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Transcriptome-wide association study of post-trauma symptom
trajectories identified GRIN3B as a potential biomarker for PTSD
development
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Biomarkers that predict symptom trajectories after trauma can facilitate early detection or intervention for posttraumatic stress
disorder (PTSD) and may also advance our understanding of its biology. Here, we aimed to identify trajectory-based biomarkers
using blood transcriptomes collected in the immediate aftermath of trauma exposure. Participants were recruited from an
Emergency Department in the immediate aftermath of trauma exposure and assessed for PTSD symptoms at baseline, 1, 3, 6, and
12 months. Three empirical symptom trajectories (chronic-PTSD, remitting, and resilient) were identified in 377 individuals based on
longitudinal symptoms across four data points (1, 3, 6, and 12 months), using latent growth mixture modeling. Blood
transcriptomes were examined for association with longitudinal symptom trajectories, followed by expression quantitative trait
locus analysis. GRIN3B and AMOTL1 blood mRNA levels were associated with chronic vs. resilient post-trauma symptom trajectories
at a transcriptome-wide significant level (N= 153, FDR-corrected p value= 0.0063 and 0.0253, respectively). We identified four
genetic variants that regulate mRNA blood expression levels of GRIN3B. Among these, GRIN3B rs10401454 was associated with PTSD
in an independent dataset (N= 3521, p= 0.04). Examination of the BrainCloud and GTEx databases revealed that rs10401454 was
associated with brain mRNA expression levels of GRIN3B. While further replication and validation studies are needed, our data
suggest that GRIN3B, a glutamate ionotropic receptor NMDA type subunit-3B, may be involved in the manifestation of PTSD. In
addition, the blood mRNA level of GRIN3B may be a promising early biomarker for the PTSD manifestation and development.
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INTRODUCTION
Posttraumatic stress disorder (PTSD) is a severe and impairing
psychiatric illness occurring in susceptible individuals exposed
to traumatic life experiences. PTSD is characterized by fear,
avoidance, hyperarousal, hypervigilance, and reliving the
trauma through intrusive memories, nightmares, and flash-
backs. Early interventions have been shown to significantly
reduce the prevalence of PTSD [1–3]. However, these interven-
tions could require significant system resources, which are not
always available, and might be unnecessary for resilient
individuals whose symptoms may fade over time on their
own. Hence, early risk biomarkers that can predict the
manifestation of PTSD may facilitate both early interventions

and targeted treatments, increasing positive outcomes for
patients known to be at risk.
Many individuals exhibit early symptoms after experiencing a

traumatic life experience, with varying degrees of severity and
persistence. Only a minority of those remain highly symptomatic
and manifest the full symptoms of PTSD [4]. A combination of
genetic and environmental factors influence susceptibility to
develop PTSD after trauma exposure. Latent class analysis has
successfully identified the dissociative subtype of PTSD [5],
uncovered qualitative differences between the classes, and
categorized homogeneous classes of individuals based on broad
characteristics not directly measurable. Moreover, longitudinal
studies of psychological response to trauma have identified a
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range of outcomes over time that are not adequately captured
by PTSD diagnostic criteria [6]. Thus, clusters of these symptoms
over time, which can be grouped into empirical trajectories, can
better reflect different outcomes (e.g., chronic-PTSD vs. resilient
individuals). These symptom trajectories represent different
biological dimensions and have a distinct genetic basis,
facilitating the identification of biomarkers and risk genes [7].
Thus, investigating symptom trajectories leading to chronic-
PTSD or resilience may play a central role in understanding this
disorder. The genetic biomarkers associated with these trajec-
tories may predict who among trauma-exposed individuals may
develop PTSD [8, 9].
In human populations, blood transcriptomic profiling, which

requires smaller sample sizes than traditional genome-wide
association studies (GWAS), has been successfully used as a
discovery tool for genes associated with PTSD [10–12]. So far, only
a few blood transcriptome-wide association studies (TWAS)
associated with PTSD core symptom trajectories have been
reported [13]. This study design may facilitate identifying genes
involved in the course of PTSD and biomarkers for early
interventions.
Of note, the primary tissue of interest for the pathophysiology

of PTSD is the brain, with traumatic experiences activating specific
regions, including the amygdala [14, 15], hippocampus, and the
prefrontal cortex [16–19]. The degree of correlation between
blood and brain gene expression is difficult to establish [20]. Still,
the increasing number of accessible sources, such as brain
biobanks and transcriptome databases (e.g., GTEx and Brain-
Cloud), has facilitated the understanding of these body–brain
correlations.
The current prospective Emergency Department (ED) study

