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Dissociable control of μ-opioid-driven hyperphagia vs. food
impulsivity across subregions of medial prefrontal,
orbitofrontal, and insular cortex
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This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in
the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats.
The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL),
medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC
DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats
having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen
removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake)
interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long,
uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-
screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL)
task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance
when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs.
consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs
in modulating inhibitory control.
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INTRODUCTION
The motivation to seek and consume food is essential for survival.
However, when food motivation is unchecked by normal
inhibitory controls, goal-seeking responses become excessive or
intrusive, and consumption surpasses homeostatic requirements.
A better understanding of the anatomical networks and neuro-
chemical systems that initiate and adaptively limit natural
appetitive behaviors, such as feeding, may uncover principles
that apply to a wide variety of addictions, eating disorders (EDs),
and other conditions with common underlying features of
motivational dysfunction.
Decades of research into the central control of feeding behavior

has established that mu-opioid receptor (μ-OR) signaling in
discrete subcortical loci (including the nucleus accumbens [1],
central amygdala [2], and hypothalamus [3]) is sufficient to drive
intense feeding responses, including for palatable or preferred
foods [4–6]. The feeding-modulatory role of cortically localized μ-
ORs, however, has been comparatively understudied. Never-
theless, recent work has begun to identify cortical loci, in which
μ-OR stimulation produces motivational effects rivaling those seen
in extensively studied subcortical sites, such as the nucleus
accumbens. For example, μ-OR stimulation in a circumscribed area

of ventromedial prefrontal cortex (vmPFC), alone among a variety
of monoamine or amino acid neurotransmitter manipulations,
augments the intake of both standard and palatable food,
selectively enhances feeding in a concurrent food/water choice
in fluid-restricted rats, and robustly increases the willingness to
work for sucrose reward in a progressive-ratio task, even in rats
with low hunger drive [7–9]. Furthermore, intra-vmPFC μ-OR
signaling, but not monoamine stimulation, produces a marked
impulsivity-like impairment of inhibitory control in a sucrose-
reinforced differential reinforcement of low rates (DRL) task, which
assesses the ability to withhold disadvantageous, prepotent food-
seeking responses [9]. To date, no other neurochemical manipula-
tion of the vmPFC has been found to produce this behavioral
profile. Hence, μ-OR stimulation may represent a unique tool with
which to “push” cortical sites to reveal feeding-related functions.
Accordingly, recent studies have begun to identify additional loci
beyond vmPFC, in rat ventral orbitofrontal and posterior insular
cortex, where μ-OR stimulation enhances feeding and related
functions, such as hedonic taste reactivity [10]. The clinical
relevance of these observations is bolstered by the growing
number of human ligand-PET and fMRI neuroimaging studies
showing μ-OR changes within homologous medial, orbitofrontal,
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and insular cortical regions in conditions pertinent to appetitive
motivation and its dysregulation, such as feeding and viewing
food images [11, 12], obesity and EDs [13–15], various stages of
the drug addiction cycle [16–19], and impulsivity [20].
To better understand the functions of cortical μ-OR systems, the

present study mapped frontal-cortical μ-OR agonist actions on
dissociable components of palatable food-motivated behavior:
behavior antecedent to expected food access, actual consump-
tion, and inhibitory control over food-seeking behavior. Our
overarching goal was to determine the extent to which these
functions are either overlapping or segregated to distinct nodes in
frontal-cortical circuitry. Small-volume infusions of the selective μ-
OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin),
were placed in rat vmPFC or dorsomedial prefrontal cortex
(infralimbic cortex (ILC) and prelimbic cortex (PrL) regions,
respectively), orbitofrontal cortex (ventromedial (VMO) and lateral
orbitofrontal regions (VLO)), or insular cortex (agranular/dysgra-
nular regions at the level of primary gustatory cortex (AI/DI)). All
these sites have appreciable densities of μ-ORs, with no evidence
for major differences in receptor expression across sites [21, 22].
Using a within-subjects design, rats were tested in two paradigms:
an observational test in which spontaneous behaviors prior to
expected sucrose access and during access were recorded and
scored; and the abovementioned DRL task of inhibitory control. Of
particular interest was determining the degree to which cortical
sites subserving μ-OR-mediated effects on inhibitory control
anatomically overlap the sites that generate anticipatory activity,
consumption, or both.

