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Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and
rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital
cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure,
functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely,
the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates
or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as
represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and
monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major
expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical
connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-
specific PFC areas.
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INTRODUCTION
Many neuroscientists assume that cortical organization is
highly conserved among mammals—the cortex might differ in
size or number of neurons, but its basic elements and pattern
of organization are shared by all. The current concentration
of research on a few “model” species reinforces this view. In
addition to the cerebral cortex of humans, neuroscience devotes
the vast majority of its effort to study the favored four: rats,
mice, and rhesus monkeys, with common marmosets recently
augmenting this limited roster. Because translational neu-
roscience depends on features of organization shared among
species, presumably including humans, there is a tendency
to neglect the diversity of mammalian cortex (for discussions,
see [1–6]).
If one adopts a broader, comparative perspective, however, it

becomes difficult to sustain this view. Of course, some features of
the mammalian cortex are widely shared among species by virtue of
common ancestry. Nevertheless, the cortex also exhibits the same
high level of diversity characteristic of other aspects of mammalian
biology [7], different lineages having evolved a wide variety of
cortical specializations, just as they evolved numerous specializa-
tions of behavior, skeletal anatomy, physiology, macromolecules,
and genome.
The same principles apply to the topic of this special issue:

the prefrontal cortex (PFC). In this paper, we discuss features of
PFC organization that appear to be widely shared among
mammals, along with evidence that primates possess a set of
PFC areas that most or all other mammals lack: namely, the
granular PFC, the part of the PFC that dominates the human
frontal lobe.

SOME EVOLUTIONARY FUNDAMENTALS
In order to reconstruct the evolution of the PFC, we need an
accurate picture of who is related to whom among mammals. In
addition, we need a terminology for designating shared features
of brain organization that reflects those relationships.

Who’s related to whom?
Prior to the development of efficient DNA sequencing techniques
in the 1990s [8], accounts of the relationships of mammals came
mainly from anatomy and have been fraught with uncertainties.
For example, at one time bats and certain insectivores were
thought to be closely related to primates [9], a view no longer
supported [10]. Those inadequacies not only obscured our
understanding of which mammals are most closely related to
primates but also how primate brains differ from those of our
closest relatives. With the newfound ability to sequence large
blocks of DNA, the relationship of primates to other mammals
have largely been resolved (Fig. 1). Now, we can be confident that
the closest relatives of primates are tree shrews and colugos
(flying lemurs), although which of those two groups is most
closely related to primates remains uncertain, and they could be
equally closely related [11, 12]. Together with primates, these
animals constitute a group called Euarchonta. Molecular phylo-
genies also show that rodents are closely related to rabbits
(settling another long-running debate), and together this group,
called Glires, is the lineage most closely related to Euarchonta.
Euarchonta and Glires constitute an even higher-order group, the
Euarchontoglires (Fig. 1). And so it goes, with increasingly distantly
related branches coalescing in deeper and deeper nodes of the
evolutionary tree.
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Homology and analogy
Among the most important concepts in biology are homology and
analogy, which provide the framework for understanding
similarities and differences among organisms [13, 14]. The concept
of homology refers to the “same” feature of an organism present
in different species, where sameness implies descent from a
common ancestor. A feature can be anything a lineage reproduces
across generations. While homology suggests that a feature
present in two species shares some attributes, it does not require
that they be identical in all respects or even that they have a high
degree of similarity. Analogy, in common English, refers to
similarity, but in biology it indicates a particular kind of similarity,
one that results from independent evolution (also known as
convergent or parallel evolution), the feature in question having
not been present in the common ancestor of the taxa involved.
Because homology and analogy are defined in terms of their
relationship to ancestry, they are mutually exclusive. Neuroscien-
tists have sometimes been reluctant to use the term “homology”
when comparing the cortex of different species, even when it is
clear from the context that they are making a claim of homology,
as that concept is currently understood. Even worse, they may
imply homology by applying the same term to regions that are
similar in some respects, although the balance of evidence
indicates they are likely not homologous. For example, we believe
the evidence adduced in this review indicates that rodents
possess homologs of the agranular medial frontal (MF) and
agranular orbital areas of primates but lack homologs of the
granular cortex that makes up the largest part of PFC in most
primate species. To label the rodent agranular areas as “PFC” and
to generalize results in rodents to primates (including humans)
without reference to both rodent–primate homologs and primate
specializations can only create confusion.
Recognizing homologs and analogs is thus every bit as

important in neuroscience as in other branches of biology, and
there are some compelling examples. We have good reasons to
conclude that all mammals possess homologs of the primary visual
(V1), auditory (A1), and somatosensory (S1) areas [15, 16]. For one,
in all mammals studied, they occur in the same relative locations

within the cerebral cortex: V1 at the posterior end of the cortex; A1
laterally; and S1 anteriorly. For another, in all mammals studied, V1
receives inputs from the retina via the thalamus; A1 gets inputs
from the cochlea via a different thalamic nucleus; and S1 has
thalamic inputs that relay signals from cutaneous mechanorecep-
tors. While the location of an area within the cortical mantle and its
connections with the thalamus are commonly employed as
indicators of homology for cortical areas, any feature is grist for
the mill: other features of connectivity, topographic organization
(especially for the sensorimotor areas), architectonics (cyto-, myelo-
, and chemoarchitecture), neurophysiological properties, beha-
vioral functions, and so forth. In comparative anatomy, the location
of a structure within the body plan has long been considered a
critical clue to homology, on the assumption that bodypart
locations tend to be stable in evolution. Functions, by contrast,
can be quite changeable: for example, homologs of Broca’s and
Wernicke’s areas exist in nonhuman primates [17], but only
humans have language.
Comparative cortical neuroscience is not all about homology.

