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Patient-specific connectomic models correlate with, but do not
reliably predict, outcomes in deep brain stimulation for
obsessive-compulsive disorder
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Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-
compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation
of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply
cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of
systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these
gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts
connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely
activated by individual patients’ DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from
tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models’ performance on
held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above
chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated
with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated
with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with
sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting
the results of normative connectome studies.
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INTRODUCTION
Deep brain stimulation (DBS) is an emerging approach to treatment-
resistant mental disorders [1–3], but response rates in formal clinical
trials are mixed [1, 4–7]. More reliable outcomes might be achieved by
improving anatomic targeting. As psychiatric disorders are increas-
ingly understood as network disorders [8, 9], psychiatric DBS is
moving away from using a single nucleus/structure as the target and
towards attempts at affecting networks [1, 10–12]. There is particular
enthusiasm for identifying target networks through diffusion
tractography, which may enable DBS electrode placement to be
customized to individual patients’ anatomy. Although there is
controversy over how accurately tractography reconstructs white
matter anatomy [13, 14], remarkable early results have been reported
from DBS placement based on that imaging [10]. Further, there are
multiple tools available to model the interaction of DBS electric fields
and targeted tracts [15–17]. These tools could replace trial-and-error
DBS programming with a mathematically optimal approach to
activating desired pathways while minimizing off-target effects [18].

That could overcome the difficulty of correctly programming
stimulation, a likely driver of inconsistent clinical outcomes [1, 4, 19].
To realize that promise, we need to know which tracts should/

should not be stimulated. For DBS of the subcallosal white matter for
depression, multiple groups have settled on a specific white matter
confluence and are studying it prospectively (with varying clinical
outcomes [10, 20]). For obsessive-compulsive disorder (OCD), a
consensus may also be emerging. A theory linking OCD to
dysfunction in cortico-striato-thalamic connectivity [21, 22] has led
to a focus on white matter tracts linking prefrontal cortex (PFC) to
striatum, basal ganglia, and thalamus. Retrospective studies from
multiple institutions have implicated tracts to/from dorsolateral PFC
[23, 24], ventrolateral PFC [12, 25, 26], and anterior cingulate [12, 24]
as potentially important in response. Recent analyses of patients
implanted at two different targets correlated OCD response with a
tract linking the ventral internal capsule/striatum (VCVS) and the
subthalamic nucleus (STN) with the medial PFC [12, 26–29]. One study
further suggested that capture of tracts from orbitofrontal cortex
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(OFC) [23] led to non-response, although a qualitative synthesis [30]
suggests that effective DBS tends to activate OFC-related fibers, and
OFC-directed circuits can drive compulsive behaviors in animal
models [31–33].
Although promising, these prior tractographic analyses are also

limited. Many used standard atlases or connectomes derived from
healthy controls, comparing these maps against electric fields
from patient-specific DBS placements [12, 23, 27, 28]. Individual
patients, however, show dramatic variation in their white matter
topography compared to atlas standards [34]. Targeting maps
computed using “normative” connectomes differ from those
computed from patient-specific DTI images [24]. Other studies
used simple isotropic field models [25], or distance between
electrodes and a target tract [35] which may not accurately
capture the DBS-induced electric field [16, 36].
Most importantly, these analyses focused on tracts that

correlate with clinical response. A variable may correlate strongly
with an outcome but not be able to reliably predict that outcome,
e.g. if the means are separate but the tails of two distributions
overlap [37–39]. Best practices in biomarker research suggest
explicitly building predictive models, testing those models on
held-out data, and reporting predictive performance in addition to
correlation [37, 38, 40, 41]. Prediction-oriented analyses might
better answer the question of whether a tractographic finding can
be used as a programming target, i.e. whether it has strong
predictive accuracy at the single-patient level [42].
Here, we address these limitations through an explicit attempt

to predict single-patient response to DBS for OCD at the VCVS
target, based on more precise field modeling approaches and
using patient-specific tractography. We replicate in part prior
studies’ findings that cingulate, medial PFC, and lateral PFC tracts
are correlated with clinical response, but we show that these
correlations do not provide strong clinical predictive power, and in
some cases, we identify correlations that contradict earlier reports.

