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Systemic enhancement of serotonin signaling reverses social
deficits in multiple mouse models for ASD
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Autism spectrum disorder (ASD) is a common set of heterogeneous neurodevelopmental disorders resulting from a variety of
genetic and environmental risk factors. A core feature of ASD is impairment in prosocial interactions. Current treatment options for
individuals diagnosed with ASD are limited, with no current FDA-approved medications that effectively treat its core symptoms. We
recently demonstrated that enhanced serotonin (5-HT) activity in the nucleus accumbens (NAc), via optogenetic activation of 5-
HTergic inputs or direct infusion of a specific 5-HT1b receptor agonist, reverses social deficits in a genetic mouse model for ASD
based on 16p11.2 copy number variation. Furthermore, the recreational drug MDMA, which is currently being evaluated in clinical
trials, promotes sociability in mice due to its 5-HT releasing properties in the NAc. Here, we systematically evaluated the ability of
MDMA and a selective 5-HT1b receptor agonist to rescue sociability deficits in multiple different mouse models for ASD. We find
that MDMA administration enhances sociability in control mice and reverses sociability deficits in all four ASD mouse models
examined, whereas administration of a 5-HT1b receptor agonist selectively rescued the sociability deficits in all six mouse models
for ASD. These preclinical findings suggest that pharmacological enhancement of 5-HT release or direct 5-HT1b receptor activation
may be therapeutically efficacious in ameliorating some of the core sociability deficits present across etiologically distinct
presentations of ASD.

Neuropsychopharmacology (2021) 46:2000–2010; https://doi.org/10.1038/s41386-021-01091-6

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental condi-
tion defined by impairments in social interactions and commu-
nication, in addition to stereotyped and restricted behaviors [1].
Diagnosis of ASD is increasingly common, with a prevalence rate
in the United States of 1 in 54 [2]. Clinical presentation of ASD
individuals can vary markedly, likely because the etiology of ASD is
complex and heterogeneous [3, 4]. Genetic contributions are
important and include copy number variations, mutations in
highly penetrant alleles, combinations of common risk variants,
and mutations in components of the neuron-specific nBAF
chromatin-remodeling complex [3, 5–7]. Similar to virtually all
other neuropsychiatric disorders, environmental factors during
prenatal and postnatal development interact with genetic risk to
define ASD pathophysiology [8, 9].
Despite the broad range of clinical presentations that meet

diagnostic criteria for ASD and its complex etiology, there are
several core features of ASD that are universal, notably deficits in
social interaction [10, 11] first characterized in 1943 by Kanner as
“extreme autistic aloneness” [12]. Common behavioral features
among disparate forms of ASD suggest that there may be
common pathological neural mechanisms upon which different
genetic and environmental factors converge. For example,

abnormalities in serotonin (5-HT)-mediated modulation of brain
functions in ASD was first suggested by studies reporting
abnormal blood levels of 5-HT in ASD individuals [13–18].
Although it is unclear how abnormalities in blood 5-HT are related
to 5-HT function in the brain, neuroimaging and postmortem
studies in children and adults with ASD have reported decreased
brain 5-HT production, 5-HT transporter (SERT) binding, and 5-HT
receptor binding [19–24].
We first became interested in the possible role of 5-HT in

prosocial behaviors because of the finding that oxytocin-induced
release of 5-HT in the nucleus accumbens (NAc), a key node of
classic mesolimbic reward circuitry, was critical for social reward as
assessed by a conditioned place preference (CPP) assay [25]. We
confirmed and extended the support for this hypothesis by
finding that bidirectional optogenetic manipulation of 5-HT
release in the NAc bidirectionally influenced sociability, which
was assessed using a three-chamber social preference assay and
juvenile intruder assay [26]. To explore the potential role of this
mechanism in ASDs, we used a conditional knockout mouse
model of the 16p11.2 deletion syndrome, one of the most
prominent genetic variations found in ASD [27–29]. Restricted
genetic deletion of the 16p11.2 syntenic region in 5-HT neurons
caused sociability deficits, which were rescued by optogenetic
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release of 5-HT in the NAc or infusion of a 5-HT1b receptor agonist
into the NAc [26]. Consistent with these findings, the recreational
drug (±)3,4-methylenedioxymethamphetamine (MDMA), which
has powerful prosocial effects in human subjects [30], promotes
sociability in mice by enhancing 5-HT release in the NAc, an effect
that, like the optogenetic release of 5-HT in the NAc, requires
activation of 5-HT1b receptors [26, 31].
These findings suggest that enhancement of 5-HT signaling,

perhaps by targeting specific 5-HT receptor subtypes, might be an
effective treatment in ameliorating social deficits present in ASD.
To address this possibility, we initially examined the effects of
intraperitoneal administration of MDMA in four different ASD
mouse models with very different etiologies: homozygous genetic
deletion of 16p11.2 [32], homozygous single gene deletions of
Cntnap2 [33] and Fmr1 [34], and an environmental model that
involves exposure to valproic acid (VPA) in utero [35–37]. We then
examined the effects of systemic administration of the 5-HT1b
receptor agonist, CP-94,253, in these four ASD mouse models as
well as two additional genetic models generated by genetic
mutation of subunits of the neuron-specific nBAF chromatin-
remodeling complex, Actl6b and Arid1b [38–40]. All of the ASD
mouse models exhibited sociability deficits, which were rescued
by both MDMA and CP-94,253. These unexpected results suggest
that targeting 5-HT1b receptors may be a valuable therapeutic
strategy for treating sociability deficits in ASDs independent of
their underlying etiologies.

