Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of exogenous estradiol on task-based and resting-state neural signature during and after fear extinction in healthy women

Abstract

Fluctuations of endogenous estrogen modulates fear extinction, but the influence of exogenous estradiol is less studied. Moreover, little focus has been placed on the impact of estradiol on broad network connectivity beyond the fear extinction circuit. Here, we examined the effect of acute exogenous estradiol administration on fear extinction-induced brain activation, whole-brain functional connectivity (FC) during the fear extinction task and post-extinction resting-state. Ninety healthy women (57 using oral contraceptives [OC], 33 naturally cycling [NC]) were fear conditioned on day 1. They ingested an estradiol or placebo pill prior to extinction learning on day 2 (double-blind design). Extinction memory was assessed on day 3. Task-based functional MRI data were ascertained on days 2 and 3 and resting-state data were collected post-extinction on day 2 and pre-recall on day 3. Estradiol administration significantly modulated the neural signature associated with fear extinction learning and memory, consistent with prior studies. Importantly, estradiol administration induced significant changes in FC within multiple networks, including the default mode and somatomotor networks during extinction learning, post-extinction, and during extinction memory recall. Exploratory analyses revealed that estradiol impacted ventromedial prefrontal cortex (vmPFC) activation and FC differently in the NC and OC women. The data implicate a more diffused and significant effect of acute estradiol administration on multiple networks. Such an effect might be beneficial to modulating attention and conscious processes in addition to engaging neural processes associated with emotional learning and memory consolidation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Estradiol levels and skin conductance responses (SCRs) across experimental phases.
Fig. 2: Correlations between estradiol level and brain activation during extinction learning and extinction retention test.
Fig. 3: Correlations between estradiol level and task-based functional connectivity.
Fig. 4: Correlations between estradiol level and post-extinction resting-state functional connectivity.
Fig. 5: Mediation analyses.

References

  1. 1.

    Gater R, Tansella M, Korten A, Tiemens BG, Mavreas VG, Olatawura MO. Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the world health organization collaborative study on psychological problems in general health care. Arch Gen Psychiatr. 1998;55:405–13.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45:1027–35.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, et al. Anxiety disorders [no. 1]. Nat Rev Dis Prim. 2017;3:1–19.

    Google Scholar 

  4. 4.

    Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man [no. 9]. Nat Rev Neurosci. 2018;19:535–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: a common link. J Neuroendocrinol. 2020;32:e12800.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Ressler KJ. Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. AJP. 2020;177:214–22.

    Article  Google Scholar 

  8. 8.

    Greco JA, Liberzon I. Neuroimaging of fear-associated learning [no. 1]. Neuropsychopharmacology. 2016;41:320–34.

    PubMed  Article  Google Scholar 

  9. 9.

    Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev. 2017;77:247–85.

    PubMed  Article  Google Scholar 

  10. 10.

    Lonsdorf TB, Haaker J, Schümann D, Sommer T, Bayer J, Brassen S, et al. Sex differences in conditioned stimulus discrimination during context-dependent fear learning and its retrieval in humans: the role of biological sex, contraceptives and menstrual cycle phases. J Psychiatr Neurosci. 2015;40:368–75.

    Article  Google Scholar 

  11. 11.

    Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL, et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience. 2010;168:652–8.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev. 2019;103:81–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Nillni YI, Rasmusson AM, Paul EL, Pineles SL. The impact of the menstrual cycle and underlying hormones in anxiety and PTSD: what do we know and where do we go from here? Curr Psychiatr Rep. 2021;23:8.

    Article  Google Scholar 

  14. 14.

    Maren S, De Oca B, Fanselow MS. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 1994;661:25–34.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Markus EJ, Zecevic M. Sex differences and estrous cycle changes in hippocampus-dependent fear conditioning. Psychobiology. 1997;25:246–52.

    Google Scholar 

  16. 16.

    Andreano JM, Cahill L. Sex influences on the neurobiology of learning and memory. Learn Mem. 2009;16:248–66.

    PubMed  Article  Google Scholar 

  17. 17.

    Cahill L. Why sex matters for neuroscience [no. 6]. Nat Rev Neurosci. 2006;7:477–84.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Merz CJ, Kinner VL, Wolf OT. Let’s talk about sex … differences in human fear conditioning. Curr Opin Behav Sci. 2018;23:7–12.

    Article  Google Scholar 

  19. 19.

