichment analysis
No significant enrichment was observed in any of the regions and
gene-sets tested (all p ≥ 0.277).

Weighted correlation network analysis (WGCNA)
For the CN, 15 modules were identified consisting of 49–10 330
CpG-sites (Median= 965). The strongest association with AUD was
observed for module “black”, which showed the strongest

enrichment for the cellular component “PML body” (p= 0.001)
and the molecular function “G-rich strand telomeric DNA binding”
(p= 0.001). For CpG-sites nominally associated with AUD status in
the VS, 14 modules were identified, consisting of 38–12 721 CpG-
sites (Median= 611). Module “purple” showed the strongest
association with AUD and was enriched for a variety of immune-
related GO-terms, such as the biological processes “regulation of
T-cell proliferation” (p= 4.32 × 10−6) and “regulation of leukocyte
cell-cell adhesion” (p= 6.83 × 10−6). For CN module “black” and VS
module “purple” the correlations of the gene significance, which
reflects the biological significance of a CpG-site with an external
trait (here AUD) and the module membership, which reflects the
correlation of each CpG-site with the module, were calculated and
are displayed in Fig. 2a, b. The top enriched GO-terms for these
modules can be found in Supplementary Table S7a, b. Results for
ACC, BA9, and PUT are described in the Supplementary
Information (Text S2, Fig. S3).

GWAS ATLAS
GWAS ATLAS results for the genes implicated by the most
strongly associated site and region both in the CN and VS can be
found in Supplementary Table S8a–d. In brief, IREB2 has
previously been associated with smoking phenotypes (e.g.,
number of cigarettes a day, numbers of cigarettes previously
smoked daily), parental illnesses such as lung cancer and chronic
bronchitis, and psychiatric disorders like schizophrenia and
bipolar disorder [33–35]. Genome-wide significant associations
of DDAH2 with phenotypes from a variety of domains, e.g.,
immunological, metabolic, respiratory, and psychiatric have been
found. In the psychiatric domain, DDAH2 has been associated
with schizophrenia and bipolar disorder e.g. [34, 36]. SLC30A8 has
been implied in blood sugar levels [37] and TMEM232 in allergic
rhinitis and asthma [33].

Table 3. Epigenome-wide significant CpG-sites associated with AUD.

