Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Striatal Shati/Nat8l–BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation

Subjects

Abstract

The global number of patients with depression increases in correlation to exposure to social stress. Chronic stress does not trigger depression in all individuals, as some remain resilient. The underlying molecular mechanisms that contribute to stress sensitivity have been poorly understood, although revealing the regulation of stress sensitivity could help develop treatments for depression. We previously found that striatal Shati/Nat8l, an N-acetyltransferase, was increased in a depression mouse model. We investigated the roles of Shati/Nat8l in stress sensitivity in mice and found that Shati/Nat8l and brain-derived neurotrophic factor (BDNF) levels in the dorsal striatum were increased in stress-susceptible mice but not in resilient mice exposed to repeated social defeat stress (RSDS). Knockdown of Shati/Nat8l in the dorsal striatum induced resilience to RSDS. In addition, blockade of BDNF signaling in the dorsal striatum by ANA-12, a BDNF-specific receptor tropomyosin-receptor-kinase B (TrkB) inhibitor, also induced resilience to stress. Shati/Nat8l is correlated with BDNF expression after RSDS, and BDNF is downstream of Shati/Nat8l pathways in the dorsal striatum; Shati/Nat8l is epigenetically regulated by BDNF via histone acetylation. Our results demonstrate that striatal Shati/Nat8l–BDNF pathways determine stress sensitivity through epigenetic regulation. The striatal Shati/Nat8l–BDNF pathway could be a novel target for treatments of depression and could establish a novel therapeutic strategy for depression patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Increased Shati/Nat8l expression is correlated with depressive behaviors.
Fig. 2: Knockdown of Shati/Nat8l in the dorsal striatum shows resilience to social defeat stress.
Fig. 3: Increased BDNF in the dorsal striatum of susceptible mice was correlated with depressive behaviors and inhibition of striatal BDNF signaling induced resilience to social defeat stress.
Fig. 4: Shati/Nat8l regulates BDNF in the dorsal stratum.
Fig. 5: Striatal BDNF is regulated through Histone H3K9ac.

References

  1. 1.

    Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–88.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Keller MB, Gelenberg AJ, Hirschfeld RM, Rush AJ, Thase ME, Kocsis JH, et al. The treatment of chronic depression, part 2: a double-blind, randomized trial of sertraline and imipramine. J Clin Psychiatry. 1998;59:598–607.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008;455:894–902.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, et al. The effects of psychological stress on depression. Curr Neuropharmacol. 2015;13:494–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Monroe SM, Harkness KL. Life stress, the “kindling” hypothesis, and the recurrence of depression: considerations from a life stress perspective. Psychol Rev. 2005;112:417–45.

    PubMed  Article  Google Scholar 

  6. 6.

    Technow JR, Hazel NA, Abela JR, Hankin BL. Stress sensitivity interacts with depression history to predict depressive symptoms among youth: prospective changes following first depression onset. J Abnorm Child Psychol. 2015;43:489–501.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Pearson-Leary J, Zhao C, Bittinger K, Eacret D, Luz S, Vigderman AS, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2019;25:1068–79.

    PubMed  Article  Google Scholar 

  8. 8.

    Golden SA, Covington HE 3rd, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Niwa M, Nitta A, Mizoguchi H, Ito Y, Noda Y, Nagai T, et al. A novel molecule “shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J Neurosci. 2007;27:7604–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Haddar M, Uno K, Azuma K, Muramatsu SI, Nitta A. Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine‐induced conditioned place preference in mice. Addict Biol. 2020;25:e12749.

    PubMed  Article  Google Scholar 

  11. 11.

    Toriumi K, Mamiya T, Song Z, Honjo T, Watanabe H, Tanaka J, et al. Deletion of SHATI/NAT8L decreases the N-acetylaspartate content in the brain and induces behavioral deficits, which can be ameliorated by administering N-acetylaspartate. Eur Neuropsychopharmacol. 2015;25:2108–17.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Singhal NK, Huang H, Li S, Clements R, Gadd J, Daniels A, et al. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Exp Brain Res. 2017;235:279–92.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Becker I, Lodder J, Gieselmann V, Eckhardt M. Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem. 2010;285:29156–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S, et al. Striatal N-acetylaspartate synthetase Shati/Nat8l regulates depressive behaviors via mGluR3-mediated serotonergic suppression in mice. Int J Neuropsychopharmacol. 2017;20:1027–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Miyanishi H, Uno K, Iwata M, Kikuchi Y, Yamamori H, Yasuda Y, et al. Investigating DNA methylation of SHATI/NAT8L promoter sites in blood of unmedicated patients with major depressive disorder. Biol Pharm Bull. 2020;43:1067–72.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Reynolds LM, Reynolds GP. Differential regional N-acetylaspartate deficits in postmortem brain in schizophrenia, bipolar disorder and major depressive disorder. J Psychiatr Res. 2011;45:54–9.

