Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD: preliminary evidence

Abstract

Promising initial data indicate that the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine may be beneficial in post-traumatic stress disorder (PTSD). Here, we explore the neural correlates of ketamine-related changes in PTSD symptoms, using a rich battery of functional imaging data (two emotion-processing tasks and one task-free scan), collected from a subset of participants of a randomized clinical trial of repeated-dose intravenous ketamine vs midazolam (total N = 21). In a pre-registered analysis, we tested whether changes in an a priori set of imaging measures from a target neural circuit were predictive of improvement in PTSD symptoms, using leave-one-out cross-validated elastic-net regression models (regions of interest in the target circuit consisted of the dorsal and rostral anterior cingulate cortex, ventromedial prefrontal cortex, anterior hippocampus, anterior insula, and amygdala). Improvements in PTSD severity were associated with increased functional connectivity between the ventromedial prefrontal cortex (vmPFC) and amygdala during emotional face-viewing (change score retained in model with minimum predictive error in left-out subjects, standardized regression coefficient [β] = 2.90). This effect was stronger in participants who received ketamine compared to midazolam (interaction β = 0.86), and persisted following inclusion of concomitant change in depressive symptoms in the analysis model (β = 0.69). Improvement following ketamine was also predicted by decreased dorsal anterior cingulate activity during emotional conflict regulation, and increased task-free connectivity between the vmPFC and anterior insula (βs = −2.82, 0.60). Exploratory follow-up analysis via dynamic causal modelling revealed that whilst improvement in PTSD symptoms following either drug was associated with decreased excitatory modulation of amygdala→vmPFC connectivity during emotional face-viewing, increased top-down inhibition of the amygdala by the vmPFC was only observed in participants who improved under ketamine. Individuals with low prefrontal inhibition of amygdala responses to faces at baseline also showed greater improvements following ketamine treatment. These preliminary findings suggest that, specifically under ketamine, improvements in PTSD symptoms are accompanied by normalization of hypofrontal control over amygdala responses to social signals of threat.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Description of study procedures, clinical measures, and functional imaging measures.
Fig. 2: Neuroimaging correlates of PTSD symptom change.
Fig. 3: Dynamic causal modelling of task-modulated effective connectivity during the emotional face-processing task.
Fig. 4: Baseline predictors of PTSD symptom change.

References

  1. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psych. 2014;71:681–8.

    CAS  Google Scholar 

  2. Feder A, Costi S, Rutter SB, Collins AB, Govindarajulu U, Jha MK, et al. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. AJP. 2021;178:193–202.

    Google Scholar 

  3. Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015;66:509–23.

    CAS  PubMed  Google Scholar 

  4. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shinohara R, Aghajanian GK, Abdallah CG. Neurobiology of the rapid acting antidepressant effects of ketamine: impact and opportunities. Biol Psych. 2020. https://doi.org/10.1016/j.biopsych.2020.12.006.

  6. Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, et al. Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Curr Psychiatry Rep. 2017;19:74.

    PubMed  PubMed Central  Google Scholar 

  7. Feder A, Rutter SB, Schiller D, Charney DS. The emergence of ketamine as a novel treatment for posttraumatic stress disorder. Adv Pharmacol. 2020;89:261–86.

    CAS  PubMed  Google Scholar 

  8. Wilkinson ST, Holtzheimer PE, Gao S, Kirwin DS, Price RB. Leveraging neuroplasticity to enhance adaptive learning: the potential for synergistic somatic-behavioral treatment combinations to improve clinical outcomes in depression. Biol Psychiatry. 2018;85:454–65.

    PubMed  PubMed Central  Google Scholar 

  9. Fattore L, Piva A, Zanda MT, Fumagalli G, Chiamulera C. Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine. Psychopharmacology. 2018;235:433–45.

    CAS  PubMed  Google Scholar 

  10. Murrough JW, Collins KA, Fields J, DeWilde KE, Phillips ML, Mathew SJ, et al. Regulation of neural responses to emotion perception by ketamine in individuals with treatment-resistant major depressive disorder. Transl Psychiatry. 2015;5:e509.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA. Effects of ketamine on brain activity during emotional processing: differential findings in depressed versus healthy control participants. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2019;4:610–8.

