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The rostral anterior cingulate cortex (rACC) is consistently implicated in the neurobiology of depression. While the functional
connectivity of the rACC has been previously associated with treatment response, there is a paucity of work investigating the
specific directional interactions underpinning these associations. We compared the fMRI resting-state effective connectivity of 94
young people with major depressive disorder and 91 healthy controls. Following the fMRI scan, patients were randomized to
receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or a placebo. Using spectral dynamic causal modelling, we
examined the effective connectivity of the rACC with eight other regions implicated in depression: the left and right anterior insular
cortex (AIC), amygdalae, and dorsolateral prefrontal cortex (dlPFC); and in the midline, the subgenual (sgACC) and dorsal anterior
cingulate cortex (dACC). Parametric empirical Bayes was used to compare baseline differences between controls and patients and
responders and non-responders to treatment. Depressed patients demonstrated greater inhibitory connectivity from the rACC to
the dlPFC, AIC, dACC and left amygdala. Moreover, treatment responders illustrated greater inhibitory connectivity from the rACC to
dACC, greater excitatory connectivity from the dACC to sgACC and reduced inhibitory connectivity from the sgACC to amygdalae at
baseline. The inhibitory hyperconnectivity of the rACC in depressed patients aligns with hypotheses concerning the dominance of
the default mode network over other intrinsic brain networks. Surprisingly, treatment responders did not demonstrate connectivity
which was more similar to healthy controls, but rather distinct alterations that may have predicated their enhanced treatment
response.

Neuropsychopharmacology (2022) 47:1240–1248; https://doi.org/10.1038/s41386-021-01214-z

INTRODUCTION
Major depressive disorder (MDD) is one of the most common
psychiatric disorders, with an estimated prevalence of 10% within the
adult population [1]. Despite several psychotherapeutic and phar-
macological interventions, overall remission rates remain below 50%
[2–4]. Adolescence is the peak period of depression onset [5], with
those experiencing depression at this stage often showing
poor response to typical treatments [6]. This is likely in part due to
the reduced relative effectiveness of antidepressant medication for
this population [7, 8], which may result from an increased
responsivity to placebos [9, 10]. However, much of the rationale for
explaining variability in treatment response remains speculative due
to our limited understanding of the neurobiological mechanisms of
depression [11]. As such, recent neuroimaging work has attempted
to identify brain characteristics that contribute to diagnostic and
prognostic outcomes: so-called neural biomarkers [12–14].
Widespread interactions both between and within intrinsic brain

networks have previously been associated with the manifestation
of depressive symptoms [11, 15], with the default mode
(DMN), salience, and central executive networks (CEN) all being

implicated in MDD [16, 17]. As part of the DMN, the rostral anterior
cingulate cortex (rACC) is one of the more consistently identified
regions implicated in depression treatment response [18–20]. In
healthy individuals, the rACC and wider DMN are highly active
during rest and self-referential processing [21, 22] and are
suppressed by tasks that demand an external focus [23, 24]. Due
to their opposing relationship with attentional demands, the DMN
is commonly shown to be anticorrelated with both the dorsal
attentional network and CEN in healthy individuals [25, 26].
Patients with depression demonstrate elevated levels of activity in
rACC at rest [27–29] and reduced suppression during external tasks
[30]. MDD patients also exhibit altered rACC connectivity,
illustrating increased connectivity from the dorsal anterior
cingulate cortex (dACC) to rACC [31] and decreased (or more
negative) connectivity between the DMN and CEN [32, 33].
Moreover, depressive symptom severity has been negatively
associated with functional connectivity between the rACC and
dorsolateral prefrontal cortex [dlPFC; 34].
The rACC has also been shown to predict treatment response