MATERIALS AND METHODS
Animals
Male and female C57BL/6 mice (obtained from Jackson Laboratory, stock
number 000664) and the following transgenic lines were used as
experimental subjects at 8–16 weeks of age. To minimize the possibility
that unknown genetic background differences between the experi-
mental lines and their controls account for observed behavioral
differences, all of the following lines were backcrossed extensively (>8
generations) to C57BL/6 mice prior to their use in generating mice for
this study, except for line no. 7, which was on a mixed C57BL/6 and CD1
background.

1. Tg(Slc6a4-cre)ET33Gsat (Sert-Cre, GENSAT Project at Rockefeller
University; MGI: 3836639) [41]

2. B6N.129P2(Cg)-Igs13tm1Dolm Igs14tm1Dolm/J (16p11.2flx/flx, gifted by R.
Dolmetsch. This line is available from Jackson Laboratory, stock
number 025330) [32]: CD1 background.

3. B6.129(Cg)-Cntnap2tm1Pele/J (Jackson Laboratory, stock number
028635) [33]

4. B6.129P2-Fmr1tm1Cgr/J (males: Fmr1–/y, females: Fmr1−/−, Jackson
Laboratory, stock number 003025) [34]

5. B6.129S6-Actl6btm1Grc/J (gift from G. Crabtree, available from Jackson
Laboratory, stock number 018783) [38]

6. C57BL/6-Arid1bem2Hzhu/J (Arid1bflx, Jackson Laboratory, stock number
032061) [39]

7. Sert-Cre+/–:16p11.2flx/flx male and female mice were generated at
Stanford using a breeding strategy previously described [26]. The
mice used in this study were homozygous for 16p11.2flx and
heterozygous for Sert-Cre.

8. Sert-Cre+/–:Arid1bflx/+ male and female mice were generated at
Stanford using a breeding strategy previously described [26]. The
mice used in this study were heterozygous for Arid1bflx and Sert-Cre.

VPA mice were generated as previously described [35–37]. In brief,
C57BL/6 mice were mated overnight and pregnancy was determined by
the presence of a vaginal plug. Pregnant female mice were injected
subcutaneously on gestational day E12.5 with either 600 mg/kg of VPA
sodium salt (P4543 Sigma) or vehicle for controls. Sert-Cre+/–:16p11.2flx/flx

mice were on a mixed background of C57BL/6 and CD1. All other
transgenic mice were maintained on a C57BL/6 background. For all
transgenic models, controls were littermates that did not have the
transgene of interest deleted or for Fmr1−/− females, age-matched, in-
house bred C57BL/6 (Supplementary Table S1). Novel juvenile mice used
for the juvenile interaction and three-chamber sociability tests were

conspecifics of the same sex as the test mouse, 3–5 weeks of age and
were not treated with drug or vehicle. Each novel juvenile was a wild-
type of the same background as the model under investigation and bred
in house. Mice were housed on a 12-h light/dark cycle with food and
water ad libitum. All procedures complied with the animal care
standards set forth by the National Institute of Health and were
approved by Stanford University’s Administrative Panel on Laboratory
Animal Care and Administrative Panel of Biosafety. No statistical
methods were used to predetermine sample size, which was based on
extensive prior experience with the assays used. All experiments were
conducted in a blinded manner such that assays were conducted and
analyzed without knowledge of the specific manipulation being
performed and with animals being randomized by cage before
behavioral experiments.

Drugs
Drugs were administered intraperitoneally at a volume of 0.01 ml/g. 5-
Propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine hydro-
chloride (CP-94,253 hydrochloride) (10mg/kg, Tocris) and MDMA (7.5 mg/
kg, Organix) were dissolved in 0.9% normal saline.

Design of behavioral tests with drug administration
For all behavioral tests conducted to assess the effects of drug
administration (three-chamber, juvenile interaction, novel object and open
field), mice were counterbalanced for drug versus vehicle such that half
the mice received a drug injection on the first day and the other half
received vehicle, 20 min prior to testing. One week later, the behavior was
repeated, with mice that received drug on day 1, receiving vehicle and vice
versa. For clarity, individual subjects are graphically represented as lines in
the left panels in each figure, indicating an individual mouse that received
both vehicle and drug on separate days. Different cohorts of animals were
used for each behavioral test that examined the effects of MDMA.
Specifically, a single cohort of mice underwent one behavioral test that
was conducted across 2 weeks to ensure mice were counterbalanced. The
same cohort of mice was used for all four behavioral experiments that
involved CP-94,253, with one cohort of mice being run over the course of
8 weeks in total. In addition, behavioral tests with CP-94,253 were
conducted in a counterbalanced manner to ensure that the order of
behavioral tests was not a confound.