recruited participants in the aftermath of trauma exposure and
followed them longitudinally over 1 year. In this study, we aimed
to investigate early biomarkers that could predict the course of
trauma-related symptoms, using blood transcriptomes. Symptom
trajectories were extrapolated using posttraumatic symptoms
assessed at 1, 3, 6, and 12 months after trauma exposure [21–23];
such patterns provide more information than dichotomous PTSD
case–control or individual PTSD symptom scale (PSS) analyses in
the identification of genetic factors [24, 25]. Based on this
approach, three distinct trajectories (chronic-PTSD, remitting, and
resilient) were identified, as previously described in the papers
above [21–23].
In this study, we aimed to investigate possible genes that could

predict the course of trauma-related symptoms by performing a
transcriptomic analysis of these empirical trajectories. Further-
more, the genes identified using this method were further
investigated using several tools, including analyses of methylation
loci and genetic variants. We used public databases to evaluate
the direct association between genetic variants and brain gene
expression. We then explored the association between these DNA
variants and PTSD, using a larger independent cohort of similar
demographics (the Grady Trauma Project).

MATERIALS AND METHODS
Participants
Participants were patients in the ED of Grady Memorial Hospital in
Atlanta (GA) who had experienced a traumatic event within the past 24
h. Participants were included if they spoke English, were 18–65 years of
age, endorsed a criterion A trauma as defined by the DSM-IV-TR [26], and
provided contact information for follow-up visits. Exclusion criteria
included previous hospitalization for mental health reasons, current
suicidal ideation, attempted suicide in the past 3 months, current
intoxication, or altered mental status during the ED visit. Informed
consent was obtained from all research subjects, and all procedures
were approved by the Institutional Review Board of Emory University
School of Medicine and the Grady Health Systems Research Oversight
Committee.

Emergency Department assessments at the time of trauma
exposure
Demographic information and information about the index trauma were
gathered in the ED using the Standardized Trauma Interview [27]. PTSD
symptoms were assessed at baseline, 1, 3, 6, and 12 months following the
ED visit. PTSD symptom severity (PSS) was measured using the 17-item
self-report scale [21–23, 28, 29].
Drug and alcohol use were assessed using a ten-item version of the

Drug Abuse Screening Test (DAST) [30, 31] and the Alcohol Use Disorders
Identification Test (AUDIT) [30, 32], respectively. Depressive symptoms
were assessed using the Beck Depression Inventory BDI [33].

Symptom trajectory
Latent growth mixture modeling (LGMM) was employed to identify PTSD
symptom trajectories based on PSS total scores across 1, 3, 6, and
12 months using MPlus 7.2 [34], as previously described [21–23]. Subjects
were excluded if they were missing two or more assessments, resulting in a
sample size of 377. To identify the best fitting number of trajectory classes
that best describe the PTSD symptom severity, we applied the LGMM,
starting incrementally from one to six classes. We examined both a linear
and quadratic slope to identify the best fitting trajectory shape. We used a
nested model approach, testing a progressive number of classes until the
model fit indices no longer favor the addition of any more classes. To
determine the number of classes, we used a confluence of evidence across
conventional indices, including reductions in the Bayesian Information
Criterion (BIC), sample-size adjusted Bayesian Information Criterion (SSBIC),
Aikaike Information Criterion (AIC) indices, and significance indicated by
the Lo-Mendell-Rubin likelihood ratio test (LRT), the Vuong-Lo-Mendell-
Rubin likelihood ratio test (VLRT), and the Bootstrap likelihood ratio test,
along with parsimony and interpretability equally weighed consistent with
recommendations from the literature[35]. We found that the best fitting
LGMM model was a three-class solution (resilient, remitting, and chronic-
PTSD) with a linear slope (AIC= 8,111.160, BIC= 8,158.347, SSBIC=
8,120.274, VLRT= 0.0036, LRT= 0.0046, and entropy of 83%) [23, 36].

RNA collection and RNA sequencing
Venous blood was collected in Tempus Tubes (RNA, Applied Biosystems) in
the ED in the immediate aftermath of trauma exposure. After RNA
extraction, mRNA libraries were created using the TrueSeq preparation kit
and sequenced on the Illumina HiSeq 2000 by the Translational Genomics
Research Institute (TGEN). Reads were aligned to GRCh37 using STAR
v2.5.2b [37]. Gene counts were computed with FeatureCounts v1.5.1 [38],
and then the counts were processed with DESeq2 [39]. The Limma-Voom
R-package (version 3.6.2) [40, 41] was used for normalization, converting
raw counts to log-CPM (count per million), adjusting for library sizes, and
reducing heteroscedasticity. We kept genes with CPM values of 1 in at least
a third of the samples (13,951 genes for the primary analysis).