    PubMed  Article  Google Scholar 

  17. 17.

    Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/NF-κB signaling in the neurobiology of depression. Curr Pharm Des. 2017;23:3154–63.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Zhang JC, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol. 2016;14:721–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Boulle F, Kenis G, Cazorla M, Hamon M, Steinbusch HW, Lanfumey L, et al. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog Neurobiol. 2012;98:197–206.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Covington HE 3rd, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011;71:656–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Tadic A, Muller-Engling L, Schlicht KF, Kotsiari A, Dreimüller N, Kleimann A, et al. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. 2014;19:281–3.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Jiang C, Lin WJ, Sadahiro M, Labonté B, Menard C, Pfau ML, et al. VGF function in depression and antidepressant efficacy. Mol Psychiatry. 2017;23:1632–42.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Xu H, Wang J, Zhang K, Zhao M, Ellenbroek B, Shao F, et al. Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology. 2018;88:92–101.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Dong E, Tueting P, Matrisciano F, Grayson DR, Guidotti A. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl Psychiatry. 2016;6:e711.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu S. Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. Biomed Res Int. 2013:2013;974819.

  28. 28.

    Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W. Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron. 2010;66:908–20.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Compact. 3rd ed. Amsterdam: Elsevier; 2008.

  30. 30.

    Fox ME, Lobo MK. The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry. 2019;24:1798–815.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, et al. Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res. 2019;376:112227.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Heshmati M, Christoffel DJ, LeClair K, Cathomas F, Golden SA, Aleyasin H, et al. Depression and social defeat stress are associated with inhibitory synaptic changes in the nucleus accumbens. J Neurosci. 2020;40:6228–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Furukawa-Hibi Y, Nitta A, Fukumitsu H, Somiya H, Furukawa S, Nabeshima T, et al. Overexpression of piccolo C2A domain induces depressive behaviors in mice. Neuroreport. 2010;21:1177–81.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Sumi K, Uno K, Matsumura S, Miyamoto Y, Furukawa-Hibi Y, Muramatsu SI, et al. Induction of neuronal axon outgrowth by Shati/Nat8l by energy metabolism in mice cultured neurons. Neuroreport. 2015;26:740–6.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sumi K, Uno K, Noike H, Tomohiro T, Hatanaka Y, Furukawa-Hibi Y, et al. Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep. 2017;7:16872.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Walsh JJ, Friedman AK, Sun H, Heller EA, Ku SM, Juarez B, et al. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci. 2014;17:27–9.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest. 2011;121:1846–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Koo JW, Labonté B, Engmann O, Calipari ES, Juarez B, Lorsch Z, et al. Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress-induced depressive behaviors. Biol Psychiatry. 2016;80:469–78.

    CAS  Article  Google Scholar 

  39. 39.

    Uno K, Miyazaki T, Sodeyama K, Miyamoto Y, Nitta A. Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB- and dopamine D1 receptor-dependent mechanism. PLoS ONE. 2017;12:e0174196.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.

    PubMed  Article  Google Scholar 

  42. 42.

    Yang B, Zhang JC, Han M, Yao W, Yang C, Ren Q, et al. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology. 2016;233:3647–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Qiao H, An SC, Xu C, Ma XM. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res. 2017;1663:29–37.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Harris AZ, Atsak P, Bretton ZH, Holt ES, Alam R, Morton MP, et al. A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology. 2018;43:1276–83.

    PubMed  Article  Google Scholar 

  45. 45.

    van Doeselaar L, Yang H, Bordes J, Brix L, Engelhardt C, Tang F, et al. Chronic social defeat stress in female mice leads to sex-specific behavioral and neuroendocrine effects. Stress. 2021;24:168–80.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Li X, Wang H, Chen Q, Li Z, Liu C, Yin S, et al. Felbamate produces antidepressant-like actions in the chronic unpredictable mild stress and chronic social defeat stress models of depression. Fundam Clin Pharm. 2019;33:621–33.

    CAS  Article  Google Scholar 

  47. 47.

    Yang B, Ren Q, Ma M, Chen QX. Hashimoto K antidepressant effects of (+)-MK-801 and (−)-MK-801 in the social defeat stress model. Int J Neuropsychopharmacol. 2016;19:pyw080.

  48. 48.

    Kudryashov NV, Kalinina TS, Shimshirt AA, Korolev AO, Volkova AV, Voronina TA. Antidepressant-like effect of fluoxetine may depend on translocator protein activity and pretest session duration in forced swimming test in mice. 2018;29:375–8.

  49. 49.