    Google Scholar 

  12. Loureiro JRA, Leaver A, Vasavada M, Sahib AK, Kubicki A, Joshi S, et al. Modulation of amygdala reactivity following rapidly acting interventions for major depression. Hum Brain Mapp. 2020;41:1699–710.

    PubMed  PubMed Central  Google Scholar 

  13. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel R, Spreng RN, Shin LM, Girard TA. Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2012;36:2130–42.

    PubMed  Google Scholar 

  15. Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord. 2012;2:9.

    PubMed  PubMed Central  Google Scholar 

  16. Sheynin J, Liberzon I. Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder. Neurosci Lett. 2017;649:133–8.

    CAS  PubMed  Google Scholar 

  17. Negreira AM, Abdallah CG. A review of fMRI affective processing paradigms used in the neurobiological study of posttraumatic stress disorder. Chronic Stress. 2019;3:1–13.

    Google Scholar 

  18. Duek O, Kelmendi B, Pietrzak RH, Harpaz-Rotem I. Augmenting the treatment of PTSD with ketamine—a review. Curr Treat Options Psych. 2019;6:143–53.

    Google Scholar 

  19. Weston SJ, Ritchie SJ, Rohrer JM, Przybylski AK. Recommendations for increasing the transparency of analysis of preexisting data sets. Adv Methods Pract Psychological Sci. 2019;2:214–27.

    Google Scholar 

  20. Norbury A, Collins A, Murrough JW, Feder A. Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD. Open Sci Framework. 2019. https://doi.org/10.17605/OSF.IO/8BEWV.

  21. Weathers FW, Blake DD, Schnurr PP, Kaloupek DG, Marx BP, Keane TM. Clinician-administered PTSD Scale for DSM-5 (CAPS-5). 2013. https://www.ptsd.va.gov/professional/assessment/adult-int/caps.asp. Accessed 9 October 2018.

  22. Montgomery SA, Åsberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    CAS  PubMed  Google Scholar 

  23. Bremner JD, Krystal JH, Putnam FW, Southwick SM, Marmar C, Charney DS, et al. Measurement of dissociative states with the Clinician-Administered Dissociative States Scale (CADSS). J Trauma Stress. 1998;11:125–36.

    CAS  PubMed  Google Scholar 

  24. Overall JE, Gorham DR. The brief psychiatric rating scale (BPRS): recent developments in ascertainment and scaling. Psychopharmacol Bull. 1988;24:97–9.

    Google Scholar 

  25. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    CAS  PubMed  Google Scholar 

  26. Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, et al. Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Controlled Clin Trials. 2004;25:119–42.

    PubMed  Google Scholar 

  27. Wilkinson ST, Farmer C, Ballard ED, Mathew SJ, Grunebaum MF, Murrough JW, et al. Impact of midazolam vs. saline on effect size estimates in controlled trials of ketamine as a rapid-acting antidepressant. Neuropsychopharmacology. 2019;44:1233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dakwar E, Anerella C, Hart CL, Levin FR, Mathew SJ, Nunes EV. Therapeutic infusions of ketamine: do the psychoactive effects matter? Drug Alcohol Depend. 2014;136:153–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hariri AR, Tessitore A, Mattay VS, Fera F, Weinberger DR. The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage. 2002;17:317–23.

    PubMed  Google Scholar 

  30. Offringa R, Handwerger Brohawn K, Staples LK, Dubois SJ, Hughes KC, Pfaff DL, et al. Diminished rostral anterior cingulate cortex activation during trauma-unrelated emotional interference in PTSD. Biol Mood Anxiety Disord. 2013;3:10.

    PubMed  PubMed Central  Google Scholar 

  31. Esteban O, Blair R, Markiewicz CJ, Berleant SL, Moodie C, Ma F, et al. poldracklab/fmriprep: 1.1.4. Zenodo; 2018.

  32. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6.