METHODS
Study population and clinical treatment
Participants were 6 patients who enrolled in a clinical trial (NCT00640133) of
VCVS DBS for OCD [43], plus 2 who received VCVS DBS for OCD under a
Humanitarian Device Exemption. All patients had sufficiently severe OCD at
baseline to qualify for DBS (Table S1). All patients received Medtronic model
3387 DBS leads, with the most ventral contact targeted to the ventral striatal
grey matter. The Institutional Review Boards of Massachusetts General Hospital
and Butler Hospital approved the protocols and provided ethical oversight. All
participants gave informed consent, explicitly including separate consent for
DBS and for neuroimaging. We report here all patients who agreed to undergo
imaging. We analyzed both the Yale-Brown Obsessive-Compulsive Scale
(YBOCS) and Montgomery-Asberg Depression Rating Scale (MADRS), collected
at visits ~2–4 weeks apart by a trained rater. We did not limit our analysis to
YBOCS and MADRS collected at specific timepoints, but used all available
datapoints for which we also had recorded DBS settings.

Imaging and patient-specific tractography
Pre-operative MRI data were acquired on a 3T Siemens TimTrio scanner.
Diffusion MRI (dMRI) scans had a spatial resolution of 2mm (isotropic) with 10
non-diffusion weighted volumes and 60 diffusion weighted volumes, with
gradient directions spread uniformly on the sphere with a b-value of 700 s/
mm2. dMRI data were registered to pre-operative T1- and T2-weighted MRI
images and post-operative CT scans using a published pipeline [44] available at
https://github.com/pnlbwh/. We then performed whole-brain tractography
from the dMRI data, using a multi-tensor unscented Kalman filter (UKF) [45, 46].
The UKF fits a mixture model of two tensors to the dMRI data, providing a
highly sensitive fiber tracking ability in the presence of crossing fibers [47–50].
The UKF method guides each fiber’s current tracking estimate by the previous
one. This recursive estimation helps stabilize model fitting, making tracking
more robust to imaging artifact/noise. Another benefit of UKF is that fiber
tracking orientation is controlled by a probabilistic prior about the rate of
change of fiber orientation, producing more accurate tracking than the hard
limits on curvature used in typical tractography algorithms. We combined the

UKF with a fiber clustering algorithm to create an anatomically curated and
annotated white matter atlas [49]. The clustering method groups the
streamlines from each patient using a spectral embedding algorithm. Each
fiber cluster is matched to a tract from an a priori labeled atlas of the white
matter derived from known connections in monkey and human brains. Fiber
clustering was performed only on streamlines longer than 40mm to annotate
medium and long range tracts.

Tract activation modeling
For each clinical DBS setting used in each patient, we calculated the
volume of tissue activated (VTA) using a modified version of StimVision
[15]. This comprised 150 parameter sets, measured over 2–5 years for each
patient. During this time, clinicians were actively programming devices and
altering settings, leading to substantial fluctuations in VTAs and tract
engagement. Briefly, the VTAs were calculated using artificial neural
network predictor functions, which were based on the response of multi-
compartment cable models of axons coupled to finite element models of
the DBS electric field [51]. The VTAs used in this study were designed to
estimate the spatial extent of activation for large diameter (5.7 µm)
myelinated axons near the DBS electrode [52].
Based on theories that VCVS DBS acts by modulating circuits that run

