Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling

Abstract

Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modulate neuronal activity with the subsequent release of neuroactive transmitters. Dopamine signaling is essential for brain physiology and pathology, participating in learning and memory, motor control, neurological diseases, and psychiatric diseases, and astrocytes are emerging as a key cellular target of dopamine signaling. The present review will examine evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system. Astrocytes exhibit circuit-specific modulation of neuronal networks and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dopaminergic tripartite synapse.
Fig. 2: Astrocytes respond to dopamine with increases in cytoplasmic calcium.

References

  1. 1.

    Bushong EA, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci. 2002;22:183–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct. 2017;222:2017–29.

  4. 4.

    Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362:181–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Araque A, et al. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.

    CAS  Article  Google Scholar 

  6. 6.

    Khakh BS, Deneen B. The emerging nature of astrocyte diversity. Annu Rev Neurosci. 2019;42:187–207.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron. 2017;96:697–708.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opin Neurobiol. 2001;11:387–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Araque A, et al. Gliotransmitters travel in time and space. Neuron. 2014;81:728–39.

    CAS  Article  Google Scholar 

  10. 10.

    Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19:182–9.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev. 1998;78:99–141.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Huck JH, et al. De novo expression of dopamine D2 receptors on microglia after stroke. J Cereb Blood Flow Metab. 2015;35:1804–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Färber K, Pannasch U, Kettenmann H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci. 2005;29:128–38.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Bongarzone ER, et al. Identification of the dopamine D3 receptor in oligodendrocyte precursors: potential role in regulating differentiation and myelin formation. J Neurosci. 1998;18:5344–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Rosin C, et al. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia. 2005;52:336–43.

    PubMed  Article  Google Scholar 

  16. 16.

    Missale C, et al. Dopamine receptors: from structure to function. Physiological Rev. 1998;78:189–225.

    CAS  Article  Google Scholar 

  17. 17.

    Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 2006;30:215–38.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Wightman RM, Robinson DL. Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem. 2002;82:721–35.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharm Rev. 2011;63:182–217.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zanassi P, et al. Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res. 1999;58:544–52.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Nagatomo K, et al. Dopamine D1 receptor immunoreactivity on fine processes of GFAP-positive astrocytes in the substantia nigra pars reticulata of adult mouse. Front Neuroanat. 2017;11:3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Reuss B, et al. Regionally distinct regulation of astroglial neurotransmitter receptors by fibroblast growth factor-2. Mol Cell Neurosci. 2000;16:42–58.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Miyazaki I, et al. Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res. 2004;1029:120–3.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Corkrum M, et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron. 2020;105:1036–47. e5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Shibasaki K, et al. Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem. 2017;140:395–403.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bal A, et al. Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res. 1994;23:204–12.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Qiu J, et al. Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. J Neuroinflammation. 2016;13:263.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Montoya A, et al. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflammation. 2019;16:1–19.

    Article  CAS  Google Scholar 

  31. 31.

    Elgueta D, et al. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson’s disease. Neuropharmacology. 2017;113:110–23.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Kumar U, Patel SC. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res. 2007;1131:187–96.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Svingos AL, Periasamy S, Pickel VM. Dopamine D4 receptors are strategically localized for primary involvement in the presynaptic effects of dopamine in the rat nucleus accumbens shell. Ann N Y Acad Sci. 1999;877:679–83.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Hansson E, Rönnbäck L, Sellström Å. Is there a “dopaminergic glial cell”? Neurochem Res. 1984;9:679–89.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Hansson E, Rönnbäck L. Neurons from substantia nigra increase the efficacy and potency of second messenger arising from striatal astroglia dopamine receptor. Glia. 1988;1:393–7.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Galloway A, et al. Dopamine triggers CTCF-dependent morphological and genomic remodeling of astrocytes. J Neurosci. 2018;38:4846–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Koppel I, et al. Dopamine cross-reacts with adrenoreceptors in cortical astrocytes to induce BDNF expression, CREB signaling and morphological transformation. Glia. 2018;66:206–16.