Three-chamber sociability test
This assay was performed in an arena with three separate chambers, as
previously described [26]. On the first day, mice were habituated to the
apparatus for 5 min. On the second day, a conspecific juvenile of the same
sex as the test mouse (3–5 weeks old) was placed under a wire mesh cup
with square holes that were 0.8 cm × 0.8 cm in one of the outer chambers.
An empty wire mesh cup was placed in the opposite outer chamber. The
tops of the cups were covered to prevent test mice from crawling on top.
The test mouse was placed in the center chamber for 2 min. The barriers
were then raised, and the test mouse was allowed to freely explore for a
duration of 20min. Placement of the juvenile mice in one of the outer
chambers was also counterbalanced across sessions and a novel juvenile
introduced during both sessions. Location of the test mouse was assayed
automatically using a video tracking system (BIOBSERVE). Social preference
was calculated as: [(time in juvenile side − time in empty side)/(time in
juvenile side + time in empty side)].

Juvenile interaction test
The juvenile interaction test was performed in the home cage of the test
animal as previously described [26]. In brief, cage mates were temporarily
moved to a holding container and the test mouse was habituated to
isolation in its home cage for 1 min, at which time a novel conspecific
juvenile mouse of the same sex as the test mouse (3–5 weeks old) was
placed into the home cage for 2 min of free interaction. All sessions were
video recorded using a ceiling-mounted digital camera and analyzed
manually without knowledge of the experimental manipulation that had
been performed. Social investigation was defined by active pursuit,
grooming, and sniffing body regions such as snout, body, and anogenital
area. Individual social interactions were not assayed independently. For
drug administration experiments, each test mouse underwent two rounds
of the juvenile interaction test, counterbalanced for the order of drug
versus vehicle administration and with a novel juvenile introduced during
each session.
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Novel object interaction test
This test was performed in the exact same manner as the juvenile
interaction test, except that a novel toy mouse or plastic toy was placed
into the home cage of the test mice instead of a novel juvenile.

Open field test
To assay locomotor activity, mice were place in an open field arena (40 cm×
40 cm) and allowed to move freely for a duration of 18min . Total distance
traveled was assayed automatically using a video tracking system (BIOBSERVE).

CP-94,253 dose-response
Dose-response experiments were conducted using either the three-chamber
sociability or juvenile interaction assays in two different ways: (1) in a single
cohort of mice, a progressive dose series (1, 3, 10, and 30mg/kg) of CP-94,253
was administered to an individual mouse, with each dose separated by 2 days.
For the entire cohort, drug and vehicle were administered in a counter-
balanced manner for each dose as described in design of behavioral tests with
drug administration. The three-chamber sociability and juvenile interaction
assays were conducted in separate cohorts. (2) In separate cohorts of mice,
only a single dose (1, 3, 10, or 30mg/kg) of CP-94,253 was administered to an
individual mouse, with each cohort being exposed to either the three-chamber
sociability or juvenile interaction assay twice per dose (drug or vehicle), again
in a counterbalance manner.

Conditioned place preference (CPP) test
The CPP chamber (Med Associates, VT, USA) was an acrylic box, with internal
dimensions of 28 cm× 28 cm×20 cm. Two equal-sized compartments were
created within each testing chamber. Each compartment had a distinct floor,
either clear, textured acrylic or smooth, black acrylic and distinct walls, vertical
lines or circles. Left/right positioning of the floors and walls was alternated
between conditioning chambers. Conditioning experiments involving CP-
94,253 took place over 4 consecutive days. On day 1, a baseline preference was
conducted. Subjects were placed in the left compartment and the subject
mouse was allowed to freely explore the entire chamber for 30min. On days
2–3, one conditioning session was conducted per day, drug or vehicle were
administered in a counterbalanced manner. On day 2, the mouse was confined
to one chamber for 1 h, 20min after receiving an injection of drug or vehicle.
On day 3, the mouse was confined to opposite chamber for 1 h, 20min after
receiving an injection of drug if previously administered vehicle or vice versa.
On day 4, the post-conditioning test was conducted in the same manner as
the baseline preference test. Mouse movement was tracked by an array of
infrared beam break counters, recorded using Med Associates software, and
analyzed offline.

Principal component analysis
Principal component analysis (PCA) was independently performed in R on
scaled and centered data from the following groups:

1. ASD model mice under vehicle condition (Fig. 5A),
2. ASD model mice and control mice under vehicle condition (Fig. 5B),
3. ASD model mice and control mice under 5-HT1b agonist condition

(Fig. 5C),
4. All of the groups listed above (used to calculate the Euclidean

distances in Fig. 5D, E).

The first two principal components together accounted for >60% of the
variance in each of the plots shown. To quantify the effect of CP-94,253 on
the global behavior profile of each subject, we first estimated the center of
the distribution of the control cohort administered vehicle (control
average) by finding the center of a multivariate t-distribution fit onto the
PC1 and PC2 scores for these mice. Then, for each mouse in the ASD model
and control cohorts, we calculated the Euclidean distances from that
mouse’s score under CP-94,253 treatment to the control average and from
that mouse’s score under vehicle treatment to the control average.