and remission [29, 35]. Specifically, higher pretreatment activity of
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rACC at rest has been associated with treatment response [18, 36],
which has been hypothesized to reflect a more adaptive form of
self-referential processing [29]. Interactions between the rACC
and other regions, including the anterior insular cortex (AIC), have
also been positively associated with greater depressive symptom
improvements [37, 38]. Furthermore, connectivity between the
ventromedial prefrontal cortex/rACC and subgenual anterior
cingulate cortex [sgACC; 35, 39], dlPFC [40, 41] and amygdala
[42] have all been associated with poorer treatment outcomes.
Psychiatric disorders including post-traumatic stress disorder,
have also been previously associated with a pattern of
predominate bottom-up connectivity from the amygdala to
sgACC [43]. This has been hypothesized to be due emotional
dysregulation, with neurofeedback training being associated with
increased bidirectional connectivity between the prefrontal and
amygdala [44]. Together these results suggest that these
extended rACC network interactions appear to influence depres-
sion severity and response trajectory. While directional (causal)
connectivity within the DMN has previously been associated with
treatment response [45], the directional influences from other
aforementioned regions and their effect on treatment response
remain unclear.
This study aimed to thoroughly examine rACC network

interactions in young people with depression and their associa-
tions with treatment response. We used spectral dynamic causal
modelling [DCM; 46, 47] to examine baseline resting-state
effective connectivity of rACC with the bilateral amygdalae, AIC,
dlPFC, as well as sgACC and dACC. By investigating these
parameters in a cohort of young people with depression who
participated in a randomized controlled trial (Youth Depression
Alleviation [YoDA-C]) [48], we also aimed to characterize how
these baseline alterations predicted response to treatment. Our
first hypothesis was that depression would be characterized by
greater inhibitory connectivity from the rACC to bilateral dlPFC.
Our second hypothesis, which was broadly motivated by previous
research but was also exploratory in nature, was that treatment
responders would demonstrate greater excitatory connectivity
from the rACC to AIC [37, 38] and greater negative connectivity
from the rACC to dlPFC [40, 41], sgACC [35, 39] and amygdala [42]
in comparison with non-responders at baseline.

METHODS
Participants
One hundred and eleven unmedicated, help-seeking depressed partici-
pants, aged between 15 to 25 years, were recruited through specialist
mental health clinics located in the northern and western suburbs of
Melbourne, Australia. Participants were enrolled as part of the YoDA-C trial
(for full details see [48]). In brief, YoDA-C was a randomized, double-blind,
placebo-controlled, multicenter clinical trial comparing the efficacy of
12 weeks of cognitive behavioral therapy (CBT), plus either fluoxetine or a
placebo. These patients had been diagnosed with MDD, as assessed by the
Structured Clinical Interview for DSM-IV Axis I Disorders [SCID; 49].
Depressive symptoms were at least of a moderate level of severity, as
indicated by a Montgomery-Åsberg Depression Rating Scale (MADRS)
score of ≥20. In addition, these participants had no lifetime or current
diagnosis of a psychotic or bipolar disorder, no current treatment with
antidepressant medication, were not pregnant, and had an estimated IQ
>85 as determined by the Wechsler Test of Adult Reading [50]. Response
from depression was defined as a MADRS symptom score reduction of 50%
or greater following 12 weeks of treatment [51]. This study also recruited
104 age and sex-matched healthy participants through online advertise-
ments. They had no past mental health disorder diagnoses as assessed
through the SCID criteria or an IQ lower than 85.
All participants were provided with, and signed, an informed consent form

to participate in the study. For those under the age of 18, both the consent of
the participant and a parent were required. This study and consent process
had been approved by the Melbourne Health Human Research and Ethics
Committee. Of the total number of participants who underwent scanning a
total of 13 controls and 17 patients were omitted from further analyses. This

was due to incidental findings (four controls, one patient), the lack of follow-
up MADRS data (eight patients) and not having sufficient activation in at least
one region to undergo DCM analysis (nine controls, eight patients; see
below). As a result, 91 healthy controls and 94 MDD participants were
included in our analyses. Of these 94 MDD participants, 44 were shown to
respond following treatment, while 50 were observed to be treatment non-
responders (see Fig. S1 for CONSORT flow diagram).