Convergent evolution is also important. For example, primates
and carnivores both possess a large number of extrastriate
visual areas [18], and in cats and at least some other carnivores,
area V1 includes prominent “blobs” in their upper layers, similar
in their enrichment with cytochrome oxidase and certain
features of connectivity to those of primates [19]. Because
mammals more closely related to primates than carnivores,
specifically rodents and tree shrews (Fig. 1), lack these features,
we can be confident they evolved convergently, and are thus
analogous [19, 20].
Identifying homologous cortical areas or regions in different

mammalian groups is complicated by the fact that the number of
areas differs across mammals [15, 21]. Moreover, areas that are
located in close proximity to each other often share many features,
especially of connectivity and function, such as the multiple
extrastriate visual areas of primates. It is not enough, then, to
simply identify a set of similarities between areas to declare them
homologous. Rather, we need to identify sets of diagnostic features
that distinguish areas from each other.

C
in

gu
la

ta
(a

rm
ad

ill
os

)

P
ilo

sa
(a

nt
ea

te
rs

, s
lo

th
s)

Tu
bu

lid
en

ta
ta

(a
ar

dv
ar

ks
)

M
ac

ro
sc

el
id

ea
(e

le
ph

an
t s

hr
ew

s)

A
fr

os
or

ic
id

ae
(t

en
re

cs
, g

ol
de

n 
m

ol
es

)

S
ire

ni
a

(m
an

at
ee

s)

H
yr

ac
oi

da
e

(h
yr

ax
es

)

P
ro

bo
sc

id
ae

(e
le

ph
an

ts
)

La
go

m
or

ph
a

(r
ab

bi
ts

, p
ik

as
, h

ar
es

)

R
od

en
tia

(r
at

s,
 m

ic
e,

 s
qu

irr
el

s)

S
ca

nd
en

tia
(t

re
e 

sh
re

w
s)

P
rim

at
es

(m
ac

aq
ue

s,
 m

ar
m

os
et

s)

D
er

m
op

te
ra

(f
ly

in
g 

le
m

ur
s)

E
ul

ip
ot

yp
hl

a
(h

ed
ge

ho
gs

, m
ol

es
)

C
hi

ro
pt

er
a

(b
at

s)

C
et

ar
tio

da
ct

yl
a

(w
ha

le
s,

 d
ol

ph
in

s,
 s

he
ep

)

P
er

is
so

da
ct

yl
a

(h
or

se
s)

C
ar

ni
vo

ra
(c

at
s,

 d
og

s,
 b

ea
rs

, s
ea

ls
)

P
ho

lid
ot

a
(p

an
go

lin
s)

Xenarthra Afrotheria Euarchontoglires Laurasiatheria

Eutheria
(Placentalia)

BoreoeutheriaAtlantogenata

Glires Euarchonta

Fig. 1 A phylogenetic tree of placental mammals, based on molecular phylogenomics. The best-established supraordinal clades are labeled
at the top. Adapted from Murphy et al. [12, 327].

T.M. Preuss and S.P. Wise

4

Neuropsychopharmacology (2022) 47:3 – 19

1
2
3
4
5
6
7
8
9
0
()
;,:



Scale thinking versus tree thinking
Today, the accepted metaphor for evolution is, for most purposes,
a branching tree, not a phylogenetic scale [13, 14, 22–24]. While
one sometimes still hears neuroscientists speak of primates as
“higher mammals” and rodents as “lower mammals,” you are
unlikely to hear that from an evolutionary biologist. To reject the
older metaphor of the phylogenetic scale is not to deny that
primates evolved distinctive specializations, but rather to acknowl-
edge that primates, rodents, and other mammalian orders
each evolved distinctive features since their divergence in the
Mesozoic Era (Fig. 1) [12]. The turn to tree thinking also applies to
the Order Primates. In the past, primate evolution was commonly
seen as an ascending scale, with tree shrews (which are no longer
considered primates) at the bottom, then progressing through a
ranked series of lemurs, tarsiers, monkeys, and apes, culminating
in the highest rank: humans [25, 26]. Modern views of primate
evolution emphasize diversification rather than ascent, with
hundreds of species organized in multiple, nested lineages
[27, 28]. Figure 2 presents an evolutionary tree of primates in
the context of other Euarchontoglires.

What, if anything, is a monkey?
This change in perspective has important consequences for how
neuroscientists should think about primates. For example, one
thing that is clear from Fig. 2 is that there is no such thing as “the
monkey” from an evolutionary viewpoint. A “thing” from that
perspective is a monophyletic group, also known as a natural
group or a clade. A monophyletic group comprises the complete
set of species that descended from a common ancestor and only
those species [13, 22].
New World and Old World monkeys are not a natural group, but

rather two distinct lineages that are not even each others’ closest
relatives. The closest relatives of the Old World monkeys (the
Cercopithecoidea) are members of the ape–human clade (the
Hominoidea). Collectively, these two groups compose the Catar-
rhini. The closest relatives, collectively, of the Catarrhini are the
New World monkeys (the Platyrrhini). Thus, references to “the
monkey” are problematic; it is important to specify which

monkeys are under consideration. Similarly, the term “prosi-
mian”—consisting of lemurs, bushbabies, and tarsiers—does not
refer to a natural group because the descendants of their last
common ancestor include the simians (the catarrhines and
platyrrhines), which are not prosimians. Because tarsiers are more
closely related to simians than to the lemur–loris–bushbaby
group, primates are now usually considered to be comprised of
two main clades, the Strepsirrhini (lemurs, lorises, and bushbabies)
and the Haplorhini (tarsiers plus simians) (Fig. 2).
If “the monkey” is problematic, references to “the primate” are

even more so, unless it is clear from the context exactly which of
the myriad primate species are under discussion (Figs. 1 and 2).
Brain organization varies among primates, so it is dangerous to
assume that what is true of one primate species is true of all.
Similar considerations apply to “the mammal” and “the rodent.”
However, given that most rodent studies are carried out in rats
and mice, we will use “rodent” as convenient shorthand for those
taxa. A somewhat wider array of primates has been studied, so we
will usually specify from which primate data were obtained.
Although it is desirable to obtain data from a broad range of

species when reconstructing evolutionary change, the general
paucity of species studied by neuroscientists means that analyses
of brain structures usually depend on a regrettably small number
of species (e.g., [1, 2, 6, 19, 29–32]). Even in primates, almost all our
information about the frontal cortex of strepsirrhines comes from
studies of bushbabies (also known as galagos), and then from just
two species of the genus Otolemur. (These two species were
formerly classified as members of the genus Galago but are now
recognized as a separate genus in the galagid family, all of which
are termed “galagos.”) Similarly, almost all our knowledge of Old
World monkeys comes from studies of rhesus macaques (Macaca
mulatta) and a few other macaque species.