Construction of weighted co-expression modules from RNA-
sequencing data (WGCA)
Module eigengenes were used for summarizing clusters of highly
correlated genes using weighted correlation network analyses (WGCNA)
[42]. Briefly, raw RNA-sequencing data were first filtered keeping only
genes with >50 reads across the samples (26,193 genes); then, the data
were normalized and transformed using DESeq2 R-package [39]. Two
outliers were removed by using hclust function. Clustering modules were
defined with Blockwisemodules using the following parameters: soft-
thresholding power 5 (chosen using pickSoftThreshold), correlation type
(corType “bicor”), the network type (networkType “signed”), the type of
Topological Overlap Matrix (TOMType “signed”), a relatively large minimum
module size (minModuleSize 30), p value ratio threshold for reassigning
proteins between modules (reassignThreshold 0.05), a low propensity to
merge modules (mergeCutHeight 0.07), and high sensitivity to cluster
splitting (deepSplit= 4). Among 26,193 genes 15,382 were assigned to 38
modules.

Cell type proportion determination
White blood cell composition was assessed to investigate whether cell
type distribution was a potential confound for gene expression measures.
The frequencies of PBMC cell types were estimated based on genome-
wide gene expression using CIBERSORT cell type deconvolution method at
the default setting [43]. Normalized expression data and the
LM22 signature matrix were used as input, providing the frequencies of
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22 immune cell types. Monocytes, T cell, and neutrophils were used as
covariates in the analyses.

DNA genotyping
Extracted DNA from whole blood was genotyped by TGEN using the
Illumina Infinium PsychArray BeadChip (v.1.0, v.1.1., and v.1.2) in three
different batches. Standard quality control (QC) of the genome-wide
genotyping was performed per batch with PLINK1.9 [44]: individuals with
>5% missing data, and one in each pair of related individuals (cousins or a
closer relation) based on identity by descent proportion were removed.
Single-nucleotide polymorphisms (SNPs) with call rates <95%, minor allele
frequency < 0.05, and deviation from Hardy-Weinberg proportions (p < 1 ×
10−6 in controls and p < 1 × 10−10 in PTSD) were also removed. The three
batches were merged, and further QC was performed. To determine
population ancestry, we calculate genomic principal components (PCs)
from autosomal independent genomic markers (pairwise r2 < 0.25) to infer
axes of ancestry and to remove outliers. One GRIN3B variant (rs10666583),
associated with schizophrenia in previous studies [45, 46], was imputed
with BC-Gene (https://bcgene.emory.edu/), using IMPUTE2 (version 2.3.0)
and 1000 Genomes Phase I (December 2013, NCBI build 37) for haplotype
reference.

DNA methylation
DNA was extracted from ED-collected blood by AKESOgen (http://www.
akesogen.com). Genomic DNA was bisulfite converted using EZ-96 DNA
Methylation Kit (Zymo Research), and DNA methylation (DNAm) levels
were interrogated either with HumanMethylation450 BeadChip (>480,000
CpG sites, N= 120) or MethylationEPIC BeadChip (>850,000 CpG sites, N=
36). Hybridization and processing were performed according to manu-
facturer’s instructions, followed by beta generation (Bead Studio) and
standard QC (detection call rates <95% and an average intensity value of
either <50% of the experiment-wide sample mean or <2000 arbitrary units;
CpG sites with missing data for >10% of samples were excluded from
analysis). Normalization was conducted using Beta Mixture Quantile
Normalization [47], and ComBat was used to account for batch and
positional effects [48].

Validation sample
The Grady Trauma Project is a comprehensive study of a predominantly
African ancestry (AA) population of low socioeconomic status, exposed to
stressful life events [49]. Similar to the ED, current PTSD symptoms were
assessed using the PSS, and subjects were considered chronic-PTSD if they
had a PSS score of 19 or above (third quartile cutoff) and resilient if they
had a PSS of 7 or below.
DNA extraction and genome-wide genotyping using the Omni-Quad 1

M BeadChip has been described elsewhere [50]. QC was performed by
using the Psychiatric Genomics Consortium PTSD Workgroup guidelines
[51].

Statistical analyses
A transcriptome-wide association study (TWAS) of chronic-PTSD vs.
resilient class was performed by fitting a linear model from each gene
given a series of arrays using a standard function (lmfit) from the Limma R-
package [40], followed by empirical Bayes moderation [52], to rank genes
in order of evidence for differential expression. We included in the matrix
the two-class trajectories, sex, age, baseline PTSD symptoms, cell type
proportions, three ancestry PCs, DNA batch, and RNA-sequencing batch;
we also added education, DAST or AUDIT score in the secondary analyses.
Genes were considered associated with trajectory if they reached an FDR <
0.05. Association between GRIN3b blood mRNA level and PSS at baseline
and at each subsequent follow-up assessment was examined using linear
regression, adjusting for potential confounding factors.
To establish if GRIN3B expression levels were associated with the course

of the disease, we repeated the analysis for the three-class trajectories
(chronic-PTSD vs. remitting vs. resilient).
We performed a genetic association between PTSD and GRIN3B genetic

variants using logistic regression in PLINK1.9 [44], assuming an additive
model of association. We applied a Bonferroni correction to define
statistical significance (0.05/4 variants= 0.01). To examine association
between co-expression modules and the chronic vs. resilient trajectory, we
performed linear regression using each eigengene as the outcome, the
class trajectory as predictor, adjusting for the same covariates as
mentioned above.