Image acquisition
A 3T General Electric Signa Excite system with an eight-channel phased-
array head coil was used in combination with ASSET parallel imaging. The
functional sequence consisted of a single shot gradient-recalled echo-
planar imaging sequence in the steady state (repetition time, 2000ms;
echo time, 35ms; and pulse angle, 90°) in a 23 cm field-of-view, with a
64 × 64-pixel matrix and a slice thickness of 3.5 mm (no gap). Thirty-six
interleaved slices were acquired parallel to the anterior-posterior
commissure line with a 20° anterior tilt to better cover ventral prefrontal
brain regions. The total sequence duration was 8minutes, corresponding
to 240 whole-brain echo-planar imaging volumes. Participants were
instructed to keep their eyes closed for the duration of the scan. The
first four volumes from each run were automatically discarded to allow for
signal equilibration. A T1-weighted high-resolution anatomical image was
acquired for each participant to assist with functional timeseries co-
registration (140 contiguous slices; repetition time, 7.9 s; echo time, 3 s; flip
angle, 13°; in a 25.6 cm field-of-view, with a 256 × 256-pixel matrix and a
slice thickness of 1 mm). To assist with noise reduction and head
immobility, all participants used earplugs and had their heads supported
with foam-padding inserts.

Image analysis and preprocessing
All analyses were conducted using the Spartan High Performance Computer
hosted at The University of Melbourne [52]. Preprocessing occurred through
the use of ENIGMA HALFpipe Version 1.0.0 [53], a semi-automated pipeline
based on fMRIprep [54]. A high-pass filter (125 s) was used to account for
low-frequency noise and smoothing occurred with a 6mm full-width at half-
maximum kernel. Grand mean scaling was deployed with a mean of 10,000
and ICA-AROMA was used to regress out motion artefacts [55].

Dynamic causal modelling overview
DCM is a technique that estimates the directed functional interactions
between neural populations from neuroimaging data [56, 57]. In contrast
to stochastic DCM, spectral DCM is more computationally efficient and
thus is more suitable for examining interactions between a relatively large
number of regions [46, 58]. Connectivity between regions of interest is
measured in hertz (Hz), with positive values being indicative of putative
excitation between regions while negative values represent putative
inhibition. Conversely, self (or recurrent) connections are inhibitory and are
log-scaled such that positive values represent greater inhibition while
negative values indicate reduced inhibition.

Timeseries extraction, model specification and estimation
DCM analysis was conducted in MATLAB Version 9.8 (The MathWorks Inc.,
Natick, USA) and Statistical Parametric Mapping (SPM) Version 12- v7771
(Wellcome Trust Centre for Neuroimaging, London, UK). Our chosen
volumes of interest (VOIs) were informed by reviews investigating
predictors of treatment response [16, 29] and included bilateral AIC,
dlPFC, and amygdalae, as well as the rACC, sgACC, and dACC. The Montreal
Neurological Institute coordinates for these regions were identified using
previously reported peak coordinates from meta-analyses and large-scale
functional connectivity studies. The precise coordinates were as follows:
amygdalae [±22, −6, −12] [59], AIC [36, 16, 4; −35, 14, 5] [60], dlPFC [±30,
43, 23] [61], rACC [–2,3,39] [62], dACC [4,30,30] [63], and sgACC [–8,2,18]
[64]. For visualization of region locations see Fig. S2. The timeseries from
these VOIs were extracted using the principal eigenvariate of all voxels in a
sphere within a radius of 6 mm of the centroids for midline regions (rACC,
sgACC, dACC) and 4mm for lateralized regions (amygdalae, AIC and dlPFC)
and which were present at a threshold of p < 0.05, uncorrected at an
individual (subject) level [65].
The candidate model space was specified and estimated with DCM12.5.

The parent model contained connections between all regions, except for
connections between non-analogous contralateral regions (e.g., no
connection between the right amygdala and left dlPFC).
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Parametric empirical bayes
We used Parametric Empirical Bayes (PEB) to examine between-group effects
on within-subjects’ parameters [66]. PEB allows for the inclusion of estimated
variance (in addition to the estimated means) of each parameter when
investigating between-group effects, unlike comparison using classical tests
which only use estimated mean values. The posterior probability (PP) was
calculated using the free energy (with vs. without) option, which compares the
evidence for all models in which a particular parameter is switched on with the
evidence for models in which it is switched off. A very conservative threshold
of PP >0.99 was used to include only those parameters which had a very
strong amount of evidence [67]. Consistent with our previous work [68], we
constructed a second level PEB model which included six regressors. The first
regressor represents the mean connectivity across all participants, to which the
between-subject effects add to or subtract from. The next two of these
regressors were of primary interest in this paper: differences between healthy
controls and MDD patients and baseline differences between patients who
went on to respond to treatment and those who did not. The covariates
included in this model were: differences at baseline between treatment
groups, the interaction of response and treatment type, and the effect of age.
Having estimated a group-level PEB model, we then searched over

nested PEB models, pruning parameters that did not contribute to overall
model evidence [57, 69]. Bayesian model averaging was performed on
these models after the final iteration to determine the strength of
connections in the last Occam’s window of 256 models. We repeated this
analysis with response replaced with remission (defined as MADRS ≤ 7) in
order to highlight those parameters that were associated with treat-
ment response and that were sufficiently robust to also demonstrate a
meaningful effect for remission.