    Andreano JM, Touroutoglou A, Dickerson B, Barrett LF. Hormonal cycles, brain network connectivity, and windows of vulnerability to affective disorder. Trends Neurosci. 2018;41:660–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Cover KK, Maeng LY, Lebrón-Milad K, Milad MR. Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology [no. 8]. Transl Psychiatr. 2014;4:e422–e422.

    CAS  Article  Google Scholar 

  21. 21.

    Li SH, Graham BM. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatr. 2017;4:73–82.

    Article  Google Scholar 

  22. 22.

    Pineles SL, Arditte Hall KA, Rasmusson AM. Gender and PTSD: different pathways to a similar phenotype. Curr Opin Psychol. 2017;14:44–48.

    PubMed  Article  Google Scholar 

  23. 23.

    Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory [no. 10]. Nat Rev Neurosci. 2020;21:535–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatr. 2011;70:920–7.

    CAS  Article  Google Scholar 

  25. 25.

    Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, et al. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatr. 2012;72:19–24.

    CAS  Article  Google Scholar 

  26. 26.

    Pineles SL, Nillni YI, King MW, Patton SC, Bauer MR, Mostoufi SM, et al. Extinction retention and the menstrual cycle: different associations for women with posttraumatic stress disorder. J Abnorm Psychol. 2016;125:349–55.

    PubMed  Article  Google Scholar 

  27. 27.

    Sartin-Tarm A, Ross MC, Privatsky AA, Cisler JM. Estradiol modulates neural and behavioral arousal in women with posttraumatic stress disorder during a fear learning and extinction task. Biol. Psychiatr Cogn Neurosci Neuroimaging. 2020;5:1114–22.

  28. 28.

    Graham BM, Milad MR. Blockade of estrogen by hormonal contraceptives impairs fear extinction in female rats and women. Biol Psychiatr. 2013;73:371–8.

    CAS  Article  Google Scholar 

  29. 29.

    Marin M-F, Hammoud MZ, Klumpp H, Simon NM, Milad MR. Multimodal categorical and dimensional approaches to understanding threat conditioning and its extinction in individuals with anxiety disorders. JAMA Psychiatr. 2020;77:618–27.

  30. 30.

    Marin M-F, Zsido RG, Song H, Lasko NB, Killgore WDS, Rauch SL, et al. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatr. 2017;74:622.

    Article  Google Scholar 

  31. 31.

    Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatr. 2007;62:446–54.

    Article  Google Scholar 

  32. 32.

    Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatr. 2009;66:1075–82.

    Article  Google Scholar 

  33. 33.

    Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatr. 2007;164:1476–88.

    PubMed  Article  Google Scholar 

  34. 34.

    Fullana MA, Albajes-Eizagirre A, Soriano-Mas C, Vervliet B, Cardoner N, Benet O, et al. Fear extinction in the human brain: a meta-analysis of fMRI studies in healthy participants. Neurosci Biobehav Rev. 2018;88:16–25.

    PubMed  Article  Google Scholar 

  35. 35.

    Fullana MA, Albajes-Eizagirre A, Soriano-Mas C, Vervliet B, Cardoner N, Benet O, et al. Fear extinction in the human brain: a meta-analysis of fMRI studies in healthy participants. Neurosci Biobehav Rev. 2018;88:16–25.

    PubMed  Article  Google Scholar 

  36. 36.

    LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: a two-system framework. AJP. 2016;173:1083–93.

    Article  Google Scholar 

  37. 37.

    Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder. N. Engl J Med. 2017;376:2459–69.

    PubMed  Article  Google Scholar 

  38. 38.

    Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53:871–80.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14:147–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval [no. 1]. Neuropsychopharmacology. 2008;33:56–72.

    PubMed  Article  Google Scholar 

  41. 41.

    Wu C-T, Haggerty D, Kemere C, Ji D. Hippocampal awake replay in fear memory retrieval [no. 4]. Nat Neurosci. 2017;20:571–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    de Voogd LD, Fernández G, Hermans EJ. Awake reactivation of emotional memory traces through hippocampal–neocortical interactions. NeuroImage. 2016;134:563–72.

    PubMed  Article  Google Scholar 

  43. 43.

    Gerlicher AMV, Tüscher O, Kalisch R. Dopamine-dependent prefrontal reactivations explain long-term benefit of fear extinction [no. 1]. Nat Commun. 2018;9:1–9.

    CAS  Article  Google Scholar 

  44. 44.

    Hermans EJ, Kanen JW, Tambini A, Fernández G, Davachi L, Phelps EA. Persistence of amygdala–hippocampal connectivity and multi-voxel correlation structures during awake rest after fear learning predicts long-term expression of fear. Cereb Cortex. 2017;27:3028–41.