Methylation quantitative trait loci
Twenty GRIN3B-CpGs were selected as being present in both EPIC and 450
K. GRIN3B expression values were regressed for beta values, covarying for
age, sex, three ancestry PCs, cell types, and array type. A Bonferroni
corrected p value of 0.0025 (0.05/20) was used to define significance.

Expression quantitative trait loci (eQTL)
eQTL analyses were performed in R (version 3.5.2) using the package
MatrixEQTL [53]. Expression levels of GRIN3B were regressed with the 23
variants in the gene, spanning from 974 to 1040 Kb, (including promotors,
5′ and 3′ region), assuming an additive model, and adjusting for sex, age,
and the top three ancestry PCs. Variants with FDR < 0.05 were
deemed eQTLs.

Brain expression eQTLs
To evaluate if the top GRIN3B blood eQTL variant could affect mRNA brain
expression, we interrogated two publicly available databases: GTEx
(https://gtexportal.org) [54] and BrainCloud (http://eqtl.brainseq.org/
phase1/eqtl/) [55]. The BrainCloud used the expression values from
dorsolateral prefrontal cortices (DLPFC) to identify eQTLs in a total of
412 subjects (N= 175 patients with schizophrenia, and N= 237 unaffected
controls) or in DLPF-controls (N= 237).

RESULTS
Emergency Department study participants
In the ED cohort, a total of 377 subjects with reported post-trauma
symptoms were used for inferring symptom trajectory. Partici-
pants were mostly from AA (75.5%), while more than half had
some college or higher education (59.3%); the most common
trauma was road accidents (70.3%), which include motor vehicle
crashes and bikes or pedestrian accidents; the majority of the
participants showed low to moderate baseline PTSD symptoms
(PSS-median score of 6; Table S1).

Three distinct symptom trajectories emerged in the
12 months post-trauma
In the ED cohort, longitudinal trajectories of symptoms after
exposure to traumatic events were identified based on the PSS
score across 1, 3, 6, and 12 months [21–23, 36]. LGMM yielded
three trajectories: resilient (56.2%), remitting (32.9%), and chronic-
PTSD (10.9%; Fig. S1). Individuals were assigned to one of these
trajectories based on their most likely class membership. The
trajectory algorithm was externally validated and demonstrated
ability to discriminate PTSD risk with high precision [23].
Baseline PSS was excluded from the growth curve trajectory.

Overall, individuals in the chronic-PTSD class tended to have lower
educational attainment, a higher percentage of sexual-assault
history, and a higher representation of females (61%, Table 1)
compared to the other two categories. PSS symptoms of the
three-class trajectories partially overlap before the 6-month
marker (Fig. S1). When considering only chronic-PTSD vs. resilient,
a clear separation of symptoms was already evident after one
month. Hence, we decided to perform the TWAS analyses using
the two extreme phenotypes (chronic-PTSD vs. resilient).

Transcriptome-wide association study of symptom trajectory
suggests that low blood GRIN3B mRNA expression after
trauma exposure predicted resilience
To investigate blood mRNAs that could predict resilient vs. chronic
symptom trajectories, we performed a transcriptome-wide differ-
ential analysis of the resilient vs. chronic-PTSD group, adjusting for
potential confounding variables. Our analysis identified two genes,
GRIN3B (p= 4.50 × 10−7, FDR= 6.3 × 10−3) and AMOTL1 (p= 3.63 ×
10−6, FDR= 0.0253) whose low expression after trauma predicted
the resilient trajectory (Fig. 1, and Tables S2 and S3). To note, GRIN3B
also survived a stricter Bonferroni correction adjustment (Fig. 1A).
GRIN3B, but no AMOLT1, remained significant after adjusting for drug
use (N= 130; DAST score FDR= 6.4 × 10−4), alcohol (N= 126; AUDIT
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score FDR= 2.0 × 10−4), or education (N= 153, FDR= 0.017).
Depression and PTSD are often comorbid; in our datasets, they
were high correlated at baseline (n= 147, correlation= 0.6; p
value= 1.7 × 10−15); consequently, we did not include depression
in our model. A closer examination of AMOLT1 mRNA levels in the
chronic and resilience trajectories revealed a small difference in the
median mRNA level (Fig. 1B). We found that the median mRNA level
of GRIN3B was significantly higher in the chronic compared to the
resilience trajectory (Fig. 1C).
We then evaluated the difference in GRIN3B and AMOLT1