Leave-one-out cross-validation
While PEB provides a hierarchical method for assessing connectivity
differences between groups, it does not provide an assessment of the
predictive validity of these parameters. This can be measured through the use
of leave-one-out cross-validation (LOOCV) in the PEB framework. While
concerns have been raised about the use cross-validation for group
comparison [70], particularly in relation to its tendency to overfit and result
in inconsistent model estimates, this is not the aim of cross-validation in PEB.
Rather than examining differences between groups, LOOCV (as implemented
in SPM as the spm.dcm_loo.m function) aims to determine whether the size of
the effect on a set of parameters is sufficiently large to predict group
allocation [67]. This does so by estimating a group-level PEB model while
excluding one subject and using this PEB model to predict whether the left-
out subject would be a treatment responder or non-responder, based on the
included parameters (in this case those that demonstrated differences
between treatment responders and non-responders). This predicted response
status can then be correlated with the observed response status (whether
they responded to treatment or not as part of the trial) to determine the
accuracy of this prediction. A significant correlation between the expected
and observed values demonstrates that the effect size estimated by was
sufficiently large to predict whether left-out subjects’ was a responder or a
non-responder above chance (see [67] for further details). Thus, for cases in
which differences are known to occur, LOOCV assess whether the size of the
effect is large enough to provide predictive utility.

RESULTS
Demographic and clinical results
As expected, patients’ MADRS symptoms were significantly greater
than controls at baseline (t(142.16)=−49.14, p < 0.001; Table 1).
Treatment response rates were similar for both treatment arms (CBT
and placebo= 45%; CBT and fluoxetine= 48%). Consistent with the
full trial analysis [48], no clinical or demographic differences were
observed between treatment responders and non-responders at
baseline (Table 2). No clinical or demographic differences were
observed between the two treatment arms (Table S1).

Differences in effective connectivity between depressed
patients and controls
Depressed patients demonstrated strong evidence for greater
inhibitory connectivity from the rACC to the left amygdala (expected
value=−0.06 Hz), right AIC (expected value=−0.13 Hz), left AIC
(expected value=−0.13 Hz), and left dlPFC (expected value=
−0.10 Hz). Reduced inhibitory connectivity was shown from the left
amygdala to left AIC (expected value= 0.08 Hz). Reduced excitatory
connectivity was observed from the right AIC to right dlPFC
(expected value=−0.06 Hz), right AIC to left AIC (expected value=
−0.07 Hz) and right dlPFC to sgACC (expected value=−0.04 Hz).
See Fig. 1 and Table 3 for depiction of connectivity differences
between healthy controls and MDD patients.

Differences in effective connectivity between treatment
responders and non-responders
In comparison to non-responders, treatment responders demon-
strated greater baseline inhibitory connectivity from the rACC to
dACC (expected value=−0.18 Hz). Treatment responders showed
reduced inhibition from the sgACC to both the right (expected
value= 0.12 Hz) and left amygdala (expected value= 0.09 Hz).
Responders also illustrated greater excitatory connectivity was
demonstrated from the dACC to sgACC (expected value= 0.06 Hz)
and reduced excitatory connectivity was shown from the left AIC
to left dlPFC (expected value=−0.08 Hz) and right AIC to right
dlPFC (expected value=−0.07 Hz). See Fig. 2 and Table 3 for
depiction of all difference between treatment responders and
non-responders at baseline. The expected values and PP for all
between-group effects are reported in Supplementary Table S2
(Response) and Supplementary Table S3 (Remission).

Leave-one-out cross-validation
Using those parameters which demonstrated differences between
responders and non-responders we performed a LOOCV to
determine whether the overall size of this effect on these
parameters could significantly predict the treatment response
status. Examination of all MDD patients resulted in an out-of-

Table 1. Characteristics of healthy controls and major depressive disorder patients.