METHODS
Subjects
Subjects were male Sprague–Dawley rats (Harlan, Madison, WI) weighing
275–300 g upon arrival at the laboratory. Rats were housed in a light- and
temperature-controlled vivarium, under a 12:12 h light–dark cycle (lights
on at 0700 h). Food (Envigo Teklad laboratory diet) and water were
available ad libitum, except as indicated for specific experiments. Animals
were handled daily to reduce stress. Testing occurred between 1100 and
1500 h. All facilities and procedures were in accordance with NIH
guidelines and were approved by the Institutional Animal Care and Use
Committee of Univ. Wisconsin-Madison.

Differential reinforcement of low response rates (DRL-15 s)
Training and testing procedures were conducted in standard operant
chambers, as described previously [9].
All rats underwent an initial training period during which they were

maintained at 90 ± 2% of free-feeding body weight using scheduled
feedings. During this phase, rats were trained to lever press on a conjoint
random-time 30 s/fixed ratio 1 schedule (RT-30 s/FR-1) and then a FR-1
schedule [9] to earn sucrose pellets (BioServe Dustless Precision Sucrose
Pellets, 45 mg; Product # F0023). Once consistent responding was achieved
on FR-1, rats advanced to a variable-interval 15 s schedule (VI-15 s), VI-30 s
schedule, and finally to a DRL-15 s schedule. In the DRL-15 s schedule, rats
were required to withhold responding after reinforcer delivery during an
unsignaled, fixed time period (15 s). After this delay, subjects could
respond to earn the next reinforcer. However, each premature response
(i.e., one that was not separated from the previous response by at least 15
s) reset the delay timer. For optimal performance, therefore, the timing of
consecutive responses (inter-response intervals) must exceed the delay
interval. After 2–3 days on DRL-15 s, rats were returned to ad libitum
feeding, with food withdrawn in the 2 h immediately preceding each
testing session. Rats were then tested under this new food restriction
schedule until stable baseline responding was achieved (±15% variability
or less) in reinforced responses over three consecutive testing days. DRL
sessions lasted ~20min.

Behavior-observation procedure
Rats were tested in clear polycarbonate cages (9.5 in width × 17 in
length × 8 in height), identical to their home cages except for wire grid
floors. Pre-measured amounts of sucrose pellets (the same type of sucrose

pellets that were used in the DRL procedure described above) were placed
in clear glass jars affixed to the wire grid. For the first part of the session,
chicken-wire screens blocked access to the sucrose, while allowing it to be
seen. All sessions started with screens in place; screens were removed after
15min to allow 45min of access to and consumption of the sucrose
pellets. Rats were videotaped with a digital camcorder for the entire 60min
session (i.e., 15min with screens in place, 45 min after screen removal).
After the conclusion of testing, an experimenter blind to treatment viewed
the digital files, and recorded number and length of bouts of screen
contacts, spontaneous ambulation (cage crossings), rearing, and eating,
using an event recorder interfaced to a PC-based desktop computer.
Several derivative measures were calculated from these data: mean eating
bout duration (total # of bouts/total duration), global eating rate (total
intake/total duration), and global eating efficiency (total intake/total # of
bouts). To record the duration of a particular behavioral event, a
cumulative timer (specific for that behavior) on the event recorder was
started at the initiation of the behavior. The timer was switched off when
the behavior was interrupted by a different behavior.

Surgical procedures
Stereotaxic surgery under isoflurane anesthesia was carried out, as described
previously [23]. Stainless-steel guide cannulae (10-mm-long; 25-gauge) were
implanted at flat skull aiming at ILC (N= 7 rats; AP +3.0, ML ±2.25, DV −5.2,
at 19° from vertical from skull surface), PrL (N= 8 rats; AP +3.0, ML ±2.0, DV
−5.15, at 23° from vertical, from skull surface), VMO cortex (N= 9 rats; AP
+3.25, ML ±1.7, DV −5.15, from skull surface), VLO cortex (N= 7 rats; AP
+3.2, ML ±2.8, DV −5.15, from skull surface), and AI/DI cortex (N= 7 rats; AP
+1.3, ML ±5.05, DV –6.65, from skull surface). All guide cannulae were
implanted 2.5mm above the final infusion site except for PrL, which is very
dorsal, where injectors extended 1mm beyond the guide cannulae.