primarily in the internal capsule [14, 22, 30], we estimated activation of
pathways linking thalamus with anterior cingulate and pericingulate cortex
(ACC-PAC), dorsolateral PFC (dlPFC), ventrolateral PFC (vlPFC), dorsomedial PFC
(DMPFC), medial orbitofrontal cortex (MOFC) and lateral OFC (LOFC).
Pericingulate cortex includes rostral pre-cingulate cortex, but not the dorsal
prefrontal cortex (such as the supplementary motor area). The atlas-guided
fiber clustering algorithm [49] and a fiber clustering pipeline [53, 54] guided
manual delineation of fiber bundles connecting these regions to thalamus. All
pathway labelings were performed by an expert neuroanatomist (Dr. Makris).
Examples of the traced bundles and their intersections with DBS VTAs are
shown in Fig. 1A. Recent reports found that a tract connecting subthalamic
nucleus (STN) to medial prefrontal cortex was strongly associated with clinical
response to DBS in OCD [12, 26–28]. Therefore, we manually segmented the
STN in each subject and extracted all fiber tracts connecting the STN with the
prefrontal cortex (Fig. 1B). We verified that as the total charge delivered
increased (leading to a larger VTA), the total number of activated fibers also
increased (Fig. S1).

Data analysis—independent/predictor variables
It is unclear whether the important “dose” of DBS is activation of a sufficient
number of fibers (“total fiber” model), vs. the degree to which a sub-circuit is
influenced (i.e., the fraction of the overall streamlines in a tract that are within
the VTA, or a “percentage” model). We calculated both and fit them as two
separate models for each dependent clinical outcome (see below). We also
considered the possibility that DBS response is not determined by any
individual tract/pathway, but instead requires capture of multiple pathways
simultaneously. We, therefore, added a “total activation” variable to each
prediction model. For total fiber models, this variable represented the total
number of streamlines activated for all tracts. For percentage models, it
represented the mean percentage activation across all reconstructed tracts. We
standardized all input variables to the 0–1 interval to ensure that regression
coefficients were comparable between independent variables.
All models were fit and evaluated using scikit-learn (0.24.1) in Python

(3.8.5). With the exception of a necessary condition analysis described
below, variables were coded at the single-visit level. That is, we predicted
the clinical outcome at visit T from the DBS settings programmed at visit
T-1.

Data analysis—OCD response
White matter pathway activation might relate tightly to the degree of clinical
improvement (YBOCS as a continuous variable) or to patients’ overall well
being (dichotomous responder/non-responder analysis). We thus modeled
each separately. We analyzed continuous YBOCS as percentage decrease from
baseline. Distribution fitting via the ‘fitdist’ package verified that YBOCS values
were most compatible with a gamma distribution. We therefore predicted
YBOCS improvement via an L1-regularized generalized linear regression
(gamma distribution with identity link, Python package “pyglmnet”) and via a
random forest regression with 100 trees. The dependent variable was
percentage improvement in YBOCS. We compared these two approaches to
assess whether conclusions might be sensitive to the model formulation.
Regularized regression emphasizes selection of a small number of highly
leveraged variables, which may be more helpful in defining clinical decision
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rules. Random forests can outperform generalized linear regression in at least
some cases [55], particularly where there are nonlinearities better captured by
thresholding.
We further analyzed categorical (non)response, defined as a 35% or

greater YBOCS decrease from baseline [43]. For these, we compared an L1-
regularized logistic regression and a random forest classifier with 100 trees.
A minority of visits represented clinical response (29 visits out of 165,
although 5 of 8 patients were in clinical response during at least one visit).
To compensate for this imbalance, we applied the Synthetic Minority
Oversampling Technique (SMOTE, [56]) with 3 nearest-neighbor examples.
We chose L1 regularization for both regressions because dominant models
of OCD argue that dysfunction in specific cortico-striatal loops leads to
symptoms [21, 22] and/or that a relatively small number of fiber bundles
can explain response [12, 26–28]. This should be reflected in clinical
response being driven a small subset of tracts.