    PubMed  Google Scholar 

  45. 45.

    Milad MR, Orr SP, Pitman RK, Rauch SL. Context modulation of memory for fear extinction in humans. Psychophysiology. 2005;42:456–64.

    PubMed  Article  Google Scholar 

  46. 46.

    Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci. 2009;29:8474–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Quirk GJ, Repa JC, LeDoux JE. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron. 1995;15:1029–39.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage. 2012;61:1277–86.

    PubMed  Article  Google Scholar 

  49. 49.

    Tompson SH, Kahn AE, Falk EB, Vettel JM, Bassett DS. Functional brain network architecture supporting the learning of social networks in humans. NeuroImage. 2020;210:116498.

    PubMed  Article  Google Scholar 

  50. 50.

    Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex. 2018;28:3095–114.

    PubMed  Article  Google Scholar 

  51. 51.

    Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci. 2020;23:1421–32.

  52. 52.

    Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    PubMed Central  Article  PubMed  Google Scholar 

  53. 53.

    Yu M, Linn KA, Cook PA, Phillips ML, McInnis M, Fava M, et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum Brain Mapp. 2018;39:4213–27.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Fortin J-P, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. NeuroImage. 2017;161:149–70.

    PubMed  Article  Google Scholar 

  55. 55.

    Zalesky A, Fornito A, Bullmore ET. Network-based statistic: Identifying differences in brain networks. NeuroImage. 2010;53:1197–207.

    PubMed  Article  Google Scholar 

  56. 56.

    MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2006;58:593–614.

    Article  Google Scholar 

  57. 57.

    Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci. 2015;35:3607–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value [no. 10]. Nat Neurosci. 2004;7:1144–52.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron. 2004;43:897–905.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15:85–93.

    PubMed  Article  Google Scholar 

  61. 61.

    Graham BM, Milad MR. The study of fear extinction: implications for anxiety disorders. AJP. 2011;168:1255–65.

    Article  Google Scholar 

  62. 62.

    Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex [no. 3]. Nat Rev Neurosci. 2011;12:154–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Engman J, Linnman C, Van Dijk KRA, Milad MR. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences. Psychoneuroendocrinology. 2016;63:34–42.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Arélin K, Mueller K, Barth C, Rekkas PV, Kratzsch J, Burmann I, et al. Progesterone mediates brain functional connectivity changes during the menstrual cycle—a pilot resting state MRI study. Front Neurosci. 2015;9:44.

  65. 65.

    Pritschet L, Santander T, Taylor CM, Layher E, Yu S, Miller MB, et al. Functional reorganization of brain networks across the human menstrual cycle. NeuroImage. 2020;220:117091.

    PubMed  Article  Google Scholar 

  66. 66.

    Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, Horn JDV, Esposito G, et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. PNAS. 1997;94:8836–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wang ACJ, Hara Y, Janssen WGM, Rapp PR, Morrison JH. Synaptic estrogen receptor-α levels in prefrontal cortex in female rhesus monkeys and their correlation with cognitive performance. J Neurosci. 2010;30:12770–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Petersen N, Kilpatrick LA, Goharzad A, Cahill L. Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. NeuroImage. 2014;90:24–32.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R, Behrens T, et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron. 2021;109:882–93.

  70. 70.

    Kaplan R, Adhikari MH, Hindriks R, Mantini D, Murayama Y, Logothetis NK, et al. Hippocampal sharp-wave Ripples Influence Selective Activation of the Default Mode Network. Curr Biol. 2016;26:686–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Miller DR, Hayes SM, Hayes JP, Spielberg JM, Lafleche G, Verfaellie M. Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biol Psychiatr Cogn Neurosci Neuroimag. 2017;2:363–71.

    Google Scholar 

  73. 73.

    Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M. All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatr. 2021;26:92–102.

  74. 74.

    Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. AJP. 1999;156:1787–95.

    CAS  Google Scholar 

  75. 75.

    Shang J, Lui S, Meng Y, Zhu H, Qiu C, Gong Q, et al. Alterations in low-level perceptual networks related to clinical severity in PTSD after an earthquake: a resting-state fMRI study. PLOS ONE. 2014;9:e96834.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Zhu H, Yuan M, Qiu C, Ren Z, Li Y, Wang J, et al. Multivariate classification of earthquake survivors with post-traumatic stress disorder based on large-scale brain networks. Acta Psychiatr Scandinavica. 2020;141:285–98.

    CAS  Article  Google Scholar 

  77. 77.