Microinfusion procedures and drugs
Intracerebral microinjections were carried out, as previously described [23].
DAMGO was obtained from Bachem. All drugs were dissolved in sterile
0.9% saline.

Experimental design
After a week of recovery from surgery, rats were separated into two groups
tested either first in DRL-15 s followed by the behavior-observation
procedure, or vice versa, in a counterbalanced block design. All rats were
first acclimated to microinjection procedures with sham infusions and
intra-site saline injections on consecutive days. Drug testing in either DRL
or the behavior-observation procedure commenced 2 days after acclima-
tion. Rats received intracranial infusions of either vehicle (0.9% saline) or
DAMGO (0.1, 0.3, or 1.0 μg). The microinfusion volume was 0.25 μl/side.
Each rat received all those treatments counterbalanced according to latin
square designs within each block. Testing began 15min after microinfu-
sions. At least 1 day was allowed between treatments to allow for drug
washout. At the conclusion of dose-response testing, the blocks were
reversed, and dose-response testing commenced again.

Histology
At the end of each experiment, rats were deeply anesthetized and
perfused with 10% formalin in phosphate buffer. Brains were stored in 10%
formalin. Coronal sections (60 µm) were cut through the infusion site on a
cryostat microtome, collected on slides, stained with cresyl violet, and
subsequently reviewed to verify correct injection placements.

Statistical analyses
Data were analyzed using repeated measures ANOVAs. Contingent upon
significance in the ANOVAs, post hoc comparisons among means were
conducted using Tukey’s HSD test. The level of statistical significance was
set at P < 0.05 for all experiments.

RESULTS
Histological analyses
Chartings in Fig. 1A–E depict the placement of injector tips in each
of the targeted cortical sites for rats included in the study. Bilateral
placements within each rat were never separated from one
another by >0.4 mm in the anteroposterior plane. The
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photomicrographs in Fig. 1F shows a representative high-power
view of injector tip placements in Nissl (cresyl violet)-stained
tissue. For included rats, no atypical or excessive damage was
noted; examination of the area even closely adjacent to the
injector tips revealed intact cells and good tissue integrity (see
brightfield photomicrographs in Fig. 1F).

Order of participation in DRL vs. the behavioral-observation
procedure had no effect
All rats were subjected to a within-subject counterbalanced design,
in which they were tested in either a behavioral-observation testing
block first, and operant DRL-15 s testing block second, or vice versa
(see “Methods”). No effects of block order were detected for any site
or measure (Fs= 0.06–2.54, not significant (NS)).

Intra-ILC and intra-VMO DAMGO-modulated behavior prior to
contact with food
Dissociable effects of DAMGO were noted across cortical sites in
the first 15 min of the behavioral-observation test, while the wire-

mesh screen preventing food contact was still in place. Intra-ILC
DAMGO increased the number of screen contacts (F(3,18)= 3.22,
P= 0.047; Fig. 2A), which consisted of sniffing and contacting the
screen with the paws (i.e., treating the screen as a barrier), but
with no licking, gnawing, or other obvious ingestive-behavior
fragments. No statistically significant effects of DAMGO on screen
contacts were detected for any of the other sites (Fs= 0.06–2.30,
NS). In addition, DAMGO increased the number of cage crossings
while the screen was in place for ILC (F(3,18)= 8.05, P= 0.001) and
VMO (F(3,24)= 5.58, P= 0.005), but not for PrL, VLO, or AI/DI (Fs=
0.26–2.11; NS, Fig. 2B).

Intra-site DAMGO infusions augmented sucrose-pellet intake
in ILC, VMO, and AI/DI
In the 45-min period after the screen was removed from the sugar
pellets, DAMGO microinfusions significantly increased sucrose
intake in three of the five sites tested (see Fig. 3). For sub-
territories of medial PFC, DAMGO infusions into ILC elicited
significant sucrose hyperphagia (F(3,18)= 8.31, P= 0.001), while