Caudate nucleus

Chr Position CG Gene Effect Std Err P Direction FDR

15 78729669 cg04214706 IREB2 −0.393 0.073 7.58E−08 +− 0.03

5 74633012 cg26685658 HMGCR −5.92 1.105 8.53E−08 − 0.03

Ventral striatum

8 117961971 cg17163967 SLC30A8 0.504 0.0882 1.09E−08 ++ 0.007

1 178998656 cg23933289 FAM20B 0.269 0.0482 2.36E−08 ++ 0.008

15 69908472 cg27512762 PCAT29 0.17 0.032 6.80E−08 −+ 0.016

7 1008720 cg02028351 COX19 0.18 0.034 1.28E−07 ++ 0.017

16 68563886 cg02941431 −0.251 0.047 1.27E−07 − 0.017

3 183274235 cg06427508 KLHL6 0.379 0.072 1.44E−07 ++ 0.017

12 132882652 cg16767842 GALNT9 0.239 0.046 1.74E−07 −+ 0.017

16 4901809 cg02741291 UBN1 0.579 0.113 2.61E−07 ?+ 0.023

16 1946176 cg10824492 −0.147 0.029 3.35E−07 − 0.026

19 35168316 cg18564234 SCGB1B2P; ZNF302 −0.776 0.153 4.13E−07 − 0.029

13 73687406 cg06630619 −0.43 0.085 4.76E−07 − 0.03

11 1215457 cg23618269 MUC5AC −0.432 0.086 5.25E−07 − 0.03

14 96177134 cg13545750 TCL1A −0.226 0.046 7.21E−07 − 0.039

5 79331052 cg04360099 THBS4 0.303 0.062 1.03E−06 ++ 0.048

6 29400397 cg26754552 0.277 0.057 9.88E−06 ++ 0.048

11 59390857 cg02849689 −0.298 0.061 1.24E−06 − 0.048

18 11147785 cg12049992 PIEZO2 −0.28 0.058 1.20E−06 +− 0.048

17 18210650 cg16021181 TOP3A −0.307 0.063 1.11E−06 − 0.048

Chr chromosome, Direction: (+) hypermethylated, (−) hypomethylated, (?) CpGs not available in one batch, FDR false discovery rate corrected p-value.
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DISCUSSION
The present study examined DNA-methylation associated with
AUD in regions of the addiction neurocircuitry using an
epigenome-wide methylation analysis approach employed in
human postmortem brain tissue. The largest of its kind to date
and first to examine five brain regions, this study identified several
novel differentially methylated CpG-sites as well as DMRs
associated with AUD, providing potential insight into underlying
mechanisms.
We found significant differentially methylated CpG-sites in two

striatal regions. In the CN, two epigenome-wide significant CpG-
sites in IREB2 and HMGCR, were identified. IREB2 is a gene
encoding iron regulatory protein 2, which is an RNA-binding
protein that is involved in the regulation of cellular iron
metabolism [https://www.genecards.org/cgi-bin/carddisp.pl?
gene=IREB2]. Iron overload in the brain has previously been
associated with cognitive decline in AUD [38]. Neurodegeneration
has been reported in two subjects with bi-allelic loss of function
variants in IREB2 [39, 40]. IREB2 has also been associated with
smoking phenotypes [33]. The association with smoking, which
strongly affects DNA methylation [41, 42], may be linked to the
relevance of the gene to addiction phenotypes. In the present
study, the IREB2-CpG-site was also differentially methylated in the

ACC (nominal significance), which might reflect a relevance in
addiction phenotypes in multiple brain regions.
In the VS, 18 CpG-sites were epigenome-wide significantly

associated with AUD. The strongest association was observed in a
CpG-site in SLC30A8, which encodes a zinc efflux transporter that
is involved in the accumulation of zinc in the intracellular vesicles.
Zinc is a structure-building element in alcohol dehydrogenase
(ADH) and thereby important for the proper function of ADH,
which is needed to break down alcohol [43]. Differential
methylation in SCL30A8 may lead to altered zinc availability and
indirectly impact ADH function, and thus alcohol metabolism.
SLC30A8 has also been implicated in type 1 and type 2 diabetes
[44]. In both types epigenetic and transcriptomic levels of SLC30A8
have shown to be altered [45]. Heavy alcohol consumption is also
an established risk factor for type 2 diabetes on the phenotypic
level [46]. Three of the epigenome-wide significant CpG-sites were
also previously differentially methylated in an independent EWAS
of AUD [27]; these convergent results might point towards a cross-
tissue effect of these sites.
Significant regional methylation differences were observed in

the ACC, CN, and VS. One DMR was observed in the ACC and that
region was annotated to HLA complex group 9, a noncoding RNA
in the major histocompatibility complex. HLA antigens play a role

Fig. 1 Manhattan plots of association of methylation values with AUD. Results for the anterior cingulate cortex are depicted in A; caudate
nucleus in B; ventral striatum in C. Highlighted CpG-sites represent differentially methylated regions. Genes implicated by CpGs (light and
dark gray) and DMRs (green) are specified in the figures. Red line indicates FDR-corrected significance.
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in AUD and alcohol-associated liver disease [47]. In the CN, the
DMR showing the strongest association with AUD was annotated
to DDAH2, encoding for dimethylarginine dimethylaminohydro-
lase, which is involved in the formation of nitric oxide by indirect
inhibition of nitric oxide synthase (NOS) [https://www.genecards.
org/cgi-bin/carddisp.pl?gene=DDAH2]. Nitric oxide has previously
been associated with sleep disturbances, as part of the sleep-wake
state controlling metabolites [48]. Sleep disorders and distur-
bances, such as decreased total sleep time and decreased sleep
efficiency, are common in individuals during periods of alcohol
consumption and prolonged withdrawal [49, 50]. In rodent
studies, alcohol exposure influenced NOS expression in the brain
[51] and the knockout of neuronal NOS was associated with
increased consumption of highly concentrated alcohol solutions
[52]. Although the DMR in DDAH2 was replicated by pyrosequen-
cing, we did not observe differential gene expression between
AUD cases and controls. It has to be noted, that differential gene
expression is only partly explained by DNA-methylation differ-
ences. For example, in postmortem brain samples of individuals
with schizophrenia and controls, only 204 of 71 753 tested CpG-
gene pairs were significantly correlated [53]. A potential functional
relevance of the DMR in DDAH2 requires further investigation, for
instance in relation to contact frequency maps (chromosomal
architecture/Hi-C), which can be simultaneously studied with the
methylome in single-cell experiments [54].
Of the six DMRs identified in the VS, a region in TMEM232