Statistical analyses
For all data acquisition and analysis, investigators were blinded to the
manipulation that the experimental subject had received and the
genotype of the subject. Student’s t-tests were used to compare two
groups. Two-way ANOVA was used for the analysis of multiple groups with
Sidak’s multiple comparison post hoc test, when appropriate. For analysis
of each experiment by sex, a multivariable three-way ANOVA was used to

compare: drug administration, genotype, and sex, with Sidak’s multiple
comparison post hoc test used to determine if there were any significant
sex differences. For all experiments, drug administration equally affected
males and females (Supplementary Table S2) and thus the data were
pooled as represented in all figures. Statistical analyses were performed
using Prism 8.4 (GraphPad Software) except for the PCA analysis that was
conducted using custom code in R. All data were tested for normality and
equal variances. All data are express as mean ± SEM except for PCA.

RESULTS
Sociability deficits are conserved across multiple mouse
models for ASD
To assess basal sociability behavior, we performed juvenile interaction
and three-chamber sociability tests (Fig. 1A) in four different ASD
mouse models: (1) 16p11.2flx/flx mice crossed with Sert-Cre+/– mice
(Sert-Cre+/–:16p11.2flx/flx) yielding mice in which the syntenic region on
mouse chromosome 7F3 is deleted from 5-HT neurons [26], (2) a
model of Fragile X syndrome in which Fmr1 is constitutively deleted
(Fmr1–/y, −/−) [34], (3) a constitutive knockout of Cntnap2 [33], which
has been associated with ASDs [42, 43] (Cntnap2−/−), and (4) mice
whose mothers were treated with VPA throughout pregnancy (VPA
mice) [35], a manipulation that mimics a potential environmental
cause of ASD [36, 37]. We chose these mouse models because they
have been reported to have social behavior deficits yet represent very
different genetic and environmental etiologies for ASDs. In all four
lines, mice spent less time interacting with a novel conspecific
juvenile mouse when introduced into their home cage compared to
controls and during the three-chamber sociability test, spent less time
in the chamber that contained a novel conspecific juvenile under an
enclosure that allowed for physical interaction (Fig. 1B–E). We also
assessed general novelty seeking using the novel object interaction
assay and locomotion in an open field (Fig. 1A). None of the mouse
lines showed changes in the time spent exploring a novel object
while all the lines, except the Sert-Cre+/–:16p11.2flx/flx line, exhibited
hyperactivity (Fig. 1F–I). There were no differences between male and
female mice for any of these results or for subsequent results
(Supplementary Table S2) and therefore results from male and female
mice were combined.

MDMA reverses sociability deficits in multiple mouse models
for ASD
To test whether systemic administration of MDMA could rescue
sociability deficits, all four ASD mouse lines as well as control mice
were administered MDMA at a dose (7.5mg/kg i.p.) that promotes
sociability but does not elicit reinforcement [31] or vehicle 20min
prior to performance of the juvenile interaction and three-chamber
sociability assays. All subjects received MDMA or vehicle in a
counterbalanced, blinded fashion such that the behavioral assays
and their analyses were performed without knowledge of the
substance that had been administered to the subject. Administration
of MDMA robustly reversed the sociability deficits in both assays in all
four mouse lines models while vehicle administration had no effect
(Fig. 2A–D). In control mice, MDMA enhanced preference for the
social chamber in the three-chamber test, as previously reported [31],
but did not increase the time spent interacting with a juvenile
(Fig. 2A–D). Novel object interaction time was not affected by MDMA
in any of the mouse lines (Supplementary Fig. S1A–D).

A 5-HT1b receptor agonist reverses behavioral deficits in
multiple mouse models for ASD
Although MDMA is in advanced clinical trials as an adjunct to
therapy for treatment of post-traumatic stress disorder (PTSD) [44]
and social anxiety in ASD [45], it has a long history of abuse
potential and there are concerns regarding its toxicity [46]. These
effects are thought to be due to MDMA’s molecular interactions
with the 5-HT and dopamine (DA) transporters to elicit robust
release of these neuromodulators. Given that we have previously

J.J. Walsh et al.

2002

Neuropsychopharmacology (2021) 46:2000 – 2010



shown that MDMA’s prosocial effect is dependent on 5-HT release
in the NAc, while its reinforcing effects are primarily mediated by
DA release [31], drugs that directly target the receptor(s) upon
which 5-HT acts in the NAc to enhance sociability may recapitulate
MDMA’s prosocial effects while mitigating MDMA’s associated
health risks. Three different studies from our lab have consistently
found that a 5-HT1b receptor antagonist prevents the social
reward and sociability effects of 5-HT release in the NAc

[25, 26, 31]. Furthermore, infusion of a 5-HT1b receptor agonist
directly into the NAc enhanced sociability in Sert-Cre+/–:16p11.2flx/flx

mice [26]. Therefore, we assessed whether systemic administration
of the highly specific 5-HT1b receptor agonist CP-94,253 [47] could
reverse sociability deficits in ASD mouse models in a manner
similar to MDMA. Again, all assays and analyses were performed
blindly. In all genetic ASD mouse lines, administration of CP-94,253
(10mg/kg i.p.) reversed the sociability deficits seen in both the