Fig. 1 Chartings depicting bilateral microinjector tip placements for all experiments followed by demonstrative histology for each site.
A ILC infralimbic cortex (N= 7). B PrL prelimbic cortex (N= 8). C VMO ventromedial orbitofrontal cortex (N= 9). D VLO ventrolateral
orbitofrontal cortex (N= 7). E AI/DI agranular/dysgranular insular cortex (N= 7). Numbers indicate distance from bregma in millimeters.
F High-power view of an injector tip, showing no unusual damage and good cell integrity at the injection site.
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no effects were noted more dorsally in PrL (F(3,21)= 0.38, NS). In
orbitofrontal cortex, a DAMGO-induced increase in sucrose intake
was observed in VMO (F(3,24)= 3.03, P= 0.049), but not more
laterally in VLO (F(3,18)= 1.79, NS). The magnitude of DAMGO’s
effect on intake was similar in ILC and VMO, averaging 4.8 and 4.3
g of sucrose, respectively, after the 1.0 µg dose. Intra-AI/DI DAMGO
infusions also elicited considerable sucrose hyperphagia (F(3,18)
= 9.08, P= 0.0007), with intake at the 1.0 µg dose averaging 7.1 g.

DAMGO provoked dissociable feeding-behavior patterns
across cortical sites
In the 45-min post-screen testing period, intra-ILC DAMGO-
induced augmentation of sucrose intake was characterized by a

significantly higher number of eating bouts initiated (F(3,18)=
3.65, P= 0.032; Fig. 4A), a significant but small increase in total
eating duration (F(3,18)= 3.77, P= 0.029; Fig. 4B). These changes
resulted in a significant reduction in mean eating bout duration
(F(3,18)= 7.14, P= 0.0023), and corresponding reduction in gram
intake per bout (F(3,18)= 5.20, P= 0.009); however, global eating
rate (gram intake/min) was unchanged. These findings are
summarized in Supplementary Materials, Table S1. Also shown
in Fig. 4B, DAMGO increased the number of eating bouts when
infused into VMO (F(3,24)= 6.83, P= 0.002) or VLO (F(3,18)= 3.79,
P= 0.029); however, effects in these sites on eating duration
trended upward slightly but did not achieve statistical significance
(Fs= 0.91–2.38, NS; Fig. 4B). Similarly to ILC, mean eating bout
duration was significantly decreased in VMO (F(3,24)= 8.09, P=
0.0007; Supplementary Materials, Table S1). Moreover, global
eating rate (gram intake per minute) was significantly increased in
VMO alone among all sites (F(3,24)= 3.44, P= 0.033; Supplemen-
tary Materials, Table S1). Together, these results indicate that
feeding responses elicited from ILC and VMO were intense, but
very brief and fragmentary. The opposite pattern was seen in AI/
DI, where DAMGO had a relatively small but still significant effect
on number of eating bouts (F(3,18)= 3.38, P= 0.041), while more
than doubling total eating duration (F(3,18)= 8.56, P= 0.001;
Fig. 4A, B). Mean eating bout duration, gram intake per bout, and
global eating rate also were dose-relatedly increased in AI/DI,
although these effects were not statistically significant (Fs=
1.58–1.67, NS; Supplementary Materials, Table S1). Finally, in PrL,
DAMGO failed to alter eating bouts, duration, global eating rate or
efficiency (Fs= 0.17–1.35, NS), but produced a small but
significant decrease in mean bout duration at the highest dose
(F(3,21)= 3.81, P= 0.025); these findings are shown in Fig. 4 and
in Supplementary Materials, Table S1.
Overall, the same behavioral patterns and site dissociations

described above for the entire 45-min post-screen session had
begun to appear as early as the first 10min of the 45-min post-
screen periods (see Fig. 4 insets). Thus, DAMGO increased the
number of eating bouts when infused into ILC (F(3,18)= 4.65, P=
0.001) and VMO (F(3,24)= 8.83, P= 0.0004). These effects on bout
initiation did not translate into statistically significant increases in
overall eating duration (Fs= 0.47–1.23, NS), indicating that the
feeding bouts were very short and fragmentary. This conclusion
was further bolstered by the finding that mean bout duration in
the ILC was significantly decreased (F(3,18)= 5.13, P= 0.0097;
Supplementary Materials, Table S1). In contrast, DAMGO infusions
into AI/DI did not increase the number of eating bouts initiated in
the first 10min of the session (F(3,18)= 0.67, NS), but greatly
increased feeding duration (F(3,18)= 5.99, P= 0.005). These
analyses confirm the qualitative observation that, after screen
removal, intra-AIC DAMGO-treated rats moved directly into the
sugar jars and consumed the pellets in long, uninterrupted bouts,
in strong contrast to the “fragmented” behavioral pattern
observed after DAMGO infusions into ILC or VMO.