Healthy controls (N= 90) MDD (N= 94)

Characteristics Mean or N SD or
Percentage

Mean or N SD or
Percentage

Cohen’s d or
Cramer’s V

p

Age (years) 20.11 2.7 19.73 2.8 0.14 0.353

Baseline MADRS 2.13 2.8 32.77 5.3 −0.7.22 <0.001

Female 49 53.8 59 62.7 0.09 0.219

Ethnicity 0.23 0.085

Caucasian 65 72.2 83 88.3

Black or African 1 1.1 1 1.1

Asian 19 21.1 9 9.6

South American 3 3.3 0 0

Indian 1 1.1 0 0

Middle Eastern 1 1.1 1 1.1

A.J. Jamieson et al.

1242

Neuropsychopharmacology (2022) 47:1240 – 1248



samples correlation between the predicted and observed response
status of r= 0.33, p < 0.001 (Fig. 3A). We then examined whether the
accuracy of this prediction differed between the two treatment
arms. Subsequent analyses for these groups separately revealed a
correlation of r= 0.12, p= 0.195 for the CBT and fluoxetine group
(Fig. 3B) and r= 0.48, p < 0.001 for the CBT and placebo group
(Fig. 3C). This indicated that while these parameters could be used
to significantly predict treatment response status across all MDD
participants above chance, the accuracy of this effect was largely
driven by those in the CBT and placebo group.

DISCUSSION
This study examined alterations in resting-state effective connectivity
and their associations with treatment response in young people with
depression. We demonstrated greater inhibitory connectivity from the
rACC to bilateral dlPFC in depressed patients, which supported our
first hypothesis. Notably, this inhibitory hyperconnectivity was more

widespread than hypothesized, also occurring from rACC to bilateral
AIC, dACC and right amygdala. In contrast to our second hypothesis,
treatment responders demonstrated greater inhibitory connectivity
from rACC to dACC at baseline. Moreover, we demonstrated that a
subset of these parameters that were significant predictors of
treatment response, and of note, prediction was particularly strong
for those treated with combined treatment with CBT and a placebo.
These findings support the central role of the rACC in depressive
symptom and course, particularly in terms of its interactions with
other cingulate regions.

Differences in effective connectivity between depressed
patients and controls
Depressed participants showed a pattern of greater inhibitory
connectivity from the rACC to the majority of other regions under
examination. While this is generally consistent with recent work,
these effects also appear more excessive than hypothesized. The
anticorrelations between the anterior DMN and CEN have been
previously shown to be largely driven by activity of the DMN [71].
In depressed patients, both the rACC and the wider DMN
demonstrate elevated levels of activity at rest when compared
with healthy controls [27–29]. Our results expand upon these
findings to illustrate greater specificity in terms of the direction-
ality and magnitude of these connectivity alterations. They
suggest that the reductions in functional connectivity between
DMN to CEN likely result from greater inhibitory connectivity
originating from the DMN, and in particular the rACC [32]. This
dominance of the DMN over the CEN in depression is also
highlighted in the work of Hamilton et al. [72], who reported that
the level of DMN dominance was positively correlated with
maladaptive rumination. As such, the greater negative connectiv-
ity of the anterior DMN over the CEN may represent an altered
ability to switch from internal mental processes to attend to
external task-relevant stimuli thereby contributing to the mani-
festation of these symptoms [73, 74].
While not specifically hypothesized, alterations from the rACC

to AIC, dACC and left amygdala were also observed in our
sample. These findings and the altered connectivity from the
rACC to bilateral dlPFC are consistent with the changes to

Table 2. Characteristics of treatment responders and non-responders.