expression levels in the three trajectories. We observed a gradual
decrease of GRIN3B mRNA expression (p= 1.04 × 10−5; t=−4.5)
from chronic to remitting to resilient categories (Fig. S2A). In
contrast, AMOLT1 expression did not declined steadily (t=−2.7;
p= 0.01; Fig. S2B).
Finally, we examined the association between baseline GRIN3B

expression level and PSS score at baseline and each subsequent
follow-up assessment. We found that baseline GRIN3B expression
level was significantly associated with PSS score at 1, 3, 6, and 12-
month follow-up, but not at baseline (Table S4).
Using the transcriptomic profile and weighted gene correlation

network analysis, we identified 38 gene co-expression modules.
The number of genes in each module ranged between 52 and
2362. Neither GRIN3B nor AMOLT1 was a member of these
modules. We did not observe a significant association between
the module eigengenes and class trajectory (chronic vs. resilient;
Table S5).

DNA methylation loci associated with blood expression levels
As DNAm in specific genomic loci can affect mRNA expression, we
evaluated whether DNAm can explain the observed decrease in
GRIN3B mRNA levels in resilience. In a subset of patients (N= 151),
we identified 20 CpG sites in the GRINB3 gene using EPIC and 450

BeadChip data. After regressing beta values with mRNA expres-
sion levels, we found four CpGs sites located in the genic and
intragenic region of GRINB3 (Fig. 2A), whose DNAm levels
significantly increased with higher gene expression (p < 0.0025;
Fig. 2B). None of these four loci was associated with class
trajectory (chronic N= 14; resilience N= 56), possibly due to
limited statistical power.

SNP variants in GRIN3B associated with blood expression
levels (eQTLs)
We next assessed if any genomic locus in the GRIN3B gene could
explain the change in blood mRNA levels. Among the 23 identified
GWAS variants, four SNPs (rs10401454, rs8109756, rs4806908, and
rs2240158) were associated with significant change in blood
expression (FDR < 0.05; Table 2 and Fig. 1A–C).

A GRIN3B SNP associated with PTSD phenotype in the
validation dataset
To fully evaluate if any genetic eQTL variants identified in the ED
cohort were associated with developing PTSD, we used the GTP
cohort, a cross-sectional dataset of similar ancestry (Table S6
displays the GTP demographics).
Out of these four eQTLs, rs10401454 was nominally signifi-

cantly associated with PTSD case–control phenotypes, based on
PSS symptoms (N= 3519, p= 0.036, OR= 1.13) with the minor
allele (GG) predicting resilience (Table S7 and Fig. 3); a similar
result was obtained after adjusting for DAST score (N= 1176,
p= 0.045, OR= 1.24). The direction of association was consis-
tent with the initial ED findings, as GRIN3B expression was lower
in the resilient class than the other two classes (p= 1.04 × 10−5;
t=−4.5; Fig. S2). Similarly, rs10401454 minor allele was
associated with lower expression levels in the ED cohort, and
low PTSD symptoms in the GTP cohort. rs10401454 was not

Table 1. Sociodemographic characteristics of the subset ED cohort and their prospective trajectory classes adopted for transcriptome analyses.

Total Chronic Remitting Resilience

Number of subjects (%) 224 23 71 130

Sex (% females) 50.9% 60.9% 53.5% 47.7%

Age (SD) 35.8 (12.5) 34.6 (11.2) 36.0 (13.2) 35.9 (12.4)

Race

African ancestry 71.4% 73.9% 77.5% 67.7%

European ancestry 19.6% 13.0% 16.9% 22.3%

Other 8.9% 13.0% 5.6% 10.0%

Trauma

No sexual assault 6.7% 0.0% 11.3% 5.4%

Sexual assault 6.3% 17.4% 7.0% 3.8%

Road accidentsa 73.2% 69.6% 70.4% 75.4%

Gun accidents 1.8% 4.3% 1.4% 1.5%

Stabbing 1.8% 0.0% 4.2% 0.8%

Animal bites 1.3% 4.3% 1.4% 0.8%

Other 8.9% 4.3% 4.2% 12.3%

Education

Some HS or less 14.3% 30.4% 15.5% 10.8%

HS graduate 27.2% 34.8% 26.8% 26.2%

AA/some college 39.3% 30.4% 39.4% 40.8%

BS/BA 15.2% 4.3% 14.1% 17.7%

Master/Ph.D. 4.0% 0.0% 4.2% 4.6%

Baseline PTSD symptoms (SD) 9.3 (9.9) 19.7 (12.7) 12.1 (9.14) 5.92 (7.7)

There were no significant differences in gender, age, or class trajectory representation between this subgroup and the entire ED cohort.
aRoad accidents includes motor vehicles crashes, and pedestrians and bike accidents.
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associated with resilience in the ED cohort (Table S8), possibly
due to limited statistical power.