DAMGO microinfusions elicited motor hyperactivity in the
presence of food
In the 45-min post-screen period, DAMGO elicited hyperactivity,
indexed by cage crossings, in ILC (F(3,18)= 8.01, P= 0.001), VMO
(F(3,24)= 5.90, P= 0.004), VLO (F(3,18)= 7.36, P= 0.002), and PrL
(F(3, 21)= 3.74, P= 0.003); all shown in Supplementary Materials,
Fig. S1. In contrast, infusions of DAMGO into the AI did not alter
total cage crossings, (F(3,18)= 1.26, NS) despite strong modula-
tion of feeding at the same doses. To adjust for the different
overall feeding durations obtained in different sites, we calculated
the number of cage crossings per unit time the animals were not
eating (i.e., cage crossings/[total session duration− total eating
duration]), which provided an index of locomotion rate. This
adjustment revealed significant dose-related increases in locomo-
tion rates across sites (ILC: F(3,18)= 6.39, P= 0.0039; VMO:

Fig. 2 DAMGO-induced effects in the behavior-observation
procedure, in the first 15min of the test during which a screen
obstructed access to sucrose pellets. A Screen contacts and
B locomotor activity are shown. * Different than saline (P < 0.05),
** different than saline (P < 0.01), ## different than 0.1 µg DAMGO (P
< 0.01). Error bars depict 1 SEM. ILC infralimbic cortex, PrL prelimbic
cortex, VMO ventromedial orbitofrontal cortex, VLO ventrolateral
orbitofrontal cortex, AI/DI agranular/dysgranular insular cortex.

Fig. 3 Effects of DAMGO treatment on sucrose-pellet intake in the
45-min session after obstructing screens were removed from the
pellet jars (see “Methods”). **P < 0.01, ***P < 0.001, different from
saline. #P < 0.05, ##P < 0.01, ###P < 0.001 different than 0.1 µg DAMGO.
Error bars depict 1 SEM. ILC infralimbic cortex, PrL prelimbic cortex,
VMO ventromedial orbitofrontal cortex, VLO ventrolateral orbito-
frontal cortex, AI/DI agranular/dysgranular insular cortex.
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F(3,24)= 4.94, P= 0.0078; VLO: F(3,18)= 7.72, P= 0.0016, PrL: F
(3,21)= 3.98, P= 0.022, AI/DI: F(3,18)= 6.03, P= 0.005). The rank
order of highest mean locomotion rate across sites (crossings/min)
was ILC (3.36) > VMO (2.52) > VLO (1.71) > AI/DI (1.29) > PrL (1.09).
Hence, the largest increases in locomotion (both total locomotion
and locomotion rate during nonfeeding time) were seen in ILC

and VMO. These results are shown in Supplementary Materials,
Table S1.
Except in PrL and AI (Fs= 0.28–1.30, NS), DAMGO significantly

increased general activity in the first 10min of the 45-min post-
screen sessions (Fs= 3.28–6.55, Ps= 0.004–0.038), as shown in the
Supplementary Materials, Fig. S1.

Fig. 4 The effects of DAMGO on eating bouts and eating duration in the 45-min testing session after obstructing screens were removed
from the sucrose-pellet jars (see “Methods”). Main figures in A and B depict eating bouts and eating duration, respectively, for the entire 45-
min post-screen testing sessions, while Insets depict the first 10 min of the sessions. *, ** Different than saline P < 0.05 and P < 0.01, ##
different than 0.1 µg DAMGO P < 0.01, ‡‡‡ different than all other treatments P ≤ 0.001. Error bars depict 1 SEM. ILC infralimbic cortex, PrL
prelimbic cortex, VMO ventromedial orbitofrontal cortex, VLO ventrolateral orbitofrontal cortex, AI/DI agranular/dysgranular insular cortex.
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Intra-site DAMGO impaired DRL-15 performance in ILC only
Performance in the DRL-15 task was indexed by analyzing
premature responses (disadvantageous responses emitted during
the 15-s waiting period), nose pokes into the sucrose-pellet
hopper (an index of generalized motivational and motoric
activation), and response efficiency (the proportion of total
responses that were successfully reinforced (shown in Fig. 5)). As
responding becomes impulsive-like, premature responding
increases and efficiency correspondingly decreases. DAMGO
dose-relatedly decreased efficiency and increased premature
responding only when infused into ILC (F(6,18)= 5.57, P= 0.007
for response efficiency; F(6,18)= 3.92, P= 0.026 for premature
responses). No DAMGO-induced effects on either of those two
measures were noted in any other site (Fs= 0.10–2.84, NS).
Furthermore, there were no significant effects on nose pokes in
any site (Fs= 0.81–2.60, NS). Premature responses and nose pokes
are summarized in Supplementary Materials, Table S2.