    PubMed  Article  Google Scholar 

  38. 38.

    Oe Y, et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat Commun. 2020;11:1–15.

    Google Scholar 

  39. 39.

    Pérez-Alvarez A, Araque A, Martín ED. Confocal microscopy for astrocyte in vivo imaging: recycle and reuse in microscopy. Front Cell Neurosci. 2013;7:51.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Yu X, et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron. 2018;99:1170–87. e9

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Lines J, et al. Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun. 2020;11:1–12.

    Article  CAS  Google Scholar 

  42. 42.

    Qin H, et al. Monitoring astrocytic Ca2+ activity in freely behaving mice. Front Cell Neurosci. 2020;14:410.

    Article  Google Scholar 

  43. 43.

    Ingiosi AM, et al. A role for astroglial calcium in mammalian sleep and sleep regulation. Curr Biol. 2020;30:4373–4383. e7

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Vaarmann A, Gandhi S, Abramov AY. Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem. 2010;285:25018–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Jennings A, et al. Dopamine elevates and lowers astroglial Ca(2+) through distinct pathways depending on local synaptic circuitry. Glia. 2017;65:447–59.

    PubMed  Article  Google Scholar 

  46. 46.

    Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18:741–52.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci. 2020;21:121–38.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Savtchouk I, Volterra A. Gliotransmission: beyond black-and-white. J Neurosci. 2018;38:14–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Fiacco TA, McCarthy KD. Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci. 2018;38:3–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13:54–63.

    CAS  Article  Google Scholar 

  51. 51.

    Trudeau LE. Neurotensin regulates intracellular calcium in ventral tegmental area astrocytes: evidence for the involvement of multiple receptors. Neuroscience. 2000;97:293–302.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Gould T, et al. GABA(B) receptor-mediated activation of astrocytes by gamma-hydroxybutyric acid. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130607.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Araque A, et al. SNARE protein-dependent glutamate release from astrocytes. J Neurosci. 2000;20:666–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Gomez JA, et al. Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat Commun. 2019;10:1–13.

    Article  CAS  Google Scholar 

  55. 55.

    Molnár T, et al. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens. Front Neuroenergetics. 2011;3:7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Molnár T, et al. Calcium signals in the nucleus accumbens: activation of astrocytes by ATP and succinate. BMC Neurosci. 2011;12:96.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    D’Ascenzo M, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci USA. 2007;104:1995–2000.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Corkrum M, et al. Opioid-mediated astrocyte–neuron signaling in the nucleus accumbens. Cells. 2019;8:586.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  59. 59.

    Svingos AL, et al. Ultrastructural immunocytochemical localization of mu-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J Neurosci. 1996;16:4162–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci. 2005;25:2192–203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Fellin T, et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43:729–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Dunwiddie TV, Diao L, Proctor WR. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci. 1997;17:7673–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Cunha RA, Sebastião AM, Ribeiro J. Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci. 1998;18:1987–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Bergles DE, Jahr CE. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci. 1998;18:7709–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Bergles DE, Diamond JS, Jahr CE. Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol. 1999;9:293–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Conti F, Weinberg RJ. Shaping excitation at glutamatergic synapses. Trends Neurosci. 1999;22:451–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol. 2004;14:346–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia. 2004;47:217–25.

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Otis TS, et al. Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex. Neurochem Int. 2004;45:537–44.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8:935–47.

    CAS  Article  Google Scholar 

  71. 71.

    Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001;292:923–6.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Pawlak J, et al. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res. 2005;138:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Autry AE, et al. Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology. 2006;83:371–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Zschocke J, et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem. 2005;280:34924–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Frizzo ME, et al. Extracellular adenosine triphosphate induces glutamate transporter-1 expression in hippocampus. Hippocampus. 2007;17:305–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Wu J, et al. Regulation of ethanol-sensitive EAAT2 expression through adenosine A1 receptor in astrocytes. Biochem Biophys Res Commun. 2011;406:47–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Roberts-Wolfe DJ, Kalivas PW. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol Disord Drug Targets. 2015;14:745–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Kalivas PW, et al. Glutamate transmission in addiction. Neuropharmacology. 2009;56:169–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Scofield M, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev. 2016;68:816–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Scofield MD, Kalivas PW. Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist. 2014;20:610–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Durkee CA, et al. Gi/o protein‐coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia. 2019;67:1076–93.