showed the strongest association. TMEM232 has previously been
associated with respiratory traits, such as seasonal allergic rhinitis
[55]. Another significant CpG-site was annotated to HM13. This
gene encodes for minor histocompatibility antigen H13. In
general, minor histocompatibility antigens function in the immune
system by recognizing T cells [56]. No studies have investigated
direct associations between AUD and H13 expression changes yet,
but it is known that the immune system is downregulated in
patients with AUD [57].
GO-term analyses investigating molecular functions associated

with differentially methylated CpG-sites did not yield significant
results after multiple testing correction, which is most likely
attributable to the limited statistical power. No significant
enrichment was observed for each of the gene-sets in GWAS
signals for AUD, which could indicate that differential methylation
in the newly identified CpG-sites is more sensitive to environ-
mental factors than genetic effects.
In the WGCNA analysis in VS a module enriched for immune-

processes was most strongly associated with AUD, which are
known to be influenced by alcohol abuse [58].
In this brain-region-specific analysis, comparing individuals with

AUD and controls, we focused beside prefrontal areas on striatal

regions, as previous studies have indicated that AUD may be
associated with a striatal shift in activation from ventral to dorsal,
as drug intake changes from goal-directed to habitual [59, 60].
These studies focus on changes in neurotransmitter release and
functional connectivity but it is not known how epigenetic
changes impact this functional striatal shift. Our epigenome-wide
results provide a first basis to explore epigenetic contributions to
functional striatal changes.
This study has several limitations. The first is PMI, which can

influence the tissue quality. The longer the individual has been
deceased before the tissue was extracted from the body, the
further along are degradation processes [61]. While we corrected
for this in our analyses, our results may have been affected by
postmortem degradation processes nevertheless. Second, we
cannot infer whether the observed differences in DNA-
methylation are a result of addiction or long-term alcohol
consumption, which affects multiple organ systems. Third, the
methylation array used in the present study combined with the
bisulfite conversion does not distinguish between methylation
and hydroxymethylation. Therefore, no conclusions can be drawn
regarding methylation type specific effects. Also, for several CpG-
sites the effect in the meta-analysis was driven by a large effect in
one, but not the other batch and in some of the cases this went
hand-in-hand with a change in direction. For example,
cg04214706 had a small positive effect, which was statistically
not different from zero in the first batch, and a large negative
effect in the second. Further samples are needed to validate these
findings. Due to the sparse availability of human postmortem
brain tissue, our sample size is small compared to EWAS in
peripheral blood, which results in limited statistical power,
especially taking into account the high multiple testing correction
burden. However, EWAS analysis of peripheral blood allows to
reveal only limited conclusions about differential methylation in
the brain, whereas studies that examine multiple brain sites in a
comparative fashion point to region-specific functional changes.
Lastly, the correlational design of this analysis does not allow
conclusions about the causality of the findings. DNA-methylation
differences both be a result of AUD and be present in individuals
before onset of the disorder.
Here, we identified novel associations of differential DNA-

methylation between AUD cases and controls, which are
prominent in alcohol-related pathways and diseases linked with
AUD. To confirm these observations, larger samples are needed
from the respective brain regions. Human postmortem brain
tissue is difficult to obtain and very few brain banks focus on
substance use disorders. Combining existing datasets, generating
a larger amount of DNA-methylation data, and integrating multi-
omics data, could lead to more conclusive results that may help to

Fig. 2 Module memberships vs. gene significance. Association of gene significance for AUD status with module membership, for the
modules A “black” in caudate nucleus, and B “purple” in ventral striatum.
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understand the molecular changes due to substance abuse in the
brain and eventually to the identification of drug targets for more
effective treatment of substance use disorders.

DATA AVAILABILITY
Raw data and summary statistics for all analyses are available on request.
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