DISCUSSION
The present study revealed marked heterogeneity in the
behavioral profiles elicited by µ-OR stimulation across the cortical
sites tested. Infusions of DAMGO into ILC and VMO, but not VLO,
PrL, or AI/DI, provoked considerable hyperactivity prior to feeding,
when a sucrose-filled jar was covered by a see-through mesh
screen (and rats had previously learned to expect eventual screen
removal). Intra-ILC DAMGO also increased the number of times
rats contacted the screen. After screen removal, intra-ILC, intra-
VMO, and intra-AI/DI DAMGO-treated rats exhibited sucrose
hyperphagia; however, microanalysis of feeding behavior revealed
markedly dissimilar behavioral patterns across those sites.
Whereas intra-ILC and intra-VMO DAMGO infusions produced
numerous, brief, feeding bouts interspersed with frequent bouts
of intense hyperactivity, intra-AI/DI DAMGO elicited long, unin-
terrupted feeding bouts with no hyperactivity before screen
removal. In contrast, intra-VLO and intra-PrL DAMGO provoked a
modest increase in locomotor activity (only in the presence of
food), but no changes in feeding. Finally, DAMGO infusion into ILC
but no other site impaired DRL responding by provoking
premature-response errors. These results reveal functional specia-
lizations across frontal territories in µ-OR modulation of activity
and approach, intake, and inhibitory control over food-seeking
responses.
Prior intra-cortical DAMGO infusion studies support the present

findings of DAMGO-responsive zones in medial prefrontal, orbital,
and insular cortices, albeit with some interesting differences. A
more limited mapping from our prior work showed sites of

DAMGO-driven food intake clustered around the ILC/PrL boundary
and VMO, but not control sites in motor cortex [7]. A more recent
study reported that DAMGO augmented both intake and hedonic
taste reactivity in medial and lateral orbitofrontal cortex; many of
these placements were in the general vicinity of the VMO site
probed here, but slightly more anterior [10]. These investigators
also report some strong DAMGO-induced feeding responses
clustered in the medial wall of PFC, ~0.5–1.0 mm anterior to the
current ILC site (see Fig. 7 in ref. [10]). However, it is unclear
whether these investigators probed the specific ILC site tested
here. Finally, in insular cortex, sharp anteroposterior gradients of
DAMGO-induced intake, hedonic enhancement, and hedonic
suppression were found, in which placements ~2.0–3.0 mm
posterior to the site probed here strongly augmented hedonic
taste reactivity while producing little effect on intake, while more
anterior placements (including the level probed here, where we
obtained pronounced hyperphagia) yielded some inconsistent
increases in food intake and, interestingly, hedonic suppression.
Together, these findings converge on a ventrally localized
DAMGO-responsive corridor comprising medial sectors of orbito-
frontal and anterior sectors of vmPFC, with gradients of increasing
sensitivity as placements move rostrally and ventrally in medial
prefrontal cortex, and rostrally and medially in orbitofrontal cortex.
Regarding insular cortex, there is evidence that µ-OR stimulation
amplifies food intake; however, more work is needed to resolve
the anatomical boundaries of this effect more precisely.
Among the most striking of the behavioral dissociations