Data analysis—depression response
VCVS may have more effects on mood than on compulsivity [57], which
would be reflected in better prediction of mood (MADRS) than of YBOCS.
We applied the modeling pipeline used for categorical YBOCS response to
categorical MADRS response, defined as a 50% or greater MADRS decrease
from pre-surgical baseline. 7 out of the 165 visits met MADRS response
criteria, although this again represented 5 of 8 patients.
We further assessed tractographic models’ prediction of hypomania, a

known and voltage-dependent complication of VCVS DBS [58, 59]; details
are in the Supplement.

Data analysis—model evaluation
All categorical data sets were unbalanced, and the outcome of clinical
interest was always the minority class. We, therefore, report balanced
accuracy and recall (performance for the minority class) for the categorical
dependent variables. Further, we report the area under the receiver
operator curve (AUC), which is suggested to be the best summary of a
categorical biomarker’s performance [37, 40]. For continuous YBOCS
prediction, we report the fraction of variance explained and the coefficient
of determination (R2). We emphasize that R2 here is not the square of a
correlation coefficient [37].
All metrics were calculated on a held-out test set [37, 38, 40, 41]. For

each model, we held out 2 random patients from the dataset (effectively
4-fold cross-validation with resampling). This improves over leave-one-out
approaches, which can overstate predictive performance [60]. We left out
25% of patients, rather than visits, because data were highly autocorre-
lated visit-to-visit, which also falsely inflates performance [37]. We then fit
the predictive model on the remaining 6 patients, and we report the
performance on the visit-level data from the held out patients. To prevent
data leakage, the SMOTE upsampling was performed on the training set
only, after the split. We obtained confidence intervals for all metrics by
repeating this process over all 28 possible leave-two-out combinations,
then calculating the range of performance falling within 2 standard
deviations of the median performance.
We fit 16 models (4 outcomes × 2 types of model × 2 ways of expressing

activation), cross-validating within each model. We interpreted the outcomes
using an uncorrected 95% confidence interval to maximize power.

Fig. 1 Patient-specific tractographic mapping of OCD DBS response. A Tract tracing and activation modeling examples. Shown are left/right
oblique and axial views from one non-responder and one responder, with cortico-thalamic and cortico-STN tracts indicated by different
colors. DBS leads are shown in teal and VTAs in red. In this panel, we show only tracts intersecting the VTAs for clarity. B Tracing of tracts
between STN and frontal cortex, in the same responder as (A). To ensure capture of the tract reported in ref. [12], we broadly traced all
streamlines originating in a seed around STN and extending anterior to the central sulcus. This includes fibers coursing dorsally to motor
regions, and tracts as in ref. [12] connecting STN to ACC and medial PFC. Very few of these intersect the VTA in this patient, despite the good
clinical response (YBOCS drop of 61% from baseline). To emphasize that point, this panel shows all fibers traced from the STN seed in this
patient, regardless of VTA intersection.
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Data analysis—predictor importance
To detect potentially relevant tracts, we performed importance scoring on
all models, regardless of whether they correctly predicted the clinical
outcomes. For regression models, we computed the median and standard
deviation of the regression coefficient for each tract, across all the train-
test splits. For random forests, we applied permutation importance as
implemented in scikit-learn. We permuted each independent variable 5
times for each of the train-test splits.

Data analysis—alternative univariate approach
Recent papers [12, 26–28] used a different approach, based on comparison
of VTAs to population-scale tractography. As an additional analysis (not pre
planned), we attempted a similar approach on this dataset. We calculated
all linear correlations between YBOCS improvement (continuous variable)
and the activation of each individual tract (either as a total fiber or
percentage activation). These correlations were performed on the training
set after holding out 2 random patients, consistent with [12]. To test
whether this approach produced more generalizable predictors of DBS
response, we used the same data to fit a univariate linear regression for
each independent variable, then evaluated the model performance
(coefficient of determination, R2) on the 2 held out patients.
In a further exploratory analysis (see Supplement), we considered

whether DBS outcomes depended not on the tracts activated, but the
integrity of those tracts.

