Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias

Abstract

Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited. We hypothesized that depletion of central dopamine levels in adult alcohol drinkers would attenuate AB and that these effects would be mediated by altered function in frontolimbic circuitry. Thirty-four male participants (22–38 years, including both social and heavy drinkers) underwent a two-session, placebo-controlled, double-blind dopamine precursor depletion procedure. At each visit, participants consumed either a balanced amino acid (control) beverage or an amino acid beverage lacking dopamine precursors (order counterbalanced), underwent resting-state fMRI, and completed behavioral testing on three AB tasks: an alcohol dot-probe task, an alcohol attentional blink task, and a task measuring AB to a reward-conditioned cue. Dopamine depletion significantly diminished AB in each behavioral task, with larger effects among subjects reporting higher levels of binge drinking. The depletion procedure significantly decreased resting-state functional connectivity among ventral tegmental area, striatum, amygdala, and prefrontal regions. Beverage-related AB decreases were mediated by decreases in functional connectivity between the fronto-insular cortex and striatum and, for alcohol AB only, between anterior cingulate cortex and amygdala. The results support a substantial role for dopamine in AB, and suggest specific dopamine-modulated functional connections between frontal, limbic, striatal, and brainstem regions mediate general reward AB versus alcohol AB.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dopamine depletion attenuates attentional bias, dependent on binge drinking severity.
Fig. 2: Region-of-interest analysis results.
Fig. 3: Voxel-wise results of dopamine depletion effects on functional connectivity of the ventral tegmental area (VTA).
Fig. 4: Mediation analysis results.

References

  1. 1.

    Field M, Mogg K, Bradley BP. Craving and cognitive biases for alcohol cues in social drinkers. Alcohol Alcohol. 2005;40:504–10.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Cox WM, Hogan LM, Kristian MR, Race JH. Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug alcohol Depend. 2002;68:237–43.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Waters AJ, Shiffman S, Sayette MA, Paty JA, Gwaltney CJ, Balabanis MH. Attentional bias predicts outcome in smoking cessation. Health Psychol. 2003;22:378–87.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Marissen MA, Franken IH, Waters AJ, Blanken P, van den Brink W, Hendriks VM. Attentional bias predicts heroin relapse following treatment. Addiction (Abingdon, Engl). 2006;101:1306–12.

    Article  Google Scholar 

  5. 5.

    Field M, Eastwood B. Experimental manipulation of attentional bias increases the motivation to drink alcohol. Psychopharmacology 2005;183:350–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Field M, Marhe R, Franken IH. The clinical relevance of attentional bias in substance use disorders. CNS Spectr. 2014;19:225–30.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Anderson BA. What is abnormal about addiction-related attentional biases? Drug alcohol Depend. 2016;167:8–14.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Tiffany ST. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychological Rev. 1990;97:147–68.

    CAS  Article  Google Scholar 

  9. 9.

    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Jones BT, Bruce G, Livingstone S, Reed E. Alcohol-related attentional bias in problem drinkers with the flicker change blindness paradigm. Psychol Addict Behav. 2006;20:171–7.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Anderson BA, Faulkner ML, Rilee JJ, Yantis S, Marvel CL. Attentional bias for nondrug reward is magnified in addiction. Exp Clin Psychopharmacol. 2013;21:499–506.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Bjork JM, Smith AR, Chen G, Hommer DW. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation and reward delivery. Hum Brain Mapp. 2012;33:2174–88.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Vollstädt-Klein S, Loeber S, Richter A, Kirsch M, Bach P, von der Goltz C, et al. Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients. Addict Biol. 2012;17:807–16.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Wiers CE, Stelzel C, Park SQ, Gawron CK, Ludwig VU, Gutwinski S, et al. Neural correlates of alcohol-approach bias in alcohol addiction: the spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology. 2014;39:688–97.

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Muller-Oehring EM, Le Berre AP, Serventi M, Kalon E, Haas AL, Padula CB, et al. Brain activation to cannabis- and alcohol-related words in alcohol use disorder. Psychiatry Res Neuroimaging. 2019;294:111005.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci. 2001;21:9471–7.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behavioural Brain Res. 2002;137:149–63.