Social behaviors
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juvenile interaction and three-chamber tests while having no
effects in control mice (Fig. 3A–C). In VPA mice, administration of
CP-94,253 reversed sociability deficits in the juvenile interaction
test but in the three-chamber assay, it reversed the social aversion
displayed by these mice without enhancing sociability.
To assess if 10mg/kg of CP-94,253 was an appropriate dose to

reverse the observed sociability deficits, we performed dose-response
experiments in wild-type and Cntnap2−/− mice. Administration of CP-
94,253 at four different doses (1, 3, 10, and 30mg/kg) dose-
dependently reversed the sociability deficits seen in both juvenile
interaction and three-chamber tests when given progressively every
2 days in the same cohort of Cntnap2−/− mice (Supplementary
Fig. S2A, B). Consistent with our previous results, CP-94,253 at doses
up to 10mg/kg had no effects in wild-type mice but at 30mg/kg
induced a minor increase in sociability in both assays (Supplementary
Fig. S2A, B). To test for possible longer-term, “carry-over” effects of
prior administration of CP-94,253, we repeated dose-response
experiments in separate cohorts of wild-type and VPA mice such
that each individual subject received only a single dose of CP-94,253.
The results of these experiments were essentially identical to those of
the previous dose-response assays (Supplementary Fig. S2C, D).
To determine if CP-94,252 at the dose tested in all four ASD

models (10 mg/kg) might be acutely reinforcing and therefore
exhibits abuse liability we performed CPP assays in wild-type and
Cntnap2−/− mice. However, CP-94,253 did not elicit CPP or
conditioned place aversion in either wild-type or Cntnap2−/− mice
(Supplementary Fig. S3). Surprisingly, CP-94,253 reduced the hyper-
activity exhibited by the Cntnap2−/−, Fmr1–/y, −/−, and VPA mice but
had no effect on the normal locomotion in the Sert-Cre+/–:16p11.2flx/flx

(Supplementary Fig. S4). Similarly, the drug had no effect on
performance in the novel object interaction assay in any of the
mouse lines. (Supplementary Fig. S5).
To further examine the surprisingly consistent effects of CP-

94,253, we extended our investigation of 5-HT1b receptor
agonism to genetic deletion ASD models of two subunits of the
neuron-specific nBAF chromatin remodeling complex, Actl6b and
Arid1b, which are among the most frequently mutated genes in
ASD and non-syndromic intellectual disability [48–54]. Consistent
with a previous report [40], Actl6b−/− mice exhibited impaired
sociability in both assays (Fig. 4A). Administration of CP-94,253
reversed these sociability deficits (Fig. 4B, C) as well as the
hyperactivity observed in this mouse line (Supplementary Fig. S6A)
but had no effects in the novel object interaction assay
(Supplementary Fig. S6B). Because of the availability of mice in
which Arid1b is floxed (Arid1bflx) and our interest in the role of 5-
HT signaling in ASD, rather than examining a global Arid1b
heterozygous deletion, we crossed heterozygous Arid1bflx/+ mice
with Sert-Cre+/+ mice to generate mice with heterozygous Arid1b
deletion only in 5-HT neurons (Sert-Cre+/–:Arid1bflx/+). Similar to
Sert-Cre+/–:16p11.2flx/flx mice, these mice exhibited deficits in
sociability in both assays (Fig. 4D) with no abnormalities in the

novel object interaction assay or locomotion (Supplementary
Fig. S7A). Administration of CP-94,253 in Sert-Cre+/–:Arid1bflx/+

mice reversed the social deficits observed in both the juvenile
interaction and three-chamber sociability tests, again with no
effects on control mice (Fig. 4E, F), or alterations in novel object
interaction or locomotion (Supplementary Fig. S7B).

Principal component analysis of the behavioral profiles of
mouse models for ASD
While our standard methods of analysis allow us to assess the
effect of drug administration in a single assay, we cannot readily
examine the global effects of this manipulation across multiple
behaviors. To address this limitation, we performed dimensionality
reduction using PCA to better understand the overall effect of CP-
94,253 on the global behavioral profiles of individual mice. This
allowed us to visualize and quantify the impact of CP-94,253
administration for hundreds of behavioral measurements in all six
ASD models and their controls. PCA of ASD model mice treated
with vehicle indicated that the behavioral profiles of the six ASD
models were similar and did not form distinguishable clusters
(Fig. 5A, PC1 and PC2 accounted for ~66% of the variance).
However, PCA of both ASD model and control cohorts treated
with vehicle revealed that the behavioral profiles of ASD model
mice are clearly distinguishable from those of control animals, as
evidenced by their nearly nonoverlapping distributions (Fig. 5B).
PC1 was most strongly anti-correlated with performance on the

sociability assays, while PC2 was most strongly correlated with the
control assays. Together PC1 and PC2 explained ~72% of the
variance (Supplementary Table S3). Notably, when these same
subjects received CP-94,253, their behavioral profiles were no
longer distinguishable from those of controls (Fig. 5C). Finally, we
quantified the extent to which each subject’s behavior was
rescued by CP-94,253 by calculating the Euclidean distances from
the subject’s PCA score under CP-94,253 or vehicle treatment to
the control vehicle average (Fig. 5D). CP-94,253 treatment
significantly reduced this distance for individuals in the ASD
model cohorts without affecting controls (Fig. 5E). This quantifica-
tion emphasizes the dramatic behavioral effects of this straight-
forward pharmacological manipulation and suggests that systemic
administration of CP-94,253 results in an overall normalization of
behavior in all of the ASD mouse models examined.