    Ripoll N, David DJ, Dailly E, Hascoët M, Bourin M. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res. 2003;143:193–200.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Haddar M, Uno K, Hamatani K, Muramatsu SI, Nitta A. Regulatory system of mGluR group II in the nucleus accumbens for methamphetamine‐induced dopamine increase by the medial prefrontal cortex. Neuropsychopharmacol Rep. 2019;39:209–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Toriumi K, Kondo M, Nagai T, Hashimoto R, Ohi K, Song Z, et al. Deletion of SHATI/NAT8L increases dopamine D1 receptor on the cell surface in the nucleus accumbens, accelerating methamphetamine dependence. Int J Neuropsychopharmacol. 2014;17:443–53.

  52. 52.

    Haddar M, Azuma K, Izuo N, Uno K, Asano T, Muramatsu SI, et al. Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice. Behav Brain Res. 2021;397:112938.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Toriumi K, Tanaka J, Mamiya T, Alkam T, Kim HC, Nitta A. Shati/Nat8l knockout mice show behavioral deficits ameliorated by atomoxetine and methylphenidate. Behav Brain Res. 2018;339:207–14.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Armeanu R, Mokkonen M, Crespi B. Meta-analysis of BDNF levels in autism. Cell Mol Neurobiol. 2017;37:949–54.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry. 2014;19:791–800.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, et al. Interaction between BDNF and TNF-α genes in schizophrenia. Psychoneuroendocrinology. 2018;89:1–6.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018;19:E3650.

  58. 58.

    Radiske A, Rossato JI, Gonzalez MC, Köhler CA, Bevilaqua LR, Cammarota M. BDNF controls object recognition memory reconsolidation. Neurobiol Learn Mem. 2017;142:79–84.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, et al. Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. 2016;92:873–87.

  60. 60.

    Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol. 2008;11:1047–61.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Amemori KI, Amemori S, Gibson DJ, Graybiel AM. Striatal microstimulation induces persistent and repetitive negative decision-making predicted by striatal beta-band oscillation. Neuron. 2018;99:829–41.e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Lamers A, Toepper M, Fernando SC, Schlosser N, Bauer E, Woermann F, et al. Nonacceptance of negative emotions in women with borderline personality disorder: association with neuroactivity of the dorsal striatum. J Psychiatry Neurosci. 2019;44:303–12.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry. 2020;97:109797.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Lago T, Davis A, Grillon C, Ernst M. Striatum on the anxiety map: small detours into adolescence. Brain Res. 2017;1654:177–84.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325:625–5.

    Article  CAS  Google Scholar 

  69. 69.

    Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.

    PubMed  Article  Google Scholar 

  70. 70.

    Shinohara R, Taniguchi M, Ehrlich AT, Yokogawa K, Deguchi Y, Cherasse Y, et al. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry. 2018;23:1717–30.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Sachs BD, Ni JR, Caron MG. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc Natl Acad Sci U S A. 2015;112:2557–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord. 2020;260:302–13.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of mesolimbic brain-derived neurotrophic factor in depression. Biol Psychiatry. 2019;86:738–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Li J, Zhang DD, Wang CQ, Shi M, Wang LL. Protective effects of low-intensity pulsed ultrasound on aluminum overload-induced cerebral damage through epigenetic regulation of brain-derived neurotrophic factor expression. Biosci Rep. 2019;39:BSR20181185.

  75. 75.

    Viana Borges J, Souza de Freitas B, Antoniazzi V, de Souza Dos Santos C, Vedovelli K, Naziaseno Pires V, et al. Social isolation and social support at adulthood affect epigenetic mechanisms, brain-derived neurotrophic factor levels and behavior of chronically stressed rats. Behav Brain Res. 2019;366:36–44.

    PubMed  Article  Google Scholar 

  76. 76.

    Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Nhu LH, et al. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology. 2016;105:388–97.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Karnib N, El-Ghandour R, El Hayek L, Nasrallah P, Khalifeh M, Barmo N, et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology. 2019;44:1152–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Fukumoto K, Iijima M, Chaki S. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology. 2016;41:1046–56.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Shin C, Kim YK. Ketamine in major depressive disorder: mechanisms and future perspectives. Psychiatry Investig. 2020;17:181–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Naomi Takino and Mika Ito for technical assistance in producing the Shati/Nat8l AAV vectors. We also thank Dr Naotaka Izuo for the technical assistance in writing the manuscript.

Author information

Affiliations

Authors

Contributions

HM and AN designed the project, HM conducted all experiments, SM provided the AAV-Cre vectors, HM analyzed the data. HM wrote the draft of manuscript. AN revised and did form the final manuscript.

Corresponding author

Correspondence to Atsumi Nitta.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyanishi, H., Muramatsu, Si. & Nitta, A. Striatal Shati/Nat8l–BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacol. (2021). https://doi.org/10.1038/s41386-021-01033-2

Download citation

Search

Quick links