    CAS  PubMed  Google Scholar 

  33. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage. 2015;112:267–77.

    PubMed  Google Scholar 

  34. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007;37:90–101.

    PubMed  Google Scholar 

  35. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–54.

    PubMed  Google Scholar 

  36. Ionescu DF, Felicione JM, Gosai A, Cusin C, Shin P, Shapero BG, et al. Ketamine-associated brain changes: a review of the neuroimaging literature. Harv Rev Psychiatry. 2018;26:320–39.

    PubMed  PubMed Central  Google Scholar 

  37. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8:665–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brett M, Anton J-L, Valabregue R, Poline J-B. Region of interest analysis using an SPM toolbox. 8th International Conferance on Functional Mapping of the Human Brain. Sendai, Japan: NeuroImage; 2002 p. 16.

  39. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    PubMed  Google Scholar 

  40. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A toolbox for representational similarity analysis. PLOS Comput Biol. 2014;10:e1003553.

    PubMed  PubMed Central  Google Scholar 

  41. Power JD, Schlaggar BL, Petersen SE. Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage 2015;105:536–51.

    PubMed  Google Scholar 

  42. Satterthwaite TD, Ciric R, Roalf DR, Davatzikos C, Bassett DS, Wolf DH. Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. Hum Brain Mapp. 2019;40:2033–51.

    PubMed  Google Scholar 

  43. Yang Z, Gu S, Honnorat N, Linn KA, Shinohara RT, Aselcioglu I, et al. Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. Mol Psychiatry. 2018;23:2314–23.

    PubMed  Google Scholar 

  44. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Stat Methodol). 2005;67:301–20.

    Google Scholar 

  45. Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

    PubMed  PubMed Central  Google Scholar 

  46. Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc: Ser B (Methodol). 1996;58:267–88.

    Google Scholar 

  47. Tikhonov AN, Arsenin VY Solutions of ill-posed problems. V. H. Winston and Sons (distributed by Wiley, New York); 1977.

  48. Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: Lessons from machine learning. Perspect Psychol Sci. 2017;12:1100–22.

    PubMed  PubMed Central  Google Scholar 

  49. Armour C, Tsai J, Durham TA, Charak R, Biehn TL, Elhai JD, et al. Dimensional structure of DSM-5 posttraumatic stress symptoms: Support for a hybrid Anhedonia and Externalizing Behaviors model. J Psychiatr Res. 2015;61:106–13.

    PubMed  Google Scholar 

  50. Contractor AA, Roley-Roberts ME, Lagdon S, Armour C. Heterogeneity in patterns of DSM-5 posttraumatic stress disorder and depression symptoms: Latent profile analyses. J Affect Disord. 2017;212:17–24.

    PubMed  Google Scholar 

  51. Armour C, Contractor A, Shea T, Elhai JD, Pietrzak RH. Factor structure of the PTSD checklist for DSM-5: relationships among symptom clusters, anger, and impulsivity. J Nerv Ment Dis. 2016;204:108–15.

    PubMed  Google Scholar 

  52. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19:1273–302.

    CAS  PubMed  Google Scholar 

  53. Sladky R, Spies M, Hoffmann A, Kranz G, Hummer A, Gryglewski G, et al. (S)-citalopram influences amygdala modulation in healthy subjects: a randomized placebo-controlled double-blind fMRI study using dynamic causal modeling. NeuroImage. 2015;108:243–50.

    CAS  PubMed  Google Scholar 

  54. Willinger D, Karipidis II, Beltrani S, Di Pietro SV, Sladky R, Walitza S, et al. Valence-Dependent Coupling of Prefrontal-Amygdala Effective Connectivity during Facial Affect Processing. ENeuro. 2019;6:ENEURO.0079-19.2019.

  55. Sladky R, Höflich A, Küblböck M, Kraus C, Baldinger P, Moser E, et al. Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for fMRI. Cereb Cortex 2015;25:895–903.