Non-responders (N= 50) Responders (N= 44)
Characteristics Mean or Median SD or Q1–Q3 Mean or Median SD or Q1–Q3 Cohen’s d p

Age (years) 19.97 2.8 19.45 2.7 0.19 0.468

Age of Onset 15.01 3.0 15.81 2.3 0.30 0.346

Baseline MADRS 33.50 5.4 31.93 5.2 0.30 0.346

Baseline GAD7 14.14 5.4 12.77 5.8 0.26 0.397

Baseline SOFAS 57.09 12.7 59.0 9.7 −0.17 0.418

No. of therapy sessions 7.04 2.7 6.02 2.5 0.38 0.303

No. of episodes 3 1–11 2 1–4 0.18 0.468

Characteristics N Percentage N Percentage Cramer’s V p

Female 33 66.0 26 59.1 0.07 0.543

Comorbid Anxiety Disorder 35 70.0 22 50.0 0.20 0.303

Comorbid Substance Use 9 18.0 6 13.6 0.06 0.564

Ethnicity 0.20 0.303

Caucasian 48 96.0 35 79.5

Black or African 0 0 1 2.3

Asian 2 4.0 7 15.9

South American 0 0 0 0

Indian 0 0 0 0

Middle Eastern 0 0 1 2.3

Fig. 1 Differences in effective connectivity between major
depressive disorder patients and healthy controls. Arrows have
been weighted to indicate the relative size of the effects. Image
created with BioRender (www.biorender.com).
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intrinsic networks postulated in the triple network model of
psychopathology [75]. This model hypothesizes that different
psychiatric disorders are underpinned by abnormal interactions
between the DMN, salience network and CEN. Within this
framework, depression is viewed as a disorder marked primarily
by DMN dysfunction (abnormal self-referential processing and

rumination) with additional alterations in the salience network
(abnormal processing of negative stimuli) [76]. The AIC and dACC
are canonically part of the salience network [77, 78], while the
amygdala is also implicated in the processing of salience
information [79]. The salience network, particularly the AIC, also
plays an important role in mediating dynamic interactions
between the DMN and CEN and in the assignment of saliency
to both internal events and external stimuli [77]. These results
indicate that the altered switching between the DMN and CEN
previously associated with depression appears to occur both
directly, through greater inhibition of the CEN, and indirectly,
through greater inhibition of the salience network. In addition, we
observed reduced connectivity from the AIC to dlPFC, which is
consistent with other research examining between-network
resting-state effective connectivity [80, 81]. This has been
hypothesized to broadly relate to depression associated abnorm-
alities in attention and decision-making processes [80]. Our
finding builds upon this work by illustrating that responders also
have reduced connectivity when compared with non-responders.
This suggests that this reduced AIC to dlPFC connectivity may be
indicative of a more prototypical depression, which responds
better to common antidepressant treatment.

Differences in effective connectivity between treatment
responders and non-responders
Of the connections originating from the rACC, only connectivity
from the rACC to dACC was different at baseline between
responders and non-responders. Notably, the directionality of this
effect was the same for the associations with both depression and
treatment response. As previously highlighted, the dysfunctional
interaction between the DMN and salience network may
represent interference with the dynamic switching of salience attri-
bution between internal and external stimuli by maladaptive
ruminative processes [77, 82]. As CBT aims to support individuals
in overcoming rigid thought patterns [83], this dysfunctional over-
suppression of the salience network may be particularly receptive
to treatments that focus on disrupting this process. Thus, this
inhibitory hyperconnectivity observed in depressed patients may
predicate or enhance treatment response, specifically for those
treated with CBT and a placebo. The LOOCV results further
reinforces that this effect may be particularly useful in predicting
response for those treated in this manner. Our previous work in
this sample demonstrated that greater excitation from the
amygdala to dlPFC during sad expression processing and reduced
excitation from the amygdala during fearful expression processing
at baseline in responders compared with non-responders [68].
Despite identifying different connectivity parameters, this overall
preferential predictive effect for those treated with CBT and a
placebo is consistent with our prior work [68] and appears to
suggest that, more generally, connectivity alterations are more
predictive for those given this treatment. As these results were
identified in the same participant sample, replication in other
samples would further aid in supporting these conclusions.
Nevertheless, these differences may be indicative of general
prognostic factors, or unique predictors for CBT treatment, which
are enhanced in the absence of pharmacological interventions.
The antidepressant effects of selective serotonin reuptake
inhibitors, such as fluoxetine, are hypothesized to occur through
the increasing of neuroplasticity [84]. This in turn may alter
connectivity variability in such a way that its initial state becomes
less informative of future response. Thus, despite these para-
meters being predictive of overall response, their specific utility for
those treated with CBT and placebo likely occurs not as a result of
the treatment itself, but because of the lack of fluoxetine in this
treatment arm. The ultimate scope and clinical utility of such
findings is dependent on two features that remain unclear. First,
whether the effects observed here are truly predictive response to
CBT or simply generally prognostic, and second, whether the

Table 3. Summary of connectivity differences between major depressive
disorder patients and healthy controls as well as between treatment
responders and non-responders.