DISCUSSION
In the present study, we demonstrate that enhancing 5-HT
activity, via MDMA or with a selective 5-HT1b receptor agonist,
reverses impairments in sociability across multiple mouse models
for ASD. Although both agents ameliorated sociability deficits,
there were two differences in the drugs’ behavioral effects. First,
MDMA, but not CP-94,253, promoted sociability in control mice.
Second, CP-94,253 reduced the hyperactivity observed in the four

Fig. 1 Behavior deficits present in four mouse models for ASD. A Sample behavioral assay timeline. Behavioral assays were conducted in
counterbalanced manner to ensure that the order of behavioral tests was not a confound. B Quantification of sociability during juvenile
interaction (t43= 6.072, P < 0.001, n= 21–24) and three-chamber sociability (t41= 9.353, P < 0.001, n= 19–24) in control or Sert-Cre+/–:16p11.2flx/flx

mice. For all panels, juvenile interaction is on the left and three-chamber sociability is on the right with controls in black and ASD models in red.
C Quantification of sociability during juvenile interaction (t39= 10.01, P < 0.001, n= 18–23) and three-chamber sociability (t39= 7.581, P < 0.001,
n= 18–23) in control or Cntnap2−/− mice. D Quantification of sociability during juvenile interaction (t38= 14.70, P < 0.001, n= 20) and three-
chamber sociability (t38= 4.935, P < 0.001, n= 20) in control or Fmr1–/y, −/− deletion mice. E Quantification of sociability during juvenile
interaction (t25= 4.721, P < 0.001, n= 13–14) and three-chamber sociability (t25= 4.239, P < 0.001, n= 13–14) in control mice or mice exposed to
valproic acid in utero. F Sert-Cre+/–:16p11.2flx/flx does not alter novel objection interaction (t37= 0.09247, P= 0.9268, n= 19–20) or locomotion
(t37= 0.8478, P= 0.4020, n= 19–20). G Cntnap2−/− mice do not show altered novel object interaction (t39= 0.3320, P= 0.7416, n= 18–23), but
have increases in locomotor activity (t39= 5.475, P < 0.001, n= 18–23). H Fmr1–/y, −/− mice do not have altered novel object interaction
(t38= 0.02767, 0.9781, n= 20), but have increases in locomotor activity (t38= 4.338, P < 0.001, n= 20). I VPA mice have no alterations in novel
object interaction (t25= 0.9353, 0.3586, n= 13–14), but do have increases in locomotion (t25= 2.282, P < 0.05, n= 13–14). Data are mean ± SEM.
*P < 0.05, ***P < 0.001; unpaired t-test. For all figures, comparisons with no asterisk had P > 0.05 and were considered not significant.
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ASD mouse models in which it occurred but, consistent with
previous reports [55–57], had no effect on locomotor activity in
control mice. In contrast, MDMA increases locomotor activity at
higher doses [31]. The differences in the drugs’ behavioral effects
are likely due to their very different mechanisms of actions. MDMA
binds to SERT with high affinity and causes supraphysiological
release of 5-HT through a reverse transport mechanism that is
independent of action potential activity and very different than
the slower, modest increases in 5-HT caused by 5-HT specific
reuptake inhibitors (SSRIs) [58–62]. MDMA also binds to the DA
transporter with lower affinity and the consequent increase in DA

levels likely accounts for its locomotor stimulatory and reinforcing
properties at high doses [31, 63–65]. In contrast, CP-94,253 is a
highly specific 5-HT1b receptor agonist that, unlike MDMA, should
have minimal effects on the many other 5-HT receptor subtypes
that will be influenced by the 5-HT released by MDMA.
We intentionally examined multiple ASD mouse models based on