    PubMed  Google Scholar 

  56. Minkova L, Sladky R, Kranz GS, Woletz M, Geissberger N, Kraus C, et al. Task-dependent modulation of amygdala connectivity in social anxiety disorder. Psychiatry Res: Neuroimaging. 2017;262:39–46.

    PubMed  Google Scholar 

  57. Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, et al. Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage. 2016;128:413–31.

    PubMed  Google Scholar 

  58. Zeidman P, Jafarian A, Seghier ML, Litvak V, Cagnan H, Price CJ, et al. A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage. 2019;200:12–25.

    PubMed  Google Scholar 

  59. Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, et al. Amygdala and insula connectivity changes following psychotherapy for posttraumatic stress disorder: a randomized clinical trial. Biolog Psych. 2020. https://doi.org/10.1016/j.biopsych.2020.11.021.

  60. Oldham PD. A note on the analysis of repeated measurements of the same subjects. J Chronic Dis. 1962;15:969–77.

    CAS  PubMed  Google Scholar 

  61. Tu Y-K, Gilthorpe MS. Revisiting the relation between change and initial value: a review and evaluation. Stat Med. 2007;26:443–57.

    PubMed  Google Scholar 

  62. Norbury A, Perez-Rodriguez MM, Feder A. Neuroimaging resilience to trauma: convergent evidence and challenges for future research. PsyArXiv. 2019. https://doi.org/10.31234/osf.io/2abrc.

  63. Moreno-López L, Ioannidis K, Askelund AD, Smith AJ, Schueler K, van Harmelen A-L. The Resilient Emotional Brain: A Scoping Review of the Medial Prefrontal Cortex and Limbic Structure and Function in Resilient Adults With a History of Childhood Maltreatment. Biol Psychiatry: Cogn Neurosci Neuroimaging 2020;5:392–402.

    Google Scholar 

  64. Kaldewaij R, Koch SBJ, Hashemi MM, Zhang W, Klumpers F, Roelofs K. Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nat Hum Behav. 2021. https://doi.org/10.1038/s41562-021-01055-2.

  65. Zhu X, Suarez‐Jimenez B, Lazarov A, Helpman L, Papini S, Lowell A, et al. Exposure-based therapy changes amygdala and hippocampus resting-state functional connectivity in patients with posttraumatic stress disorder. Depression Anxiety. 2018;35:974–84.

    PubMed  Google Scholar 

  66. Fonzo GA, Simmons AN, Thorp SR, Norman SB, Paulus MP, Stein MB. Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol Psychiatry. 2010;68:433–41.

    PubMed  PubMed Central  Google Scholar 

  67. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.

    PubMed  Google Scholar 

  68. Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 2012;36:1773–802.

    PubMed  PubMed Central  Google Scholar 

  69. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.

    PubMed  Google Scholar 

  70. Schiller D, Delgado MR. Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends Cogn Sci. 2010;14:268–76.

    PubMed  Google Scholar 

  71. Zuj DV, Palmer MA, Lommen MJJ, Felmingham KL. The centrality of fear extinction in linking risk factors to PTSD: a narrative review. Neurosci Biobehav Rev. 2016;69:15–35.

    PubMed  Google Scholar 

  72. Reddan MC, Wager TD, Schiller D. Attenuating neural threat expression with imagination. Neuron. 2018;100:994–1005.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Girgenti MJ, Ghosal S, LoPresto D, Taylor JR, Duman RS. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol Dis. 2017;100:1–8.

    CAS  PubMed  Google Scholar 

  74. Fortress AM, Smith IM, Pang KCH. Ketamine facilitates extinction of avoidance behavior and enhances synaptic plasticity in a rat model of anxiety vulnerability: Implications for the pathophysiology and treatment of anxiety disorders. Neuropharmacology 2018;137:372–81.

    CAS  PubMed  Google Scholar 

  75. Wei M-D, Wang Y-H, Lu K, Lv B-J, Wang Y, Chen W-Y. Ketamine reverses the impaired fear memory extinction and accompanied depressive-like behaviors in adolescent mice. Behavioural Brain Res. 2020;379:112342.