    CAS  Article  Google Scholar 

  18. 18.

    Day JJ, Roitman MF, Wightman RM, Carelli RM. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci. 2007;10:1020–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus-reward learning. Nature 2011;469:53–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Millan EZ, Kim HA, Janak PH. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience 2017;360:106–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Chaudhri N, Woods CA, Sahuque LL, Gill TM, Janak PH. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking. Eur J Neurosci. 2013;38:2751–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Corbit LH, Fischbach SC, Janak PH. Nucleus accumbens core and shell are differentially involved in general and outcome-specific forms of Pavlovian-instrumental transfer with alcohol and sucrose rewards. Eur J Neurosci. 2016;43:1229–36.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Shnitko TA, Robinson DL. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem Neurosci. 2015;6:147–54.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Sparks LM, Sciascia JM, Ayorech Z, Chaudhri N. Vendor differences in alcohol consumption and the contribution of dopamine receptors to Pavlovian-conditioned alcohol-seeking in Long-Evans rats. Psychopharmacol (Berl). 2014;231:753–64.

    CAS  Article  Google Scholar 

  25. 25.

    Fiorenza AM, Shnitko TA, Sullivan KM, Vemuru SR, Gomez AA, Esaki JY, et al. Ethanol exposure history and alcoholic reward differentially alter dopamine release in the nucleus accumbens to a reward-predictive cue. Alcohol Clin Exp Res. 2018;42:1051–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Wallis JD, Kennerley SW. Heterogeneous reward signals in prefrontal cortex. Curr Opin Neurobiol. 2010;20:191–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Ballard IC, Murty VP, Carter RM, MacInnes JJ, Huettel SA, Adcock RA. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J Neurosci: Off J Soc Neurosci. 2011;31:10340–6.

    CAS  Article  Google Scholar 

  28. 28.

    Murty VP, Ballard IC, Adcock RA. Hippocampus and prefrontal cortex predict distinct timescales of activation in the human ventral tegmental area. Cereb Cortex. 2017;27:1660–69.

    PubMed  Google Scholar 

  29. 29.

    Kelm MK, Boettiger CA. Effects of acute dopamine precusor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype. J Cogn Neurosci. 2013;25:2061–71.

    PubMed  Article  Google Scholar 

  30. 30.

    Kelm MK, Boettiger CA. Age moderates the effect of acute dopamine depletion on passive avoidance learning. Pharmacol Biochem Behav. 2015;131:57–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Nagano-Saito A, Cisek P, Perna AS, Shirdel FZ, Benkelfat C, Leyton M, et al. From anticipation to action, the role of dopamine in perceptual decision making: an fMRI-tyrosine depletion study. J Neurophysiol. 2012;108:501–12.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    da Silva Alves F, Schmitz N, Figee M, Abeling N, Hasler G, van der Meer J, et al. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study. J Psychopharmacol. 2011;25:538–49.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Bjork JM, Grant SJ, Chen G, Hommer DW. Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing. Neuropsychopharmacology 2014;39:595–604.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Hitsman B, MacKillop J, Lingford-Hughes A, Williams TM, Ahmad F, Adams S, et al. Effects of acute tyrosine/phenylalanine depletion on the selective processing of smoking-related cues and the relative value of cigarettes in smokers. Psychopharmacology 2008;196:611–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Pascual M, Boix J, Felipo V, Guerri C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J neurochemistry. 2009;108:920–31.

    CAS  Article  Google Scholar 

  36. 36.

    Spoelder M, Tsutsui KT, Lesscher HM, Vanderschuren LJ, Clark JJ. Adolescent alcohol exposure amplifies the incentive value of reward-predictive cues through potentiation of phasic dopamine signaling. Neuropsychopharmacology 2015;40:2873–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Thielen RJ, Engleman EA, Rodd ZA, Murphy JM, Lumeng L, Li T-K, et al. Ethanol drinking and deprivation alter dopaminergic and serotonergic function in the nucleus accumbens of alcohol-preferring rats. J Pharmacol Exp Therapeutics. 2004;309:216–25.