different genetic or environmental syndromes, which are well
described in human subjects. Although we extensively backcrossed
all of our mouse lines to C57BL/6 mice, it is formally possible that
unknown background genetic differences between the experimental
and control mice may have contributed to the observed behavioral
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Fig. 2 Systemic administration of MDMA reverses social deficits in four mouse models for ASD. A Quantification of juvenile interaction
(F1,42= 43.17, P < 0.001, n= 20–24) and three-chamber sociability (F1,42= 28.06, P < 0.001, n= 20–24) in control or Sert-Cre+/–:16p11.2flx/flx mice
with systemic administration of vehicle or MDMA. For all panels, juvenile interaction is on the top and three-chamber sociability is on the
bottom with controls in black and ASD models in blue. Individual mice are represented as lines in the left panels and indicate an individual
mouse that received vehicle and drug on separate days. If error bars are not clearly visible, they are smaller than the symbol used to represent
the SEM. B Quantification of juvenile interaction (F1,33= 45.46, P < 0.001, n= 16–19) and three-chamber sociability (F1,33= 10.53, P < 0.001, n=
16–19) in control or Cntnap2−/− mice with systemic administration of vehicle or MDMA. C Quantification of juvenile interaction (F1,36= 123.1,
P < 0.001, n= 19) and three-chamber sociability (F1,36= 12.34, P < 0.001, n= 19) in control or Fmr1–/y, −/− mice with systemic administration of
vehicle or MDMA. D Quantification of juvenile interaction (F1,30= 172.4, P < 0.001, n= 15–17) and three-chamber sociability (F1,30= 24.84, P <
0.001, n= 15–17) in control or VPA mice with systemic administration of vehicle or MDMA. In this and all subsequent figures, the left panels
illustrate individual subjects; right panels display mean ± SEM. *P < 0.05, ***P < 0.001; two-way ANOVA with Sidak’s multiple comparison post
hoc test.
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differences. Even if this occurred, however, it does not change the
fact that two different drugs, which influence 5-HT signaling, were
effective in all models suggesting that 5-HT-mediated modulation
of key targets such as the NAc may be one critical convergent
target upon which the different causal genetic or environmental
factors act. Consistent with this proposal, deletion of 16p11.2 or
Arid1b only from 5-HT neurons was sufficient to cause robust
sociability deficits but not the hyperactivity observed in all of the
other ASD models, which involved brain-wide genetic deletions or
prenatal exposure to VPA. This suggests that the hyperactivity was

generated by alterations in brain circuity other than that involving
5-HT neurons.
Previous work provides additional evidence that several of the

ASD mouse models we used exhibit abnormalities in 5-HT
signaling. Fmr1–/y mice have reduced SERT mRNA during postnatal
development [66] and recently FMR1 was identified as a novel
SERT-interacting protein [67]. Prenatal exposure of VPA in rodents
results in decreased 5-HT levels and abnormal 5-HT neuron
differentiation and innervation patterns [68, 69]. While studies
have not directly identified 5-HT dysfunction in Cntnap2−/− mice,
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Fig. 3 Systemic administration of CP-94,253 reverses social deficits in four mouse models for ASD. A Quantification of juvenile interaction
(F1,43= 45.58, P < 0.001, n= 21–24) and three-chamber sociability (F1,41= 34.56, P < 0.001, n= 19–24) in control or Sert-Cre+/−:16p11.2flx/flx mice
with systemic administration of vehicle or CP-94,253. For all panels, juvenile interaction is on the top and three-chamber sociability is on
the bottom with controls in black and ASD model in red. If error bars are not clearly visible, they are smaller than the symbol used to represent
the SEM. B Quantification of juvenile interaction (F1,39= 28.92, P < 0.001, n= 18–23) and three-chamber sociability (F1,39= 41.17, P < 0.001, n=
18–23) in control or Cntnap2−/− mice with systemic administration of vehicle or CP-94,253. C Quantification of juvenile interaction (F1,38=
54.62, P < 0.001, n= 20) and three-chamber sociability (F1,36= 38.14, P < 0.001, n= 19) in control or Fmr1–/y, −/− mice with systemic
administration of vehicle or CP-94,253. D Quantification of juvenile interaction (F1,25= 10.75, P < 0.01, n= 13–14) and three-chamber
sociability (F1,24= 10.42, P < 0.01, n= 12–14) in control or VPA mice with systemic administration of vehicle or CP-94,253. Data are mean ± SEM.
**P < 0.01, ***P < 0.001; two-way ANOVA with Sidak’s multiple comparison post hoc test. .
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both CNTNAP2 and its ligand CNTN1, which is highly expressed in
5-HT neurons, are neurexin-family adhesion molecules important
in axon development [70, 71]. Similarly, while the role of the BAF
complex, which contains subunits encoded by Actl6b and Arid1b,
in 5-HT signaling is unclear, cortical neurons cultured from
Actl6b−/− mice have altered levels of 5-HT receptors [40] and
mutations in another BAF subunit impairs 5-HTergic neuron
differentiation [72]. Endogenous 5-HT signaling has also been
suggested to be altered in the 16p11.2 deletion mouse model [73]
and selectively deleting 16p11.2 from 5-HT neurons influences
their electrophysiological properties [26]. Two additional mouse
lines that influence 5-HT and exhibit abnormal social behaviors are
mice lacking or harboring mutations in Slc6a4, the gene
that encodes SERT [74, 75] and mice lacking monoamine oxidase
A (MAOA), the gene responsible for degradation of 5-HT in the
brain [76].
Although SSRIs are commonly prescribed to treat symptoms

associated with ASD, such as anxiety and depression, they do not
appear to ameliorate core ASD symptoms, including social deficits