Data analysis—statistical power
Because our sample size is relatively small compared to other recent studies
[12], we assessed the clinical effect size that we could reasonably have hoped
to detect. We simulated a dataset with a known tract/outcome correlation rtrue
ranging from 0 to 1, with 100 replicates at each putative rtrue value. We then
calculated the fraction of times that our modeling approach identified
statistical significance, both for a primary metric (AUC) and our secondary
metric (size of the regression parameter for the putative predictive tract).

RESULTS
Clinical outcomes—YBOCS
The mean YBOCS improvement (considering each patient’s best
time point) was 46.6%, and 5 of the 8 patients (62.5%) were clinical
responders (≥35% YBOCS drop) for at least one visit.
No tract reliably predicted continuous YBOCS improvement. By all

metrics, model performance was worse than chance on the held-out
test set (Table 1), for both total-activation and percentage-activation
models. Consistent with this, no coefficients in the regression models
were above zero (i.e., the dataset mean was more reliable than any
tractographic predictor). In the random forest models, the highest
importance was percentage activation of fibers connecting thalamus
to left OFC, but this was at chance level (change in R2 across models:
mean 0.09, SD 0.24).
Similarly, no model exceeded chance for response/nonresponse

prediction (Table 2). In the logistic regression, highly weighted
features across models were the number (but not percentage) of
activated streamlines connecting thalamus to left cingulate, lateral
OFC, medial OFC, and vlPFC. Cingulate and lateral OFC streamline
activation were positively associated with response, whereas medial
OFC and vlPFC activation were negatively associated (Fig. 2). For all of
these tracts, the confidence interval for the coefficient estimated

across all train-test splits included 0. These findings were sensitive to
the modeling approach; the same tracts did not show median
importance scores different from 0 in the random forest models. The
ACC-PAC findings were corroborated by a Necessary Condition
Analysis on white matter integrity (Supplementary Results).
The alternate mass-univariate approach also did not reliably predict

response on the held-out test sets (Table 3). It was concordant with
the categorical response analysis in that it identified streamlines
connecting the left cingulate to thalamus as correlated with response,
and similarly streamlines from bilateral vlPFC as correlated with non-
response. There was more discordance than similarity, however. The
medial OFC tracts identified by regression were not selected in the
mass univariate approach, and conversely, the mass univariate
approach predicted nonresponse if tracts projecting to dlPFC were
within the VTA. Further, the mass univariate approach emphasized
percentage capture, while the logistic regression emphasized total
fibers within a VTA. We note that tracts from STN to PFC were
negatively correlated with clinical outcomes, whereas prior reports
identify them as positively correlated [12, 27, 28].

Clinical outcomes—MADRS
The mean MADRS improvement (considering each patient’s best
time point) was 55.69%, and 5 of the 8 (62.5%) were responders
(≥50% MADRS drop) at some point. Mood and OCD response were
not linked (r= 0.13 for correlation between response status on
YBOCS and MADRS). Consistent with other reports [57], there were
more observations of MADRS response without YBOCS than of
YBOCS response without MADRS (22 vs. 4).
No model reliably predicted MADRS response above chance

(Table S1). For comparison with the YBOCS analysis, we further
examined the non-zero coefficients of the total-fiber regression.
Capture of streamlines between right cingulate and thalamus was
correlated with MADRS response, and the confidence interval for
this coefficient excluded zero (Fig. S1). This was not true of any
other tract. Left vlPFC was associated with non-response (as it was
in the categorical YBOCS analysis), but the distribution of
coefficients across analyses included zero. Random forest impor-
tance scores were centered around zero.