observed in the present study was the difference in the patterns
elicited from ILC and VMO vs. AI/DI. Overall, the present results
suggest that µ-OR signaling in ILC and VMO (but less so in VLO,
and not at all in PrL) is sufficient to generate significant
hyperactivity and a food-seeking motivational state, in general
agreement with prior findings that intra-IL DAMGO amplifies
effortful sucrose-seeking operant behavior [8, 9] and that medial
PFC is strongly activated by food-directed exploratory activity and
less so (although still significantly) during consummatory reper-
toires [24]. Furthermore, the present data bolster prior observa-
tions that the overall behavioral phenotype observed after
DAMGO stimulation of ventromedial prefrontal and medial
orbitofrontal territories is disorganized and fragmented, with
bouts of exploratory-like behaviors interrupting bouts of sucrose
intake [7]. Nevertheless, despite the similar “fragmented” beha-
vioral patterns elicited from ILC and VMO, impairment of DRL
responding was observed only after ILC infusions. In fact, ILC was
the only site where DAMGO infusions altered DRL performance;
infusions just 1.0 mm dorsal (PrL) or 1.0 mm medial (VMO) did not
significantly alter responding, highlighting the circumscribed
nature of the effect. Combining results from all the current
activity/feeding and DRL experiments reveals the functional
specificity of the DRL impairment; neither DAMGO-induced
sucrose hyperphagia, nor the generation of hyperactivity either
in anticipation of or during sucrose access, represented conditions
sufficient to alter DRL responding. Hence, the ILC-localized DRL
impairment was not an artifact of generalized arousal or motor
activation, nor the obligatory outcome of enhanced feeding
motivation. Conversely, when ILC was unperturbed, DRL response
efficiency was preserved even in the face of the amplified food
motivation and/or hyperactivity variously elicited from the other
sites. Studies employing the five-choice serial reaction time task
(5-CSRTT) have yielded closely comparable results (like the DRL
deficits shown here, premature responding in the 5-CSRTT is
considered an index of “waiting” or “action” impulsivity [25]).
Lesions of ILC but not of other frontal sites, or glutamatergic or
GABA-ergic manipulations of the IL (none of which overtly
enhance appetitive motivation), engender marked premature
responding in the 5-CSRTT [26, 27]. More generally, it has been
hypothesized that ILC contributes to response selection by
restraining prepotent or contextually disadvantageous learned

Fig. 5 Effect of DAMGO on DRL performance, presented as
response efficiency (reinforced lever presses expressed as a
percent of total lever presses). An increase in disadvantageous,
premature responding results in a reduction of response efficiency
(see “Methods” for further details). **P < 0.01. Error bars depict 1
SEM. ILC infralimbic cortex, PrL prelimbic cortex, VMO ventromedial
orbitofrontal cortex, VLO ventrolateral orbitofrontal cortex, AI/DI
agranular/dysgranular insular cortex.
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responses, including in extinction [25, 28–31]. Prior neuropharma-
cological studies of this inhibitory-control function have focused
on dopamine, serotonin, and acetylcholine systems [25]. The
present results additionally suggest that supernormal µ-OR
signaling in the ILC also plays a role, while simultaneously
engaging a motivational function (general motivational arousal,
“seeking-like” behavior, and disorganized feeding responses) that
is more widely distributed through vmPFC plus parts of
orbitofrontal cortex, but which is not in itself sufficient to impair
inhibitory control in the DRL task.
In contrast to ILC and VMO, µ-OR stimulation in AI/DI affected

behavior only during sucrose access, and the ingestive pattern
consisted of long, uninterrupted bouts of intake. Considering
that the level of insular cortex targeted here corresponds to
primary gustatory cortex [32–35], one explanation for this
behavioral pattern is that DAMGO enhanced the sensory
perception and/or the hedonic evaluation of sucrose actively
being tasted. Enhancement of either sensory processing or
palatability perception could prolong bouts of contact and
ingestion, which is one effect of increasing the concentration
and presumably the reward value of sugar [36]. Accordingly,
electrophysiological recording studies have identified units and
ensembles at a level of insular cortex corresponding to the
present infusions that encode chemosensory tasteant charac-
teristics and/or palatability [37–40]. Relatedly, prior work from
our group showed that GABA-mediated inactivation of this
general area significantly decreased intake of sweet liquid food
but not of standard chow pellets [41]. The contrasting
behavioral functions of AI/DI-localized µ-ORs and GABA recep-
tors (i.e., hyper- and hypophagia, respectively) could be due to
the fact that µ-ORs negatively modulate cortical inhibitory
interneurons, thereby disinhibiting local network function [42–
45]) in a manner similar to well-established µ-OR actions in
hippocampus [46–48]. In contrast, intra-cortical GABA receptor
stimulation causes global inhibition of local cortical cellular
networks [49, 50].
Units in gustatory cortex also respond to stimuli antecedent to

