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In their correspondence, Winter et al. [1] raised concerns with the
application of machine learning to examine associations between
brain variables and childhood maltreatment in [2]. The primary
concern was that the association between maltreatment and brain
variables may have been obscured because the reported model
contained non-brain covariates. Specifically, the results may
have fallen victim to the Rashomon effect - the possibility that
there are numerous combinations of brain variables that yield
comparable findings to the reported model due to the inclusion of
clinically-relevant covariates. This concern is important given the
possible instability of machine learning results [3]. We addressed
this concern in two ways. First, the brain regions were selected by
aggregating over a set of 500 models, which is consistent with
Breiman’s recommendation for combating the Rashomon effect
[3]. Second, we evaluated 250,000 competing models, constructed
from permuting features from the entire feature set. As indicated
in supplemental materials, the reported model (AUC=.90)
outperformed all competitor models (AUCpyean =.74), Which
suggested the specific features in the reported model were likely
associated with maltreatment.

Winter et al. correctly noted that the inclusion of covariates in a
model alters the association between brain regions and maltreat-
ment. Accounting for such variables, however, is imperative as
machine learning methods often identify patterns among the
variables of interest that serve as proxies for these covariates. For
example, if an association between sex and the outcome variable
exists but sex is not in the model, the elastic net may include brain
regions that diverge across the sexes. This would lead to the
incorrect conclusion that these regions were associated with the
outcome variable. A proposed remedy to this proxy concern is to
regress out covariates from each brain region and then use the
residualized regions in the analysis.

We used this residualized approach to determine if the selected
brain regions reported in [2] were associated with maltreatment.
Using the residualized brain regions reported in [2], ridge regression
using 5-fold cross-validation obtained an AUCesigualizeq = 0.69. This
result was comparable to the model reported in [2] that included non-
residualized brain regions and covariates, AUC =.71. We repeated the
permutation analysis described above using residualized brain
regions. The residualized model obtained an AUCesigualized = 081,
which was superior to all 250,000 competing residualized models
(AUCptean = 0.67). The comparable performance between a residua-
lized brain-only model and the model that included brain regions and
covariates further supports the association between maltreatment
and the regions identified in [2]. We recommend future researchers
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use this residualized method to evaluate brain-only models while
accounting for confounding variables.

Winter et al. also raised concerns on the misinterpretation of
multivariate weights from machine learning models. We agree
and, indeed, our manuscript interpreted results based solely on
the inclusion/exclusion of features. The bar graph showing feature
weights was included to list the selected features, show their
relative weightings, and communicate the directionality of the
associations. We too caution others to avoid interpreting weights
as indicative of association strength.
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