Parameter estimates (Hz)

MDD > Healthy Controls

R_Amygdala→ R_Amygdala –.07

L_Amygdala→ L_AIC .08

R_AIC→ R_AIC .06

R_AIC→ L_AIC −.07

R_AIC→ R_dlPFC −.06

rACC→ L_Amygdala −.07

rACC→ R_ AIC −.14

rACC→ L_AIC −.15

rACC→ rACC −.10

rACC→ dACC −.10

rACC→ R_dlPFC −.08

rACC→ L_dlPFC −.12

dACC→ rACC .05

dACC→ dACC −.08

R_dlPFC→sgACC −.04

Responders > Non-Responders

L_Amygdala→ dACC −.17

R_AIC→ R_dlPFC −.07

L_AIC→ L_dlPFC −.08

sgACC→ R_Amygdala .12

sgACC→ L_Amygdala .09

rACC→ dACC −.18

dACC→ sgACC .06

AIC anterior insular cortex, dACC dorsal anterior cingulate cortex, dlPFC
dorsolateral prefrontal cortex, MDD major depressive disorder, rACC rostral
anterior cingulate cortex, sgACC subgenual anterior cingulate cortex.
Note. All parameters shown demonstrated a posterior probability > .99.

Fig. 2 Differences in effective connectivity between treatment
responders and non-responders at baseline. Arrows have been
weighted to indicate the relative size of the effect. Image created
with BioRender (www.biorender.com).
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Fig. 3 Leave-one-out cross-validation predicting response following treatment for depressed patients. Left: The out-of-samples estimated
of the (mean-centered) treatment response status (whether after treatment individuals had a MADRS reduction ≥ 50%) with 90% credible
interval (shaded area). Right: The correlation between observed scores and the expected values for each individual. For (A) both treatment
arms, (B) only those treated with CBT and fluoxetine, and (C) only those treated with CBT and a placebo.
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reduced predictive accuracy observed in those treated with CBT
and fluoxetine is generalizable to other SSRIs and/or antidepres-
sant pharmacotherapies. Disentangling such factors in future work
is necessary to determine precisely how these parameters may be
clinically translatable.

Limitations
As the randomized controlled trial did not contain a treatment
arm comprising placebo alone, it is difficult to disentangle which
of the effects observed were prognostic effects and which are due
to treatment with CBT. Our results were derived from young adults
and adolescents and therefore requires replication in older
depressed populations. Follow-up imaging data, which was not
available, would have allowed us to determine whether the
parameters that were different for treatment responders were
normalized or exaggerated further through successful treatment.
This is an important consideration for further research that may
help to clarify why these parameters were predictive of response.
While beyond the scope of our current model, both the posterior
cingulate cortex and hippocampus have been shown to
demonstrate depression associated alterations in activity. We
selected not to include these regions as they have demonstrated
limited evidence in predicting treatment response and in order to
constrain the number of estimated model parameters.

CONCLUSIONS
While there have been a number of other studies examining
effective connectivity in depressed adolescents [68, 85, 86], to our
knowledge this is the first to examine how these parameters
related to depression and treatment response during resting-state.
As such, this research provides novel insight into how even in the
absence of affective stimuli, there appears to be widespread
alterations between intrinsic brain networks associated with the
processing of these stimuli. Specifically, resting-state effective
connectivity alterations associated with depression predominately
involve inhibitory hyperconnectivity from the rACC. Similarly, our
findings show that alterations between ACC regions, including the
rACC and dACC, appear to predict response to treatment. This
effect was shown to be particularly strong for those treated with
CBT and a placebo. We proposed that this effect may be due to
treatment with selective serotonin reuptake inhibitors resulting in
these parameters being less useful predictors of response. These
results highlight the potential utility of these parameters in
treatment response prediction, however, future research will be
necessary to disentangle the general prognostic effects and those
specifically associated with CBT.
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