CORTICAL ORGANIZATION
Having established the evolutionary rules of the road, we now
turn to the organization and evolution of cerebral cortex, with
emphasis on the frontal cortex. As has long been understood, the
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gray matter of the cortex is a mantle or sheet of tissue, however
much it might be folded in large-brained mammals. The central
region (or core) of the sheet is occupied by isocortex, which
contains most of the sensorimotor and association areas. The
isocortex is surrounded by three rings of cortex [33–36]. The
outermost ring, which forms the rim of the cortical mantle, is the
three-layered cortex called allocortex. This consists of the
hippocampus and the primary olfactory (piriform) cortex, along
with some smaller olfactory structures. It develops in a different
way than the isocortex and the other rings, all of which emerge in
an “inside-out” manner, meaning that neurons born earlier take
positions in the deeper layers.
Two additional rings of cortical tissue lie between the core

isocortex and the allocortex: the periallocortex and proisocortex
(sometimes collectively referred to as “mesocortex”). The periallo-
cortex, which borders the allocortex, includes the entorhinal
cortex, subiculum, para- and presubiculum, part of the insular
cortex, and, in the frontal lobe, the posterior-most orbital cortex,
contiguous with the insular cortex. The frontal proisocortex, which
is sandwiched between the core isocortex and the periallocortex,

is comprised of the agranular MF cortex (aMFC), consisting of area
24 (the anterior cingulate area, AC), area 32 (the prelimbic area,
PL), and area 25 (the infralimbic area, IL), as well as parts of the
orbital and insular cortex adjacent to isocortex. The aMFC
corresponds to the anterior part of Brodmann’s cingulate region.
Primates, but not rodents, have subdivisions of area 32 that are
dysgranular as well as agranular [37], but it is convenient to refer
to this cingulate region collectively as aMFC. Similarly, primate
orbitofrontal cortex (OFC) is a component of the PFC that includes
posterior agranular and dysgranular components, as well as
anterior, granular divisions, whereas rodent OFC is exclusively
agranular. Posterior proisocortex includes the retrosplenial and
parahippocampal cortex. Histologically, many of the proisocortical
areas resemble isocortex, but may lack one or more layers
characteristic of it.
The three rings surrounding the isocortex—proisocortex, periallo-

cortex, and allocortex—have long been considered parts of the
limbic system, owing not only to their location along the margin
(limbus) of the cortical mantle but also to their close functional
relationship with the autonomic nervous system [38–46]. The
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distinction between isocortex and proisocortex, in particular, is
significant for understanding homologies relevant to PFC evolution,
because agranular parts of the orbital and MF cortex, much of which
is proisocortex, are usually (but not always) classified as part of the
PFC. This inconsistency raises a deceptively simple question: What is
the PFC?

WHAT IS THE PFC?
Historical perspective
For the past 60–70 years, neuroscientists have commonly defined
the PFC as the cortical territory targeted by projections from the
mediodorsal nucleus (MD) of the thalamus [47, 48]. Brodmann [49]
recognized a large Regio frontalis in multiple primate species,
including areas occupying the anterior-most lateral, dorsal, medial,
and orbital surfaces of the hemisphere. This region became known
as the “PFC,” “granular frontal cortex,” “frontal association cortex,”
or some variant of those terms. We will call it the granular PFC.
Brodmann indicated it consists of isocortex with a “compact inner
granular layer” (layer 4). In fact, this is not true for the entirety of
his frontal region, because layer 4 granule cells progressively
diminish from anterior to posterior in the OFC, which thus consists
of granular, dysgranular, and agranular territories [50–55], and
only the granular areas are definitely isocortical. Brodmann also
concluded that carnivores and ungulates have a single, small
region of granular PFC, whereas rodents and rabbits have none.
Brodmann’s conclusions have been controversial because they

imply that the granular PFC, and presumably the higher-level
cognitive functions it supports, is absent in the most widely used
neuroscience models: rodents. By the middle of the 20th century,
however, it seemed difficult to reconcile Brodmann’s views with
evidence about thalamocortical connectivity. Based on studies of
retrograde degeneration in the thalamus following cortical lesions,
anatomists generated a parcellation of the cortex based on its
thalamic afferents (e.g., [56–58]), illustrations of which can still be
seen in modern neuroanatomy textbooks. According to this
schema, MD projects to the granular PFC, whereas other parts of
the frontal lobe receive projections from other nuclei—the
cingulate gyrus (including the aMFC) from the anterior thalamic
nuclei, and the primary and nonprimary motor areas from the
ventral tier nuclei.
On the assumption that MD projections are diagnostic of the

granular PFC in primates, and the fact that MD is a readily
identifiable in all the commonly studied mammalian brains, a
solution to Brodmann’s dilemma presented itself: to identify the
granular PFC homolog in nonprimate mammals, even if it is not
granular, one need but find the MD-projection cortex. Rose and
Woolsey pursued this approach in their lesion-degeneration
studies of sheep (cetartiodactyls) and cats (carnivores) [59], and
in both, the MD-projection cortex was localized to anterior parts of
the frontal lobe. They concluded: “… a cortical field equivalent to
the frontal granular cortex of primates is present in all the animals
studied.” Subsequently, Akert [60] went further, proposing
homologs in cats of the primate OFC, dorsolateral PFC (DLPFC),
and the frontal eye field (FEF; granular area 8), based on the
medial-to-lateral distribution of degeneration in MD after cortical
lesions, which matches the topography of connections between
MD and the granular PFC in nonhuman primates.
One vexing problem remained: where is the MD-projection

cortex in rodents? Definitive resolution of this issue awaited the
development of improved axonal fiber-tracing techniques—first,
stains to identify anterogradely degenerating fibers, then inject-
able tracers. In 1969, in studies of rats, Leonard reported tracing
fibers to the orbital cortex along the anterior end of the rhinal
sulcus after lesions of the medial-most MD, to the medial wall of
the hemisphere superior and anterior to the genu of the corpus
callosum after lesions more laterally in MD, and dorsomedially,
along the “shoulder” of the hemisphere (where the medial and