GRIN3B rs10401454 associated with mRNA expression in the
brain
To further corroborate the relevance of rs10401454 for gene
expression in the brain, we resorted to the BrainCloud and the
GTEx databases. In the BrainCloud dataset, we found that
rs10401454 was an eQTL in DLPFC group (FDR= 6.5 × 10−7,
beta=−0.04) and in the DLPFC controls (FDR= 2.8 × 10−4, beta
=−0.04; Fig. S3A, B). In GTEx, rs10401454 genotypes affected
mRNA levels expressed in the brain cortex (p= 2 × 10−10) and
brain frontal cortex BA9 (p= 6.2 × 10−6), with the homozygote for
the minor allele (GG) having less expression than CG and CC
genotypes (Fig. S3C, D). The patterns of expression observed in
BrainCloud and GTEx were consistent with the one in the ED-
blood TWAS (Fig. 2C). Notably, in the GTEx, this SNP is also an
eQTL in whole blood (p= 1.2 × 10−10) and several other tissues,
including brain cerebellum and basal ganglia with an m value >
0.9 in 39 out 49 tissues (Fig. S4).

DISCUSSION
Identifying novel biomarkers of PTSD risk may facilitate early
intervention, mitigating both individual suffering and public
health concerns. Blood biomarkers could be particularly advanta-
geous, being an objective measure for future symptom manifesta-
tion, and when interview for PSS symptoms and trauma type
might not be feasible in the aftermath of a trauma exposure. In
our study, using transcriptomes profiled in the immediate
aftermath of trauma exposure, we observed that the expression
levels of GRIN3B at baseline predicted resilience vs. PTSD. One
eQTL variant in GRIN3B was also nominally associated with PTSD
in a larger independent cohort of similar backgrounds.

Trajectory modeling analyses previously led to important
findings in complex genetic traits, including psychiatric diseases
(e.g., PTSD) [6, 56]. Thus, we utilized empirical trajectories, a best
LGMM fitting model with a three-class solution, which statistically
describes symptom progression over 12 months after trauma, as
the primary outcome for gene discovery rather than diagnostic
categories [23]. In prior studies, these trajectory membership
showed a significant association with plasma proinflammatory
tumor necrosis factor α and interferon-γ [21], with increased skin
conductance response among subjects in the chronic trajectory
[22] and emotion dysregulation [36].
The characteristics of the chronic-PTSD trajectory are in

concordance with several other studies, in which female patients
with low education were associated with a higher likelihood of
developing PTSD [57]. Furthermore, in the ED, most sexual-assault
victims were clustering in the chronic-PTSD category, suggesting
that PTSD risk varies by type of trauma. Indeed, sexual assaults (e.g.,
rape) associate with both the highest probability of developing
PTSD, and a longer duration of PTSD symptoms [58, 59]. The
trajectory also indicates that PSS symptoms could predict outcomes,
but a clear distinction among trajectories emerged after 6 months.
The TWAS of class trajectories in our study identified GRIN3B

baseline mRNA expression as informative of PTSD course and
outcomes.
We observed a significant gradual decrease of GRIN3B mRNA

levels in chronic-PTSD vs. recovery vs. resilient trajectory,
indicating a steady reduction of expression with the disease’s
etiology. Although the sample size is limited, the finding seems
well-founded for several reasons: (a) adding either alcohol or drug
use, or education, did not change the results (b) we observed a
dose–response in the three-trajectory analysis. Contrary, AMOL-
T1analyses did not show analogous results.
GRIN3B encodes a subunit (NR3B) of an N-methyl-D-aspartate