    Northoff G. Anxiety Disorders and the Brain’s Resting State Networks: From Altered Spatiotemporal Synchronization to Psychopathological Symptoms. Anxiety Disorders. 2020;71–90.

  78. 78.

    Whalley MG, Kroes MCW, Huntley Z, Rugg MD, Davis SW, Brewin CR. An fMRI investigation of posttraumatic flashbacks. Brain Cognition. 2013;81:151–9.

    PubMed  Article  Google Scholar 

  79. 79.

    Hwang MJ, Zsido RG, Song H, Pace-Schott EF, Miller KK, Lebron-Milad K, et al. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction. BMC Psychiatr. 2015;15:295.

    Article  CAS  Google Scholar 

  80. 80.

    Brønnick MK, Økland I, Graugaard C, Brønnick KK. The effects of hormonal contraceptives on the brain: a systematic review of neuroimaging studies. Front Psychol. 2020;11.

  81. 81.

    Montoya ER, Bos PA. How oral contraceptives impact social-emotional behavior and brain function. Trends Cogn Sci. 2017;21:125–36.

    PubMed  Article  Google Scholar 

  82. 82.

    Lisofsky N, Riediger M, Gallinat J, Lindenberger U, Kühn S. Hormonal contraceptive use is associated with neural and affective changes in healthy young women. NeuroImage. 2016;134:597–606.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Miedl SF, Wegerer M, Kerschbaum H, Blechert J, Wilhelm FH. Neural activity during traumatic film viewing is linked to endogenous estradiol and hormonal contraception. Psychoneuroendocrinology. 2018;87:20–26.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Schaffir J, Worly BL, Gur TL. Combined hormonal contraception and its effects on mood: a critical review. Eur J Contracept Reprod Health Care. 2016;21:347–55.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Skovlund CW, Mørch LS, Kessing LV, Lidegaard Ø. Association of hormonal contraception with depression. JAMA Psychiatr. 2016;73:1154–62.

    Article  Google Scholar 

  86. 86.

    Robakis T, Williams KE, Nutkiewicz L, Rasgon NL. Hormonal contraceptives and mood: review of the literature and implications for future research. Curr Psychiatr Rep. 2019;21:57.

    Article  Google Scholar 

  87. 87.

    Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and progestagens: synthesis and action in the brain. J Neuroendocrinol. 2016;28.

  88. 88.

    Fester L, Prange-Kiel J, Jarry H, Rune GM. Estrogen synthesis in the hippocampus. Cell Tissue Res. 2011;345:285.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45:S116–S124.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Graham BM, Li SH, Black MJ, Öst L-G. The association between estradiol levels, hormonal contraceptive use, and responsiveness to one-session-treatment for spider phobia in women. Psychoneuroendocrinology. 2018;90:134–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Graham BM, Ash C, Den ML. High endogenous estradiol is associated with enhanced cognitive emotion regulation of physiological conditioned fear responses in women. Psychoneuroendocrinology. 2017;80:7–14.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Maeng LY, Milad MR. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Hormones Behav. 2015;76:106–17.

    CAS  Article  Google Scholar 

  93. 93.

    Nissen C, Holz J, Blechert J, Feige B, Riemann D, Voderholzer U, et al. Learning as a model for neural plasticity in major depression. Biol Psychiatry. 2010;68:544–52.

    PubMed  Article  Google Scholar 

  94. 94.

    Kuhn M, Höger N, Feige B, Blechert J, Normann C, Nissen C. Fear extinction as a model for synaptic plasticity in major depressive disorder. PLOS ONE. 2014;9:e115280.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Institute of Mental Health grants R61-MH126090-01 (MRM), R01-MH097880-01 (MRM).

Author information

Affiliations

Authors

Contributions

Conceptualization: EBF, MRM; Funding acquisition: EBF, MRM; Methodology: MRM; Validation: JCS, RCG, MRM; Project administration: MZH, JCS, LB, MFM, AA, EBF, MRM; Supervision: LB, MFM, AA, RCG, EBF; Investigation: MZH, JCS, JJ, MFM; Data curation: ZW, MZH, JJ; Statistical analyses: ZW; Software: ZW; Visualization: ZW; Writing-original draft: ZW, MRM; Writing-review and editing: all authors.

Corresponding author

Correspondence to Mohammed R. Milad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Hammoud, M.Z., Scott, J.C. et al. Impact of exogenous estradiol on task-based and resting-state neural signature during and after fear extinction in healthy women. Neuropsychopharmacol. (2021). https://doi.org/10.1038/s41386-021-01158-4

Download citation

Search

Quick links