lateral surfaces meet) after lesions of the lateral-most MD ([61–63],
see also [64, 65]). Subsequent studies using injectable tracers in
rats confirmed the existence of reciprocal connections between
MD and the sulcal cortex (i.e., the agranular orbito-insular cortex)
and the aMFC, as well as the “shoulder” cortex, although it is
significant for claims about homology that they also revealed
reciprocal connections with the anterior thalamic nuclei, as well as
the ventral, intralaminar, and midline thalamic nuclei [66–81].
Research in other rodents [82–84] and in rabbits [68, 85] yielded
similar results.
Leonard’s [61] initial interpretation of homologies was similar to

that of Akert [60], as illustrated in Fig. 3B. On that view, rat orbital
cortex corresponds to the most posterior parts of primate OFC and
the shoulder cortex to the primate FEF. As for the cortex of the
medial wall (the aMFC), Leonard argued, “tentatively and largely
by exclusion,” for homology with the granular PFC in primates.
Interestingly, Leonard explicitly acknowledged that while the
granular PFC in primates is isocortical, rat aMFC is a “primitive,
relatively undifferentiated type of cortex”—that is, not isocortex
[61]. Although they did not address the histological classification
of the aMFC, Krettek and Price [86] reached a similar conclusion,
stating: “… the functional significance of the cortical areas rostral
to the level of the genu of the corpus callosum in the rat should
be considered in terms of their relationship with the MD nucleus
and their possible correspondence to PFC of primates rather than
on their traditional association with the cingulate gyrus, which was
based largely on topographical considerations.”
Collectively, these studies were instrumental in establishing the

idea that rodents possess cortical fields corresponding to those
that comprise primate PFC including, significantly, the granular
PFC [87–90]. Typically, the proposed homolog or counterpart of
the primate granular PFC is localized mainly to the rat’s aMFC
(areas 24, 32, and 25). That raises a serious problem, however: if
the aMFC of rodents is homologous to primate granular PFC, then
where is the rodent homolog of primate aMFC?

Comparing the PFC in primates and rodents
At the same time that new fiber-tracing techniques were being
employed in rodents, they were also being applied in primates.
The results threw a monkey wrench, as it were, into the revised
interpretation of rodent frontal cortex (reviewed by Preuss [48];
see also [91–93]).
These studies in Old World macaques, New World owl monkeys

and marmosets, and strepsirrhine galagos confirmed some of the
results of the older lesion-degeneration studies in macaques and
humans, specifically that nucleus MD projects to the dorsal, lateral,
and medial granular PFC and to the OFC. Significantly, however,
they also demonstrated that MD connections reach a much
greater expanse of cortex than Brodmann’s Regio frontalis,
including the aMFC (areas 24, 32, and 25), the agranular insula,
and the temporal pole [55, 94–102]. MD also projects to primary
and premotor areas (e.g., [96, 97, 103–106]), although these are
not as numerous as the projections from the ventral nuclei. There
are also weak connections with parahippocampal cortex and
temporal and parietal isocortex, and possibly the posterior insular
cortex, although these may be mainly corticothalamic projections
only [107–114]. Moreover, primate PFC, including granular PFC,
agranular MFC, and agranular OFC, is connected not only with MD
but also with additional thalamic nuclei including the anterior,
ventral, midline, intralaminar, and medial pulvinar nuclei (see the
citations earlier in this paragraph, plus [115–118]), although not
every part of PFC is connected with all these nuclei.
These findings show that MD projects to areas outside the PFC,

and they highlight two problems. First, to sustain a practical
definition of the primate PFC in terms of MD projections, one
would have to restrict the PFC to those regions that receive a
majority or plurality of their thalamic inputs from MD, which
would likely yield something corresponding closely to

T.M. Preuss and S.P. Wise

7

Neuropsychopharmacology (2022) 47:3 – 19



Brodmann’s Regio frontalis, with the addition of agranular insular
cortex. But quantification of axons or terminals in the requisite
way remains more aspirational than practical. An alternative,
simpler approach would be to define PFC as all the frontal cortex
exclusive of motor and premotor cortex [91]. Other definitions
have been suggested, such as the cortical territory with MD
projections plus certain additional attributes (e.g., [119–121]). A
recent data-driven approach in mice based on thalamic and
cortical connectivity yielded a PFC “module” consisting of the
agranular OFC and aMFC [122, 123]. Second, if primate PFC
includes both the granular PFC and the aMFC, then the idea that
the rodent aMFC is homologous to the former rather than the
latter, as illustrated in Fig. 3B, is severely challenged.
There is additional evidence undermining claims of homology

of the rodent aMFC with the primate granular PFC but supporting
its homology with the primate aMFC. For one thing, primate aMFC
and rodent aMFC share the same location in the cortical mantle:
on the medial wall superior, anterior, and ventral to the genu of
the corpus callosum. Both consist of agranular proisocortex. Both
receive projections from nucleus MD, and detailed analysis of the
topography of MD projections to aMFC cortex in rats and
macaques highlights their similarity [124, 125]. Significantly, both
have connections with the anterior thalamic nuclei—classically
regarded as the hallmark of the aMFC. Moreover, both have
efferent projections to nucleus accumbens, hypothalamus, and
periaqueductal gray, reciprocal connections with the amygdala,
and inputs from the hippocampus [43, 45, 94, 102, 126–135],
indicating that they are elements of the limbic system. The
homology of these rodent and primate regions is now commonly
acknowledged (e.g., [37, 43, 44, 47, 91, 131, 132, 136–140]).
If the rodent aMFC is homologous to the primate aMFC (Fig. 3C),