Power analysis and detection bounds
Even with its relatively small sample size, the repeated-measures
design of our analysis granted 90% power for detection of a tract-to-
outcome correlation as low as 0.5 (Fig. 3), which is smaller than the
reported correlations in the largest available normative dataset [12].
Critically, there was a large gap between sensitivity for clinical
prediction (based on AUC) and sensitivity for the correlation itself
(based on the regression coefficient). For the latter, we retained 90%
power for detection of a correlation as low as 0.2.

DISCUSSION
Our results are both concordant and discordant with prior efforts to
predict clinical OCD DBS response from tractographic modeling of
cortico-striatal and cortico-basal circuits. Critically, we implemented
multiple analytic steps beyond prior studies: individualized, patient-

Table 1. Modeling outcomes for YBOCS improvement as a continuous variable.

R2 Explained variance

Median CI Lower bound CI Upper bound Median CI Lower bound CI Upper bound

L1 Regression (Percentage) −0.194 −1.743 1.355 0 0 0

L1 Regression (Total fibers) −0.196 −1.747 1.356 0 0 0

Random forest (Percentage) −0.792 −3.794 2.21 −0.023 −0.902 0.857

Random forest (Total fibers) −1.389 −4.934 2.156 −0.222 −1.249 0.805

All confidence intervals include 0. Negative coefficients of determination (R2) imply a model that performs worse than chance.
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specific tracts registered to individual lead placements, activation
volume calculation beyond simple electric field assumptions,
consideration of multiple clinical timepoints for each patient, and
formal evaluation of predictive power (as compared to measurement
of correlations between activation and response or group mean
differences). With this more guideline-adherent approach, we found
that no tract could reliably predict clinical response or complications,
whether those were considered in a continuous or categorical
approach. This is likely not a surprise—we and others have
highlighted that group-level significant correlations/separations often
do not have clinical predictive power [37–40]. In this sense, our results
support calls for caution regarding the clinical role of tractography
[16, 42]. We also showed that outcomes can be sensitive to the
analytic approach—our random forest and regularized regression
approaches produced very different results, even though both are
commonly used approaches to prediction and variable selection.
Model inspection may offer some insight into variables for further

investigation, even if pathway activation modeling approaches are
not yet able to strongly predict response. Numerically, predictive
power was greater (more non-zero regression coefficients after
regularization) when predicting categorical rather than continuous
outcomes. This may be because categorical outcomes effectively
smooth out small fluctuations in continuous rating scales, fluctuations
that may be primarily due to inter-rater variability or disease-unrelated
variables rather than to DBS settings. The YBOCS in particular shows
non-linear behavior at high scores that may exacerbate this [61]. We
obtained non-zero regression coefficients for models using activated
fiber counts, but not for percentage-activated models, implying that it
is more important to get at least a portion of a key tract within the
VTA. These results also make sense in the context of our finding that
the integrity (traceability) of these tracts varies greatly between
patients with OCD—a tract where response depends on tract integrity
will have a large coefficient in a total-fibers model, but not in a
percentage-activation model.
Our results in part support and in part diverge from a series of

recent papers implicating pathways between PFC and basal ganglia
as critical for OCD DBS [12, 26–28]. PAC to thalamus tracts were
implicated in both YBOCS and MADRS response, and were the most
positively weighted in our mass-univariate approach. Our white
matter integrity analysis identified the same tracts as having the
largest effect size (necessity). Also similar to that prior work, we found
that activation of connections to medial OFC produced numerically
worse outcomes. Inconsistent with the prior work [12, 26–28], we
found negative correlations (in the mass univariate analysis) or null
effects (in the predictive models) specifically for tracts connecting PFCTa

bl
e
2.

M
o
d
el
in
g
o
u
tc
o
m
es

fo
r
Y
B
O
C
S
im

p
ro
ve
m
en

t
as

a
ca
te
g
o
ri
ca
l
re
sp
o
n
se
.