feeding, including food-predictive Pavlovian cues [51], and there is
considerable evidence from human neuroimaging studies that
insular cortex responds to food images and other food-associated
second-order stimuli [52–54]. In this context, the absence of intra-
AI/DI DAMGO effects on hyperactivity during anticipation of
feeding is noteworthy, particularly given the extensive one- and
two-stage connections with the orbitofrontal and medial pre-
frontal areas that generated anticipatory activity in the present
study [33]. The mechanism underlying this behavioral specificity in
AI/DI is unclear, but it implies a selective action of µ-ORs on local
ensemble dynamics specific to ongoing consummatory activity,
specialized µ-OR modulation of output pathways mediating
consummatory action patterns, or a combination of the two. µ-
OR signaling could also modify a “supervisory” function, such as
switching out of eating bouts once they have begun. These effects
could modify the contribution of AI/DI to response-selection
networks, with the net effect of focusing overall behavioral output
on consumption. Interestingly, recent studies found a causal
linkage between a specific pattern of coherent gustatory cortex
ensemble activity (interpreted as the emergence of a palatability
computation) and the expression of simple orofacial motor
patterns to a passively administered tasteant [55, 56], revealing
a mechanism in gustatory cortex for top-down sensory control
over simple pattern generators. In theory, the putative µ-OR
modulation of local circuit dynamics in a way that amplifies
palatability computations could enable simple consummatory
action patterns to dominate the response repertoire, “short-
circuiting” the contributions of competing pathways, and prolong-
ing contact with food, as seen here.
Holistic appetitive-behavior sequences necessitate the integra-

tion of dissociable and sometimes competing functions—the

active, “seeking-like” repertoires that bring the organism in
contact with goal-predictive cues, and, ultimately, with the goal
itself; vs. the comparatively simpler consummatory patterns that
accompany sensory and reward computations during commerce
with the goal. The present results suggest a scheme of frontal-
cortical organization in which food approach and “seeking-like”
responses are preferentially represented in ventromedial pre-
frontal and medial orbitofrontal sites, sustained consummatory
activity in insular sites, and a dissociable inhibitory-control
function in ILC. In a general sense, this segregation of behavioral
functions is not incompatible with recent evidence demonstrat-
ing µ-OR-driven feeding without taste-reactivity enhancement
(“wanting” without “liking”) in medial prefrontal cortex and the
converse pattern in posterior insular cortex [10]. It is of great
interest to determine how cortical loci studied here interact as a
network to merge their respective functions; this could have
implications both for understanding how the network generates
coherent behavior sequences, as well as how the network learns
feeding-related contingencies. For example, prior work has
shown that ILC participates in sugar-conditioned flavor pre-
ference learning, possibly implicating integration between insular
and medial prefrontal networks [57–59]. Other important goals
include determining the endogenous opioid peptides that act in
this network, including those that recruit different intracellular
signaling pathways [60–63]; characterizing the interaction/inte-
gration of cortical and subcortical µ-OR actions (for example,
between specific cortical sites and the nucleus accumbens); and
exploring potential sex differences in the behavioral functions of
cortical µ-ORs. Regarding the clinical relevance of the present
findings, mounting evidence from human neuroimaging studies
indicates that frontal-cortical µ-ORs are involved in EDs and drug
addiction [15, 16], and may contribute to an impulsivity
endophenotype common to both EDs and addiction [20, 64].
Relatedly, recent studies in rats have demonstrated a strong
association between high levels of action impulsivity and binge-
like eating patterns [65, 66], and in agreement with the
present results, have suggested that projections from the vmPFC
to the nucleus accumbens shell regulate both behaviors [66]. The
functional heterogeneity observed here may help provide an
anatomical framework to further understand these neuroimaging
and preclinical results, and to integrate them into a clinical model.
For example, using food bingeing as an exemplar, supernormal µ-
OR signaling events could selectively (and perhaps sequentially)
drive approach toward food (VMO, ILC), degrade the ability to
exhibit food restraint once there (ILC), and amplify non-
homeostatic feeding once it has begun (AI/DI). Although
speculative, this model provides testable predictions
regarding the clinical manifestations of localized cortical µ-OR
abnormalities.
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