and the rodent sulcal cortex to the caudal-most, agranular parts of
the primate OFC (the latter not being disputed), then there simply
is no good candidate for a granular PFC homolog in rodents.
Evidence for such a homolog would require the identification of
features that are: (1) characteristic of both the granular PFC of
primates and its proposed homolog in rodents and (2) absent
from the aMFC or agranular OFC of primates. MD projections are
not diagnostic of granular PFC because they fail this test and
because, as explained above, they also target areas outside of the
PFC by any definition. Other similarities between granular PFC and
rodent aMFC have been cited, notably the existence of strong
projections from dopaminergic neurons [71], and involvement in
spatial-delay tasks, such as the delayed alternation task (e.g.,
[87, 88, 141, 142]), the latter being typified by a delay period prior
to a choice between two spatial locations. Neither of these is
diagnostic of the primate granular PFC, either. The aMFC and OFC
of primates receive dense dopaminergic innervation, as do some
(but not all) of the granular PFC areas [143–151]. However, the
primary motor and premotor areas are also strongly innervated by
dopaminergic neurons in macaques and humans, but not in rats
[152]. Likewise, although lesions of the periprincipal region of
granular PFC (the cortex within and surrounding the principal
sulcus) produce impairments on spatial-delay tasks in macaques,
modest impairments also follow lesions of the aMFC in macaques
[153, 154]. There is also evidence of delay-period single-neuron
activity [155, 156] and functional-imaging activations [157] in the
macaque aMFC during performance of these tasks. In humans, a
distributed network of areas that includes the aMFC and the
DLPFC is involved in spatial-delay tasks [158]. Thus, spatial-delay-
period activity and lesion effects are not diagnostic of the
periprincipal PFC. What is more, if the analysis of area homologies
presented below is correct, homologs of periprincipal cortex are
not even present in all primates, being a specialization of simians.
Studies of corticostriatal projections provide additional support

for the conclusion that rodents and primates share homologs of
the agranular OFC and MFC areas, and that rodents lack a
homolog of the granular PFC. Using conventional tract-tracing

techniques to compare rats and macaques, Heilbronner et al. [137]
found that projections from the aMFC and OFC of rats and
macaques occupy topographically corresponding domains within
the striatum. Using resting-state functional magnetic resonance
imaging (MRI) signals in mice, macaques, and humans, Balsters
et al. [159] examined signal covariance that depended on
corticostriatal projections. They then analyzed the total pattern
of corticostriatal projections from each voxel of the imaged brains,
creating a “connectional fingerprint” for different areas. Balsters
et al. concluded that anterior parts of the granular PFC in
macaques and humans have no counterparts in mouse brains.
There is also the matter of rodent shoulder cortex and the

proposal that it is homologous to the primate FEF, as depicted in
Fig. 3B. Support for this idea came from reports that eye
movements can be evoked from this area with intracortical
microstimulation [160–162]. More recent results, however, suggest
that this region represents movements of the vibrissae [161, 163–
168] and may be part of M1 [166, 168]. In addition, there is
evidence that in rodents, eye movements are represented in the
aMFC rather than in the shoulder cortex [163]. Notably, there is
evidence for an oculomotor representation in the macaque aMFC
[169] as well as in multiple premotor areas of macaques and other
simians, in addition to the arcuate FEF [169–173]. Thus, an
oculomotor representation is not diagnostic of the FEF or any
other part of granular PFC.
Figure 3D illustrates another idea about homologies, which is

that the rodent aMFC, and perhaps the “shoulder” cortex,
contain an amalgam of the aMFC and granular PFC areas of
primates [62, 174]. This idea attempts to resolve the problem of
the missing aMFC in rodents by positing that the granular PFC
and aMFC are undifferentiated, and the region in question mixes
their features. The proposal has little to recommend it, as rodent
aMFC does not appear to have properties of the primate
granular PFC that are not also properties of primate aMFC, such
as afferents from the anterior thalamic nucleus and involvement
in spatial-delay tasks. If the granular PFC is a primate
specialization, moreover, we should expect it to have properties
that rodents and other mammals lack. There are indeed such
properties, both structural and functional.
Perhaps the most important primate specialization from a

comparative perspective is the system of connections of the
granular PFC. This is best understood in the broader context of
primate cortical organization. All primates that have been
examined possess regions that correspond to the classical
higher-order association territories: the granular PFC, the posterior
parietal cortex, and large portions of the temporal cortex. Each of
these regions includes multiple areas, and those areas are linked
in multiple transcortical networks, which are themselves linked
with limbic cortical areas (e.g., [102, 175–182]). No other mammal
studied to date has a comparable system of transcortical
networks. Moreover, in macaques and marmosets, in which the
connections have been studied adequately, these association and
limbic areas receive inputs from the medial pulvinar
[101, 112, 115, 117, 183–188], a thalamic nucleus present in all
primates studied that has no apparent homolog in nonprimate
mammals ([189, 190], and see [191]). Thus, the granular PFC is part
of a larger system of association areas with features unique to
primates among mammals that have been studied.
The granular PFC also has functional properties that the aMFC

lacks. Although involvement in spatial-delay tasks per se is not
diagnostic of the periprincipal granular PFC, aMFC lesions in rats
do result in mild and temporary impairments on such tasks.
However, these effects contrast with the severe and permanent
effects seen after lesions of the periprincipal cortex in macaques
(reviewed in [48, 92]). In addition, macaque granular PFC neurons
encode associations between acoustic stimuli and abstract
behavior-guiding rules [192] and between color–shape stimuli
and abstract problem-solving strategies [193], some of which
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correlate with correct or incorrect task performance [194]. No
evidence for such properties has been reported for the aMFC of
rodents. Furthermore, lesions of specific parts of the granular PFC
in macaques cause profound impairments in rapid learning of
arbitrary associations between color–shape stimuli and behavioral
goals [195], whereas lesions of the aMFC cause no impairment in
rats performing a similar task [196], and even facilitate early stages
of learning these associations [197].

Recall that the original intention of the Rose–Woolsey–Akert
project was to identify homologs of the primate granular PFC in
nonprimate mammals [48]. While studies in rodents initially
seemed to indicate that their aMFC (Fig. 3B) filled that role, the
balance of evidence indicates that this part of the rodent cortex is
homologous to the aMFC of primates (Fig. 3A, C), and that those
animals lack a homolog of the primate granular PFC (Figs. 3C and
4). Indeed, the effect of defining the PFC as MD-projection cortex
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has not been so much to find the rodent PFC [63], as was the
original intent, as to rebrand the aMFC as part of the PFC [6]. We
see nothing inherently wrong with including the rodent aMFC and
the agranular OFC or orbito-insular cortex in the PFC, as long as
the correct homologies among PFC regions are recognized
[6, 48, 91]. In our view, however, attempts to interpret data from
rodent aMFC or agranular OFC based on homology or similarity to
the granular PFC of humans or nonhuman primates are
unwarranted.