B
al
an

ce
d
ac
cu

ra
cy

R
ec
al
l

A
U
C

M
ed

ia
n

C
I
Lo

w
er

b
ou

n
d

C
I
U
p
p
er

B
ou

n
d

M
ed

ia
n

C
I
Lo

w
er

b
ou

n
d

C
I
U
p
p
er

b
ou

n
d

M
ed

ia
n

C
I
Lo

w
er

b
ou

n
d

C
I
U
p
p
er

b
ou

n
d

L1
Lo

g
is
ti
c
(P
er
ce
n
ta
g
e)

0.
5

0.
5

0.
5

0
0

0
0.
5

0.
5

0.
5

L1
Lo

g
is
ti
c
(T
o
ta
l
fi
b
er
s)

0.
5

0.
09

3
0.
90

7
0.
57

1
−
0.
24

1.
38

3
0.
57

2
0.
28

1
0.
86

4

R
an

d
o
m

fo
re
st

(P
er
ce
n
ta
g
e)

0.
46

0.
19

2
0.
72

8
0

-0
.5
82

0.
58

2
0.
58

0.
36

8
0.
79

3

R
an

d
o
m

fo
re
st

(T
o
ta
l
fi
b
er
s)

0.
42

1
0.
19

3
0.
65

0
-0
.5
27

0.
52

7
0.
58

8
0.
37

4
0.
80

2

A
ll
co

n
fi
d
en

ce
in
te
rv
al
s
in
cl
u
d
e
ch

an
ce

(0
.5

fo
r
b
al
an

ce
d
ac
cu

ra
cy

an
d
A
U
C
,0

fo
r
re
ca
ll
o
f
th
e
m
in
o
ri
ty

cl
as
s)
.

Fig. 2 Non-zero regression coefficients across exhaustive leave-
two-out cross-validation of regularized logistic regression to
predict YBOCS response. All confidence intervals include 0, with left
medial OFC (non-response) and left ACC (response) coming closest
to significance. All reported results are for total fiber capture;
percentage capture did not have non-zero coefficients in this
analysis. Data are coded such that positive regression coefficients
represent clinical improvement.
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to STN or vlPFC to thalamus. This again may reflect the importance of
patient-specific imaging. Given that we have previously shown these
tracts to have substantial inter-individual variability in their position
within the internal capsule [34], and that here we note them to have
similar variability in their overall integrity, a normative connectomic
analysis may not reflect the actual fibers being successfully
modulated in DBS cases. Alternatively, our results may highlight
programming and surgical differences. These patients were implanted
and programmed following the approach in [62], which emphasizes
an initial search for a positive affective response. Other centers have
reported very different programming algorithms [63], based more on
standard anatomic positions. If response correlates with, e.g., the
quality of concomitant therapy [26, 64] or general clinical expertise
[65], those factors will likely be strongly correlated with the
programming clinician, and thus will spuriously load onto the tracts
and implant locations that clinician happens to prefer. Most

importantly, our results highlight the importance of applying analyses
designed specifically to identify clinical predictors [37]. Interestingly,
we found that OFC engagement predicted worse OCD clinical
response. OFC-originating components of cortico-striato-thalamic
circuits are heavily emphasized in theoretical [21, 22, 30] and animal
[31, 33, 66] models of OCD, and these findings may contribute to an
ongoing debate over those models.
These results are tempered by three limitations. First, our sample