[77]. Nevertheless, individuals with ASD have been reported to
express abnormalities in 5-HT system physiology and genetics,
including alterations in 5-HT synthesis, as well as receptor and
transporter binding capacity [78–81]. Indeed, the earliest biomarker
found in ASD was alterations in peripheral 5-HT levels [13–18]. While
peripheral mechanisms such as tactile abnormalities can contribute to
behavioral abnormalities in ASD mice [82] and 5-HT1b receptors can
regulate vasoconstriction and possibly nociceptive neurotransmission
[83], the fact that direct infusion of a CP-94,253 into the NAc reverses
social deficits present in mice with 16p11.2 selectively deleted from 5-
HT neurons [26] suggests that CP-94,253 is acting centrally, not
peripherally. In light of the minimal efficacy of SSRIs and our current
findings, we suggest that the magnitude, kinetics, and specificity of
enhancement of 5-HT-mediated signaling in pivotal brain target
regions, such as the NAc, are critical components of effective 5-HT
based therapeutic interventions.
What might be mechanisms that contribute to the prosocial

effects of 5-HT1b receptor activation in ASD mouse models? 5-HT
inhibits excitatory synaptic transmission in the NAc via activation
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Fig. 4 Systemic administration of CP-94,253 reverses social deficits in Actl6b−/− and Sert-Cre+/–:Arid1bflx/+ mice. A Quantification of
sociability during juvenile interaction (t35= 12.05, P < 0.001, n= 17–20) and three-chamber sociability (t35= 14.35, P < 0.001, n= 17–20) in
control (black) or Actl6b−/− (red) mice. If error bars are not clearly visible, they are smaller than the symbol used to represent the
SEM. B, C Quantification of juvenile interaction (B: F1,35= 31.12, P < 0.001, n= 17–20) and three-chamber sociability (C: F1,50= 16.38, P < 0.001,
n= 24–28) in control or Actl6b−/− mice with systemic administration of vehicle or CP-94,253. D Quantification of sociability during juvenile
interaction (t39= 8.468, P < 0.001, n= 17–24) and three-chamber sociability (t39= 7.573, P < 0.001, n= 17–24) in control (black) or Sert-Cre+/–:
Arid1bflx/+ (red) mice. E, F Quantification of juvenile interaction (E: F1,37= 52.43, P < 0.001, n= 17–22) and three-chamber sociability (F: F1,35=
22.22, P < 0.001, n= 16–22) in control or Sert-Cre+/–:Arid1bflx/+ mice with systemic administration of vehicle or CP-94,253. Data are mean ± SEM.
***P < 0.001; two-way ANOVA with Sidak’s multiple comparison post hoc test. .
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of presynaptic 5-HT1b receptors [25, 31, 84]. Given that inhibition
of basolateral amygdala excitatory inputs to NAc reverses social
deficits in a Shank3 deletion ASD model [85], the modulation of
excitatory inputs to NAc, a key node of reward circuity that
influences social behaviors [86, 87], may be one important
mechanism contributing to the prosocial effects of CP-94,253
and MDMA. However, given the complexity of the circuitry that
mediates even the simplest prosocial behavior in mice [86, 87],
much work remains to be done to fully understand how these
drugs mediate their prosocial behavioral effects.
An important consideration when examining compounds for

potential therapeutic benefit is whether they elicit effects that
outlast their acute actions. For example, there is potential for
sensitization to the prosocial effects of MDMA [88]. While long-
term effects of CP-94,253 cannot be definitively ruled out, this
seems unlikely given that evidence of sustained effects in the
sociability assays was never observed. Indeed, there were no
differences in the dose-response assays in mice given all four
doses (each dose separated by 2 days) versus mice that each
received only a single dose.
We hope our findings will draw attention to the possibility that a

relatively simple, targeted pharmacological intervention might be
useful in ameliorating some of the core deficits seen in individuals
with ASD. MDMA is already being investigated as an adjunctive
treatment for PTSD and social anxiety in ASD. However, because of its

potential toxicity and abuse potential, it seems unlikely that MDMA
will be useful as a prolonged, daily treatment to reduce sociability
deficits in ASD. We are more enthusiastic about the potential utility of
a 5-HT1b receptor agonist in the treatment of ASD. Our PCA revealed
that following treatment with CP-94,253 the global behavioral profile
of all ASD models was indistinguishable from that of controls. This
normalization occurred despite the dramatically different genetic
modifications and environmental manipulations generating the
pathological behavioral changes. Furthermore, unlike manipulations
that enhance DA neuron activity or DA release (e.g., MDMA or other
psychostimulants), manipulations that increase 5-HT neuron activity
or 5-HT release (e.g., SSRIs) are not acutely reinforcing and do not
induce hyperactivity [33], both of which are strongly associated with
abuse potential in rodent models. An important limitation of our
study is that we examined only acute actions of MDMA and CP-
94,253. Furthermore, 5-HT plays an important role in brain develop-
ment [79, 89], and therefore appropriate caution must be taken in
testing any 5-HTergic agent in children. Nevertheless, we hope that
our findings will stimulate further work defining the effectiveness of
these simple, but potentially powerful therapeutic interventions.
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