Comparing the PFC of primates and tree shrews
Although it now seems likely that the granular PFC is absent in
rodents, rodents are not the mammals most closely related to
primates, and it is possible that some or all the areas and
attributes found in the primate granular PFC are present in
mammals that are more closely related to primates, specifically, in
colugos (“flying lemurs”) and/or tree shrews (Fig. 2). Colugos have
rarely been studied. In tree shrews, however, there is a small area,
labeled DF (dorsal frontal cortex) in Fig. 4C, that is perhaps best
described as dysgranular based on Wong and Kaas [198].
However, they describe both an anterior part of the OFC and a
medial frontal area (MF) as having a “well-developed layer 4.” It is
unknown whether either MF or DF is homologous with parts of
the granular PFC in primates. More likely is the possibility that the
granular OFC of tree shrews is homologous with small parts of the
granular OFC in galagos and macaques. These proposed homo-
logies, however, lack support from data about connectivity and
other attributes. The connections of tree shew areas DF and MF
are also largely unknown, but we know something about
connections they do not have. In contrast to the parietal visual
areas of galagos, macaques, and humans, which have extensive
interconnections with dorsolateral and dorsomedial PFC (DLPFC
and DMPFC in Fig. 3A), the visual areas of tree shrews confine their
projections to motor areas [199]. This suggests that the network
connecting posterior parietal and granular prefrontal areas, which
is such a prominent feature of primate cortical organization, is
absent in tree shrews.

Changes in shared mammalian areas
In focusing on the frontal cortex at the level of its broad regional
organization, we have perhaps created the impression that the
evolution of primate PFC simply involves the addition of the
granular PFC to the aMFC and agranular OFC of rodents and other
mammals. Evolution is not that boring: within the aMFC,
macaques and humans appear to have more subdivisions of area
24 than do rodents, and there are differences in the connectivity,
functions, and receptor distribution of rodents and primates in the
areas they share (e.g., [37, 43, 140, 152]). There are also differences
in the aMFC among rodent species (e.g., [37, 200]) and among
primates, as discussed below.

PFC IN PRIMATE EVOLUTION
Primates are a diverse group of mammals and understanding how
the PFC evolved requires acknowledging that diversity. Compara-
tive neuroanatomy indicates that much of the action in primate
PFC evolution involved the granular PFC.

Shared primate areas
All modern primates share certain granular PFC areas, while
additional areas evolved later, during simian evolution. Comparing
galago (strepsirrhines) and New World and Old World simians
indicates that these animals share at least two parts of the
granular PFC: a region located posteriorly, adjacent to the
premotor cortex along the anterior bank of the arcuate sulcus in
macaques, that includes the FEF (part of area 8 of macaques), and
a region that includes the granular, and possibly dysgranular,
components of the OFC.

The evidence for homologous FEFs in strepsirrhine and simian
primates is very strong (for strepsirrhines (galagos), see, e.g.,
[97, 180, 181, 201–206]; for platyrrhines: [173, 207–217]; for
catarrhine monkeys: [209, 212, 218–225]; and for apes and
humans, see [226]). The area in question is located on the lateral
surface immediately anterior to the junction of the dorsal and
ventral premotor areas, and it is a strongly myelinated isocortical
field, has major connections with the most lateral part of nucleus
MD and with visual areas of both the dorsal and ventral streams,
and projects to the superficial and intermediate layers of the
superior colliculus. Intracortical microstimulation of this region
with very low currents elicits eye movements, although as
mentioned earlier, eye movements are represented in the
premotor cortex and aMFC, as well.
What of the possibility that the FEF evolved prior to the

divergence of primates and their euarchontan relatives? Two
comprehensive mapping studies of the frontal cortex in tree
shrews failed to find any evidence for an FEF [227, 228]. It is
possible that FEF was present in an ancestral lineage but lost
secondarily in tree shrews, although this seems unlikely because
these animals have a very well-developed visual system [229].
The OFC has been well-studied only in simians, but the

architectonics and corticocortical connections of this region in
galagos closely resemble those of simians [180, 181, 203, 205, 230].
In platyrrhines and catarrhines, the OFC has direct connections with
the agranular insular cortex, which represents conjunctions of
olfactory, gustatory, somatosensory, and visceral inputs. In addition,
the OFC is interconnected with the aMFC and lateral granular PFC,
with the temporopolar cortex, and with components of the ventral
visual stream, including both inferior temporal cortex and the
perirhinal cortex [52, 231–238]. The OFC also projects to the nucleus
accumbens, ventral striatum, and hypothalamus, and has reciprocal
connections with the amygdala [102, 126, 127, 239–248].

Simian-specific areas
Comparison of galago and simian brains (Fig. 4A, B) reveals that
the granular PFC of the latter possesses a number of additional
areas, located mainly anterior to the FEF. Some of these areas are
less heavily myelinated than are the granular PFC areas shared
by galagos and simians, such as the FEF [203, 208, 236, 249].
Figure 4A, B depicts cytoarchitectonics by different shading, as
indicated by the key. Based on these observations, and features
of corticocortical connectivity, Preuss and Goldman-Rakic
[48, 180, 203] concluded that most, if not all, of these more
anterior granular PFC areas evolved in haplorhines or simians
after their divergence from strepsirrhines. Unfortunately, there is
little information about tarsiers, although their frontal lobes are
tiny and appear to have little cortex anterior to the precentral
region [250, 251], which suggests that the additional areas
evolved in simians. The presumably simian-specific areas
correspond to the DLPFC (Fig. 3A; also known as the periprincipal
cortex and as areas 46 and 9/46 in macaques), ventrolateral PFC
(areas 12 and 45, along with area 47 in some species), DMPFC
(area 9), and (with somewhat less confidence) frontopolar PFC
(area 10).
To summarize the comparative evidence, the FEF appears to be

an evolutionary innovation of primates, while most of the anterior,
lateral, and medial components of the granular PFC—including
the periprincipal cortex—are innovations of simian primates. Most
of the granular, and probably dysgranular, OFC is also a primate
specialization, although a small part might predate the divergence
of tree shrews and primates.