(NMDA) receptor, a glutamate receptor, that is widely distributed

Fig. 1 Blood mRNA expressions after trauma predict resilience. A Volcano plot showing changes in gene expressions in resilient vs. chronic
trajectories. The horizontal axis of the volcano plot is effect size (log2 foldchange) for the differentially expressed genes. The vertical axis is the
negative of log10 of the p values. Each dot represents a gene, with red dots showing genes reaching an FDR-corrected p value of 0.05, and
with black dots representing genes with similar expression levels in resilience and chronic clusters. The blue horizontal blue line indicates a
strict Bonferroni correction p values threshold [p= 3.58 × 10−6 (0.05/13,951 tests). B, C Box and whiskers plots of blood mRNA expressions for
B AMOTL1 and C GRIN3B in resilient vs. chronic-PTSD trajectory. Y-axis show gene expression values. The box represents their quartiles;
whiskers indicate the variability outside the upper and lower quartiles; the horizontal line represents the median.
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Fig. 2 GRIN3B gene: its RNA expression levels are modulated by CpG loci and DNA variants. A Schematic representation of the GRIN3B gene
and its localization on: chromosome 19 (top of the figure). Each rectangle represents an exon. Numbers above the rectangles are the base pair of
each exon; intronic base pair numbers are also indicated. Four variants (rs4806908, rs10666583, rs2240158, and rs1041454) and their localization
within the gene and exon are shown; rs8109756 is located near the CNN2 gene and not shown in the figures. None of these SNPs are in LD with
each other, despite the close localization. The CpG methylation loci and their localization in the gene are also shown. B Four CpG sites are positive
correlated with GRIN3b expression levels. Y-axis shows gene expression values; X-axis represents beta-methylation values. The red line indicates the
predicted regression line. C Box and whisker plots of GRIN3b blood RNA expression levels changing with the genotype of the four different
variants. Y-axis shows the mRNA expression levels at baseline; X-axis shows the three different genotypes.
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in neurons throughout the central nervous system (CNS). In
rodents, exposure to stress causes an increase in glutamate
release, the excitatory neurotransmitter for NMDA receptors, with
associated increased NMDAR expression in brain regions linked to
emotional behavior [60, 61], including fear conditioning [62]. In a
mouse model, we did not find a significant correlation between
blood and amygdala expression level of GRIN3B [20]. Nevertheless,
we cannot rule out significant correlations of GRIN3B level
between blood and other brain regions implicated in PTSD, such
as hippocampus or ventral medial prefrontal cortex. Furthermore,
we cannot exclude the possibility of an indirect effect of GRIN3B
through the blood immune system as leukocytes express
functional NMDA receptors [63], which might be involved in the
brain–body signal transmission and given the role of immune
system in the etiology of PTSD [64–66]. Finally, the aim of the
study was to identify peripheral biomarker for manifestation of
PTSD symptoms. Thus, NMDA receptors are particularly interesting
in the pathophysiology of PTSD. They also seem to be involved in
plastic changes within the CNS responsible for learning and
memory, development, and synapse formation [67]. Interestingly,
NMDA receptor antagonists (e.g., ketamine) have been used to
reduce symptom severity in patients with chronic-PTSD [68, 69].
This accumulating evidence in human and animal models of
NMDA receptors’ role in PTSD suggests the GRIN3B gene as an
exciting candidate for predicting PTSD course shortly after trauma.
In human populations, GRIN3B has been linked to opioid

addiction and schizophrenia [45, 46, 70–72], although expression
of GRIN3B mRNA was not associated with computer game
addiction [73]. Chronic opioid abuse, but also abstinence and
methadone treatment led to the significant upregulation of
GRIN3B mRNA [71]. Intriguingly, the downregulation of mRNA
expression may have been caused by methadone’s ability to
antagonize NMDA receptors [71]. In our cohort, we observed an
upregulation of GRIN3B expression in subjects with future chronic-
PTSD symptoms. Furthermore, we observed a stronger association
after including a variable for drug use, suggesting that addiction
may contribute to GRIN3B expression changes and possibly

increased PTSD risk. While no association was observed between
GRIN3b expression levels and PSS symptoms at baseline, GRIN3b
expression was associated with PSS symptoms during the follow-
up visits, with the highest significant observed at 6 months. As a
corollary, some NMDA antagonists, such as ketamine, may
downregulate GRIN3B expression levels, indicating a point of
intervention to improve outcome and disease course in post-
trauma subjects with higher GRIN3B levels.
Similarly, expression of glutamate receptor subunits in periph-

eral blood was also shown to be altered by sex, pregnancy, or
depression during pregnancy, with the lowest GRIN3B mRNA
levels in healthy pregnant women [74]. Healthy volunteers
evaluated for working memory showed no difference in NMDA
receptor expression, denoting a different role of NMDARs in
stressful situations (e.g., trauma exposure) [75].
Our results are not in contrast with previous PTSD transcriptome

studies, in which immune and inflammatory genes and pathways
had been identified, as we examined the blood transcriptomic
profiles collected at the time of trauma exposure, which can be
different from transcriptomic profiles from postmortem brain
tissue [76] or from blood [12] at the time of having PTSD.
To explore possible mechanisms that may account for