    CAS  Google Scholar 

  76. Rangaprakash D, Dretsch MN, Venkataraman A, Katz JS, Denney TS, Deshpande G. Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Hum Brain Mapp. 2018;39:264–87.

    CAS  PubMed  Google Scholar 

  77. Nicholson AA, Friston KJ, Zeidman P, Harricharan S, McKinnon MC, Densmore M, et al. Dynamic causal modeling in PTSD and its dissociative subtype: Bottom–up versus top–down processing within fear and emotion regulation circuitry. Hum Brain Mapp. 2017;38:5551–61.

    PubMed  PubMed Central  Google Scholar 

  78. Chavez RS, Heatherton TF. Representational Similarity of Social and Valence Information in the Medial pFC. J Cogn Neurosci. 2014;27:73–82.

    Google Scholar 

  79. Visser RM, Scholte HS, Beemsterboer T, Kindt M. Neural pattern similarity predicts long-term fear memory. Nat Neurosci. 2013;16:388–90.

    CAS  PubMed  Google Scholar 

  80. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76.

    CAS  PubMed  Google Scholar 

  81. Grady CL, Rieck JR, Nichol D, Rodrigue KM, Kennedy KM. Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data. Hum Brain Mapp. 2021;42:204–19.

    PubMed  Google Scholar 

  82. Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. NeuroImage. 2017. https://doi.org/10.1016/j.neuroimage.2017.06.061.

  83. Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, Haddad L, et al. Test–retest reliability of evoked BOLD signals from a cognitive–emotive fMRI test battery. NeuroImage. 2012;60:1746–58.

    PubMed  Google Scholar 

  84. Nord CL, Gray A, Charpentier CJ, Robinson OJ, Roiser JP. Unreliability of putative fMRI biomarkers during emotional face processing. NeuroImage. 2017;156:119–27.

    CAS  PubMed  Google Scholar 

  85. Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S, et al. What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol Sci 2020;31:792–806.

    PubMed  PubMed Central  Google Scholar 

  86. Nord CL, Gray A, Robinson OJ, Roiser JP. Reliability of fronto–amygdala coupling during emotional face processing. Brain Sci 2019;9:89.

    PubMed Central  Google Scholar 

  87. Dubois J, Adolphs R. Building a science of individual differences from fMRI. Trends Cogn Sci 2016;20:425–43.

    PubMed  PubMed Central  Google Scholar 

  88. Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 2015;137:188–200.

    PubMed  Google Scholar 

  89. Roiser JP, Elliott R, Sahakian BJ. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 2012;37:117–36.

    CAS  PubMed  Google Scholar 

  90. Nord CL, Barrett LF, Lindquist KA, Ma Y, Marwood L, Satpute AB, et al. Neural effects of antidepressant medication and psychological treatments: a quantitative synthesis across three meta-analyses. Br J Psych. 2021. https://doi.org/10.1192/bjp.2021.16.

  91. Nord CL, Barrett LF, Lindquist KA, Ma Y, Marwood L, Satpute AB, et al. Neural effects of antidepressant medication and psychological treatments: a quantitative synthesis across three meta-analyses. Br J Psych. 2021:1–5.

  92. Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 2019;4:63.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

Author information

Authors and Affiliations

Authors

Contributions

Contribution to the conception or design of the work: MKJ, LMS, DSC, JWM, AF. Contribution to the acquisition, analysis, or interpretation of data for the work: AN, SBR, ABC, SC, SRH, MK, MC, KAC, AMG, JB, JMW, AF. Drafting the work or revising it critically for important intellectual content: AN, SC, MKJ, LMS, JMW, AF. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: AN, AF. Final approval of the version to be published: All authors.

Corresponding author

Correspondence to Adriana Feder.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norbury, A., Rutter, S.B., Collins, A.B. et al. Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD: preliminary evidence. Neuropsychopharmacol. 46, 2266–2277 (2021). https://doi.org/10.1038/s41386-021-01104-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-021-01104-4

Further reading

Search

Quick links