Diversity among simians
Comparative studies of differences in relative brain size (or
encephalization—i.e., brain volume scaled for body mass) reveal
that simians almost always have larger brains than strepsirrhines
[252–255]. What is more, studies of fossil brain casts reveal that

T.M. Preuss and S.P. Wise

10

Neuropsychopharmacology (2022) 47:3 – 19



relative brain size increased independently in many primate
lineages, with early members of the strepsirrhine, platyrrhine, and
catarrhine lineages usually having smaller brains (and smaller
frontal lobes) than most of their extant counterparts [256–260].
Given these differences, we might expect that those lineages have
different complements of granular PFC areas. Alternatively, all the
simian-specific parts of the granular PFC could had evolved in the
last common ancestor of simians, and subsequently expanded
independently in platyrrhines and catarrhines. Unfortunately, we
do not have contemporary, high-quality frontal-lobe maps for
many of the numerous platyrrhine species to compare to the well-
studied macaque frontal lobe, apart from capuchins (Cebus) and
marmosets (Callithrix). The results are interesting, nonetheless, as
the large-brained Cebus is reported to have a very similar
complement of prefrontal areas as macaques [236], which it
closely resembles in its convergently acquired sulcal morphology.
By contrast, the small-brained marmosets evidently have a
somewhat simplified areal organization, especially in the mid-
frontal granular PFC (DLPFC), with a relatively small area 46 and
possibly fewer subdivisions than Cebus or Macaca [208, 233].
The New World callitrichid monkeys (marmosets and tamarins)

are especially interesting from the standpoint of size. They are the
smallest of the platyrrhines, similar in size to the small strepsir-
rhines, probably as a result of evolutionary dwarfism [261–263]. It is

unclear whether callitrichids underwent a corresponding reduction
in relative brain size in evolution, but their brains are among the
smallest in absolute size of all simians [264]. This is potentially
functionally significant, given the evidence that absolute brain size
is a better predictor of cognitive ability than relative brain size
across primate species [265, 266].

PFC in human evolution
Recent years have seen a surge of new research on human brain
evolution (see, e.g., [267–271]). The evolutionary specializations of
the human PFC and especially of the granular PFC have received
particular attention.

Size. Since at least the time of Brodmann [49, 272], it has
commonly been accepted that association cortex, including the
granular PFC, underwent enormous expansion in human evolution,
both absolutely and relative to the amount of primary sensorimotor
cortex. This view has been challenged, however. Based on scaling
studies, Barton and colleagues [273, 274] have argued that even
though PFC is absolutely much larger in humans than in other
primates, humans have the expected amount of PFC for a primate of
our brain size. Semendeferi and colleagues [275, 276] have made a
similar claim, arguing that the frontal lobe occupies about the same
proportion of the cortex in humans as it does in the great apes. So,
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those authors would argue that human PFC is not exceptionally
large. Other authors, however, have maintained that the data
support the traditional view [249, 277–282].
We also support the traditional view, based in part on recent

phylogenetic regression analyses (Fig. 5) and studies of cranial
endocasts in fossil humans [267]. But one can look at the issue a bit
differently [268]. One would never expect a great ape to have a
brain as large as ours. In body size, humans overlap the
chimpanzees and other African great apes (our closest relatives),
but our brains, at about 1450 cc on average, are 3–4 times larger
than theirs. One would expect humans to have a brain size similar to
that of a chimpanzee (~400 cc). What is the difference? Most human
primary sensorimotor areas are only marginally larger than those of
chimpanzees, but certain parts of the association cortex—including
the dorsolateral, frontopolar, and anterior orbital parts of the
granular PFC—are enormously larger [283]. Figure 5A–C shows, for
example, that great apes and humans have significantly more
granular PFC relative to other components of the frontal lobe. Thus,
the increased size of the human brain reflects the nonuniform
enlargement of specific cortical areas, especially in the higher-order
association cortex. This is the real crux of the matter: humans have
far more neural machinery in our granular PFC and in certain other
association regions than do great apes or other primates,
presumably because natural selection favored enhancement of
their functional capacities. Figure 5D indicates that, in humans and
chimpanzees, the granular PFC expanded marginally but signifi-
cantly more than the other association areas.

Areas. If granular PFC areas evolved in the earliest primates from
ancestral brains that lacked them, and if additional granular PFC
areas evolved in simians, it is reasonable to suppose that the
complement of granular PFC areas differs between humans and
other simians, given the enormous expansion of this region in
human evolution, and the view that the addition of cortical areas
is an important correlate or cause of brain-size enlargement and
the acquisition of new functions (e.g., [20, 49]). While measuring
brain size or cortical extent is seemingly straightforward,
comparing complements of cortical areas across species is fraught
with difficulties, as meaningful comparisons require the applica-
tion of a common set of reliable techniques across species.
Historically, the most widely used technique has been cytoarchi-
tectonics, which involves microscopic inspection of Nissl-stained
sections is now considered inadequate by itself. Today, it is widely
accepted that parcellations are better when based on multiple
techniques, including architectonics (especially observer-indepen-
dent, quantitative architectonics), connectivity, physiological
mapping, and roles in behavior [284, 285].
Naturally, we would especially like to know more about our own

species, Homo sapiens. There have been a number of modern
area-mapping studies comparing humans and macaques, and
these suggest that both species share a similar complement of
granular PFC areas (e.g., [286–289]). Sallet et al. [289] and Neubert
et al. [288] have, however, highlighted some possible differences
based on their structural-connectivity MRI parcellation of frontal
areas. For example, they found that the cortex on the lateral
aspect of the frontal pole in humans has no clear counterpart in
macaques, an intriguing result given the involvement of that
region in higher cognitive function, such as generalized relational
reasoning (e.g., [290, 291]). The study of Balsters et al. [159], based
on corticostriatal “fingerprints,” led to a similar conclusion. In their
comparison of human and macaque brains, they found that the
major difference involved the lateral frontopolar cortex and the
territories to which it projects in the anterior caudate nucleus. In
addition, there appear to be important differences in the aMFC of
macaques and humans, with humans possessing additional
dysgranular subdivisions of area 32 [37].
While findings of human–macaque differences such as these