significant differences in GRIN3B expression in PTSD trajectories,
we evaluated DNAm loci and genetic variants. Four CpG sites were
hypermethylated, and associated with increased mRNA blood
levels. Higher levels of GRIN3B methylation levels in mice brain
had been associated with increased mRNA levels [77]. Further-
more, a locus located ∼10 kb upstream of the GRIN3B gene was
found to be hypomethylated in the brains of schizophrenic and
major psychosis [78]. Notably, often gene promotors are
hypomethylated, while intragenic and coding regions are
hypermethylated [77, 79], both of which mechanisms may result
in increased mRNA expression. Four variants (two missense
mutations, a synonymous SNP, and an intronic variant) in the
GRIN3B gene were associated with baseline blood expression
levels of GRIN3B. While how these variants regulated mRNA
expression is currently unknown, we surmise that their genomic
locations could be cryptic transcription factors binding loci.
We then investigated if any of the GRIN3B variants could be a

risk factor for PTSD in the GTP cohort [49]. rs10401454 was
associated with PTSD case–control extreme phenotype. The exon
9 location of this SNP is particularly intriguing, as GRIN3B-Exon 9
encodes two putative Ca2+/calmodulin-dependent kinase sites,
important regulating the calcium-permeable channel and activa-
tion/deactivation of the NMDA receptor. High Ca2+ permeability
of NMDA receptors also play a critical role in neurodevelopment,
synaptic plasticity, and neuronal death, suggesting that variations
in this exon, such as rs10401454, may confer particular vulner-
ability and pathological consequences.
Using data from two eQTL brain databases, we observed that

rs10401454 regulates mRNA expression in the brain cortex, a region
of the brain that is important for the pathophysiology of PTSD
[80, 81]. Furthermore, in the GTEx dataset, rs10401454 seemed to
regulate several other tissues, implying that this variant could
ubiquitously affect expression levels in different organs/tissue.
Genetic variants in GRIN3B have been associated with an

increased risk of developing schizophrenia [45, 46, 72], auditory
mismatch negativity [70], and heroin addiction [82]. Specifically,

Table 2. Genetic variants associated with mRNA expression levels (eQTLs).

SNPs Gene Beta p Value FDR Location

rs10401454 GRIN3B −0.23 2.90 × 10−13 6.7 × 10−12 Exon missense variant

rs8109756 CNN2 −0.14 2.71 × 10−6 3.1 × 10−5 Intron

rs4806908 GRIN3B 0.19 0.0001 0.001 Exon synonymous variant

rs2240158 GRIN3B 0.08 0.0058 0.033 Exon missense variant

Fig. 3 GRIN3B Genetic Association with PTSD symptoms. Bar plot
of number of cases (PSS ≥ 19) and controls (PSS ≤ 7) for GRIN3B
genotype (CC, GC, and GG). The Y-axis represents the number of
subjects.
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the GRIN3B SNP rs2240158 was associated with heroin addiction in
a Han Chinese population [82] and mismatch negativity in healthy
subjects [70]. Our study found that this variant was a GRIN3B eQTL,
was associated with trajectories in the ED cohort, but not with
PTSD phenotype in the GTP cohort. A four-base pair insertion
variant, rs10666583, has been associated with increased schizo-
phrenia risk in two independent studies [45, 46]. This same null
variant was associated with extreme case–control phenotype in
the GTP cohort (Table S5). Given that PTSD shares genetic risk
factors with other psychiatric disorders, including schizophrenia,
[83–85], the same variants may contribute to increased risk across
diseases.
The major limitation of this study is the lack of an independent

cohort with a similar study design to replicate our findings. We
hope to replicate and expand these results in the future, using the
AURORA study [86], which has been enrolling discharge ED
subjects after trauma exposures, and followed longitudinally with
a target sample size of over 5000 samples. Another limitation of
this study was the relatively modest sample size in the
transcriptome analysis, although in line with other studies
[10, 65, 66, 87–89]. On the other hand, this work relied on growth
curve trajectories, which may represent separate genetic clusters
less heterogeneous than the classical PTSD phenotype, and more
suitable for gene discovery. The ED also offers a primary point of
contact for individuals immediately after exposure to trauma,
providing an ideal foundation to (i) evaluate subjects long-
itudinally, (ii) assess PTSD symptoms shortly after the trauma, and
(iii) appraise early individual PTSD risk factors, which may be used
toward systematic prevention. Although, given the study
designed, we could not analyze the patient’s blood prior to the
trauma exposure, we did not observe any association of GRIN3b
levels at baseline with PSS symptoms, inferring a possible direct or
indirect involvement of GRIN3b gene in the etiology of PTSD.
In summary, the current study provides evidence that

peripheral gene expression signatures following trauma are
informative of PTSD key clinical features and outcomes. Specifi-
cally, GRIN3B expression seems to predict post-trauma symptom
trajectory and might be a promising early biomarker for PTSD
manifestation and outcome, and a possible intervention and
prevention point.
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