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife. 2018;7:e32237.

  85. 85.

    Haydon PG, et al. Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology. 2009;56:83–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Bachtell RK, et al. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend. 2017;180:156–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Kim R, et al. Astroglial correlates of neuropsychiatric disease: from astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:126–46.

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Wang J, et al. Astrocytes in cocaine addiction and beyond. Mol Psychiatry. 2021; in press.

  89. 89.

    Bull C, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology. 2014;39:2835–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Nwachukwu KN, et al. Chemogenetic manipulation of astrocytic signaling in the basolateral amygdala reduces binge‐like alcohol consumption in male mice. J Neurosci Res. 2021; in press.

  91. 91.

    Scofield MD, et al. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry. 2015;78:441–51.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Siemsen BM, et al. Effects of methamphetamine self-administration and extinction on astrocyte structure and function in the nucleus accumbens core. Neuroscience. 2019;406:528–41.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Sarkisyan D, et al. Damaged reward areas in human alcoholics: neuronal proportion decline and astrocyte activation. Acta Neuropathologica. 2017;133:485–7.

    PubMed  Article  Google Scholar 

  94. 94.

    Ramaker RC, et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017;9:1–12.

    Article  CAS  Google Scholar 

  95. 95.

    Navarrete M, et al. Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex. 2013;23:1240–6.

    PubMed  Article  Google Scholar 

  96. 96.

    Hearing M, et al. Opioid and psychostimulant plasticity: targeting overlap in nucleus accumbens glutamate signaling. Trends Pharm Sci. 2018;39:276–94.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Scofield MD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharm Rev. 2016;68:816–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Monai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Monai H, Hirase H. Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res. 2018;126:15–21.

    PubMed  Article  Google Scholar 

  100. 100.

    Mladinov M, et al. Astrocyte expression of D2-like dopamine receptors in the prefrontal cortex. Transl Neurosci. 2010;1:238–43.

    Article  Google Scholar 

  101. 101.

    Khan ZU, et al. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA. 2001;98:1964–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Pelassa S, et al. A2A-D2 heteromers on striatal astrocytes: biochemical and biophysical evidence. Int J Mol Sci. 2019;20:2457.

  103. 103.

    Cervetto C, et al. A2A‐D2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochemistry. 2017;140:268–79.

    CAS  Article  Google Scholar 

  104. 104.

    Cervetto C, et al. Homocysteine and A2A-D2 receptor-receptor interaction at striatal astrocyte processes. J Mol Neurosci. 2018;65:456–66.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Requardt RP, et al. The biphasic NAD (P) H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis. J Neurochemistry. 2010;115:483–92.

    CAS  Article  Google Scholar 

  106. 106.

    Liu J, et al. Activation of phosphatidylinositol-linked novel D 1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol Neurobiol. 2009;29:317–28.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Xin W, et al. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology. 2019;44:344–55.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Reuss B, Unsicker K. Atypical neuroleptic drugs downregulate dopamine sensitivity in rat cortical and striatal astrocytes. Mol Cell Neurosci. 2001;18:197–209.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Hösli L, et al. Action of dopamine and serotonin on the membrane potential of cultured astrocytes. Exp Brain Res. 1987;65:482–5.

    PubMed  Google Scholar 

  110. 110.

    Martin R, et al. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science. 2015;349:730–4.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MC and AA jointly wrote, revised, edited the paper, and approved the final version of the paper.

Corresponding author

Correspondence to Alfonso Araque.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corkrum, M., Araque, A. Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacol. 46, 1864–1872 (2021). https://doi.org/10.1038/s41386-021-01090-7

Download citation

Search

Quick links