certainly bear on what we can learn about human PFC functions

from studying macaques, we cannot assume that areas humans
possess but macaques lack are necessarily human specializations.
For one thing, we have no comparable information about apes, so
we do not know whether these are hominoid (i.e., ape–human)
specializations or human specializations (for an example of the
difference this makes, see [292]). Second, it is possible, if
seemingly unlikely, that these features of PFC were present in
the ancestors of macaques, but subsequently lost. Addressing this
possibility requires studying additional species, with platyrrhines
being especially useful for reconstructing the ancestral state of the
catarrhine lineage. Nevertheless, the currently available—albeit
limited—evidence suggests that the complement of granular PFC
areas in macaques and humans is quite similar, which, given that
human frontal lobes are much larger than those of macaques (and
apes), implies that at least some of the areas shared by these
primates are much larger in humans than in the other species.

Histology, connectivity, and genomics. Even though we currently
lack the kinds of maps required to compare the complement of
areas that make up the granular PFC in apes and humans, we do
have tools that enable us to compare other features of PFC
organization of humans to chimpanzees, our closest relatives, and
to macaques. There are new comparative histological studies,
employing Nissl and Golgi staining, and immunohistochemistry
(e.g., [148, 293–298]). There are also MRI studies in all three
species, providing information, for example, about myeloarchi-
tecture [249] and hemispheric asymmetries [299]. In addition,
diffusion-weighted MRI studies have demonstrated human
specializations of connectivity, including modified connections
of the arcuate fasciculus and other systems that interconnect
temporal, parietal, and frontal association cortex [300–305].
There are now also abundant resources, and data, for

comparing genes and gene expression in humans, chimpanzees,
and other nonhuman primates. Space limitations preclude a
review of this active area of research. Significantly, however, much
of the gene-expression research has focused on the granular PFC
(typically area 46 in the DLPFC), and numerous human specializa-
tions involving (if not necessarily limited to) this region have been
identified (e.g., [283, 306–312]). These gene-expression changes
are likely to have modified the cellular organization and
physiology of human cortex, although we currently lack direct
evidence of such modifications.

PFC EVOLUTION IN MAMMALS OTHER THAN THE
EUARCHONTOGLIRES
The account above has focused on the PFC in the Euarchonto-
glires, especially primates. There have been few studies of other
mammalian groups, apart from carnivores, a group of placental
mammals that, as indicated in Fig. 1, is quite distantly related to
primates. Many different mammalian groups underwent enlarge-
ment of their frontal cortex during their evolution, including
carnivores [14, 254, 313]. The predominant cortical connections of
carnivore PFC are with limbic regions [314, 315], suggesting it
underwent elaboration of the agranular OFC and/or aMFC. It is
reasonable to assume that the PFC expanded independently in
other mammalian lineages as well.

FUTURE RESEARCH DIRECTIONS
There remain several outstanding issues regarding PFC evolution:

(1) The status of dysgranular areas, especially those in the OFC,
requires further attention: Are these separate cortical fields
or are they transition zones? Some evidence from macaques
points to the former [316], but more data are needed. Also
unknown is whether there are homologs of the dysgranular
OFC in rodents or other nonprimates.
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(2) Are there homologs of the granular PFC areas in the
nonprimate members of the Euarchonta (i.e., tree shrews
and flying lemurs)? We know that tree shrews have small
granular PFC areas but not whether they are homologs of
primate areas. We should be cautious about assessing
“granularity” across species based on qualitative descrip-
tions, however, as these accounts are often in poor
agreement even among closely related species (see, for
example, the contrasting descriptions of layer 4 in
carnivore proreal cortex [49, 60, 317–319]). Such dispa-
rities emphasize the need to adopt multimethod parcella-
tions, including observer-independent architectonics
[320–322].

(3) Given that platyrrhines and catarrhines underwent inde-
pendent enlargement of the brain, did they also undergo
independent addition of new granular PFC areas? If so,
could it be that some of the areas assigned the same
numbers and names in platyrrhines and catarrhines
evolved independently?

CONCLUSIONS
The PFC is evolutionarily dynamic and diverse, with new areas and
new systems of connections evolving in primates. Despite
deficiencies in the data, we can state with reasonable confidence
that the rodent PFC consists of homologs of the primate aMFC
(areas 24, 32, and 25) and primate posterior, agranular OFC. We
can also state with reasonable confidence that the granular PFC is
a specialization of primates or possibly of primates and their close
euarchontan relatives. From comparisons among primates, we
infer that early primates possessed a small set of granular PFC
areas, while additional areas, including the DLPFC, evolved later in
the simian branch of the primate tree. Our understanding of the
evolution of the limbic, agranular PFC is comparatively poor, but
given its involvement in social behavior (e.g., [174, 323, 324]) and
given the diversity of social behavior among mammals, its
organization was likely modified in many primate groups.
We are aware that our view regarding the uniqueness of the

primate granular PFC has been unpopular among some neuros-
cientists who study rodents and other nonprimate species,
although we note that in the 30 years since it was first articulated
no data have been advanced that convincingly contradict it. We
believe, moreover, that many of the ambiguities about the
behavioral role of the PFC in rodents as compared to primates are
resolved by the interpretation of homologies offered here. What is
more, our view by no means negates the importance of rodents as
biomedical models. For one thing, the parts of the PFC that
rodents and primates do share—namely, the limbic parts—are
unquestionably of functional importance, and in some respects of
even greater clinical importance than the granular PFC. That is not
to say that we should study the limbic PFC only in rodents—any
nonhuman primate is more closely related to humans that any
rodent and their behavioral phenotypes are more readily
compared to those of humans [325]—but rather that our
evolutionary analysis does not exclude an important role for
rodent research. We note, too, that the caution that we have
expressed about uncritically extrapolating findings from model
animals to humans applies to catarrhine primates as well as to
rodents and platyrrhines, although the much closer relationship of
human to other catarrhines mitigates this problem to a consider-
able extent [326].
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