size is small, consistent with the rarity of these patients [67]. Second,
imaging was not performed on a connectome-optimized scanner.
The 3T MRI used in this study has relatively weak gradients that
influence our maximum image resolution. Scanning at 7 Tesla (as has
now become more common [68]) might identify more tracts. Third,
we used relatively simple models of DBS activation. All of these add
noise, reducing our ability to detect subtle correlations, particularly
given DTI’s susceptibility to false positives [14]. Practically, however,
these limitations may not affect the clinical importance of our
findings. We mitigated the lower resolution of these scans by use of
an algorithm that is specifically designed to perform well in the
presence of noise [46] and ensuring that our extracted tracts matched
known, anatomically verified fiber bundles [49]. Regarding sample
size, small samples tend to inflate effect sizes and bias towards
positive conclusions [69], not the negative result we report. Most
importantly, for a tractographic result to be sufficiently reliable to
inform clinical targeting/programming, it would need to have a large
and clear influence on outcomes, with robustness to minor variations
in analytic or clinical technique. Such a large effect would be clearly
detectable and consistent across studies even at small sample sizes,
like the clinical effect of VCVS DBS, which shows consistent 60–70%
response rates across many small to medium cohorts [57, 59, 70–72].
We verified this by showing that the present dataset would have
been sufficient to identify a relatively modest tractography-to-
outcome correlation of 0.5. In that context, failure to identify a
significant predictor in this sample is relevant to both clinical practice
and future study design. Our results identify the limits of current
methods, and suggest a floor below which a biomarker would be
unlikely to provide clinical value.
At the same time, our results support a growing argument that

circuits linking ACC to thalamus and basal ganglia are important to

Table 3. Correlations between individual fiber tracts and YBOCS response, in the style of [12], filtered to tracts whose confidence interval excludes 0
on the training sets.

Training set R Test set R2

Tract Median CI Lower bound CI Upper bound Median CI Lower bound CI Upper bound

L dlPFC (Percentage) -0.405 −0.607 −0.203 −0.139 −1.842 1.564

L vlPFC (Total fibers) −0.389 −0.591 −0.187 −0.268 −2.813 2.277

R vlPFC (Percentage) −0.384 −0.504 −0.263 −0.162 −1.622 1.297

L STN (Percentage) −0.373 −0.62 −0.125 −0.301 −3.189 2.587

L vlPFC (Percentage) −0.366 −0.603 −0.129 −0.411 −27.119 26.297

R dmPFC (Percentage) −0.359 −0.481 −0.237 −0.275 −2.182 1.633

R dlPFC (Percentage) −0.356 −0.542 −0.17 −0.14 −1.706 1.426

All Regions (Percentage) −0.347 −0.555 −0.138 −0.35 −1.598 0.897

L dlPFC (Total fibers) −0.332 −0.594 −0.07 −0.275 −2.149 1.6

R STN (Percentage) −0.321 −0.525 −0.118 −0.315 −2.149 1.519

L dmPFC (Percentage) −0.315 −0.567 −0.063 −0.434 −22.196 21.329

All Regions (Total fibers) −0.311 −0.553 −0.069 −0.421 −1.868 1.026

R dmPFC (Total fibers) −0.266 −0.471 −0.062 −0.35 −1.832 1.132

R vlPFC (Total fibers) −0.266 −0.461 −0.071 −0.182 −2.991 2.626

L ACC-PAC (Total fibers) 0.268 0.067 0.469 −0.33 −1.959 1.298

R OFC-Lateral (Percentage) 0.319 0.07 0.567 −0.315 −1.771 1.141

No such tract has clinical predictive power on held-out test sets (all R2 values less than 0).

Fig. 3 Power analysis. The curves show the probability of reporting
a significant result, given an assumed level of correlation between a
single tract and YBOCS outcome. The red line represents
90% power.
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VCVS DBS response. They dovetail with other work linking modulation
of those circuits to increased cognitive control [73, 74], a construct
that is thought to be deficient in OCD [75, 76]. Thus, these results do
not imply that tractography and field modeling are non-useful for
understanding DBS. They establish a gap between our current level of
understanding (which can identify mechanistic hypotheses for follow
up) and the level needed for clinical practice. With multiple
technologies emerging to better verify target engagement and
address patient heterogeneity [1, 16], that understanding will likely
grow in coming years.

DATA/CODE AVAILABILITY
De-identified data tables and analysis code used to produce all exhibits in this
manuscript will be available at the time of publication at https://github.com/tne-lab/
Widge-Tractography-2021/.
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