    CAS  Article  Google Scholar 

  38. 38.

    Wai JM, Grassetti A, Slifstein M, Matuskey D, Nabulsi N, Ropchan J, et al. Binge alcohol use is not associated with alterations in striatal dopamine receptor binding or dopamine release. Drug alcohol Depend. 2019;205:107627.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kritzer MF, Kohama SG. Ovarian hormones influence the morphology, distribution, and density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult rhesus monkeys. J Comp Neurol. 1998;395:1–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav. 1999;64:803–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Rosenberg L, Park S. Verbal and spatial functions across the menstrual cycle in healthy young women. Psychoneuroendocrinology 2002;27:835–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Shansky RM, Glavis-Bloom C, Lerman D, McRae P, Benson C, Miller K, et al. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol Psychiatry. 2004;9:531–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Joffe H, Hall JE, Gruber S, Sarmiento IA, Cohen LS, Yurgelun-Todd D. et al.Estrogen therapy selectively enhances prefrontal cognitive processes: a randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause. 2006;13:411–22.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Gasbarri A, Pompili A, d’Onofrio A, Cifariello A, Tavares MC, Tomaz C. Working memory for emotional facial expressions: role of the estrogen in young women. Psychoneuroendocrinology. 2008;33:964–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Jacobs E, D’Esposito M. Estrogen shapes dopamine-dependent cognitive processes: implications for women’s health. J Neurosci. 2011;31:5286–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Smith CT, Sierra Y, Oppler SH, Boettiger CA. Ovarian Cycle Effects on Immediate Reward Selection Bias in Humans: A Role for Estradiol. J Neurosci. 2014;34:5468–76.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    US Department of Health and Human Services. National Institute on Alcohol Abuse and Alcoholism NIAAA Council approves definition of binge drinking. InNIAAA Newsletter; US Department of Health and Human Services: Washington, DC, USA, 2004.

  48. 48.

    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin psychiatry. 1998;59:22–33. quiz 34-57

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Moja EA, Lucini V, Benedetti F, Lucca A. Decrease in plasma phenylalanine and tyrosine after phenylalanine-tyrosine free amino acid solutions in man. Life Sci. 1996;58:2389–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Sheehan B, Tharyan P, McTavish S, Campling G, Cowen P. Use of a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy subjects. J Psychopharm. 1996;10:231–34.

    CAS  Article  Google Scholar 

  51. 51.

    Karobath M, Baldessarini RJ. Formation of catechol compounds from phenylalanine and tyrosine with isolated nerve endings. Nat: N. Biol. 1972;236:206–8.

    CAS  Google Scholar 

  52. 52.

    Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137:1539S–47S.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Booij L, Van der Does AJ, Riedel WJ. Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry. 2003;8:951–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, et al. Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: A PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 2004;29:427–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J psychiatry. 2003;160:1887–9.

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Palmour RM, Ervin FR, Baker GB, Young SN. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology 1998;136:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Shnitko TA, Taylor SC, Stringfield SJ, Zandy SL, Cofresi RU, Doherty JM, et al. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology 2016;233:2045–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    McTavish SF, Callado L, Cowen PJ, Sharp T. Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol (Oxf, Engl). 1999;13:379–84.

    CAS  Article  Google Scholar 

  59. 59.

    Bloemen OJ, De Koning M, Boot E, Booij J, van Amelsvoort T. Challenge and therapeutic studies using alpha-methyl-para-tyrosine (AMPT) in neuropsychiatric disorders: a review. Cent Nerv Syst Agents Medicinal Chem. 2008;8:249–56.

    CAS  Article  Google Scholar 

  60. 60.

    Townshend JM, Duka T. Patterns of alcohol drinking in a population of young social drinkers: a comparison of questionnaire and diary measures. Alcohol Alcohol (Oxf, Oxfs). 2002;37:187–92.

    CAS  Article  Google Scholar 

  61. 61.

    Elton A, Dove S, Spencer CN, Robinson DL, Boettiger CA. Naltrexone Acutely Enhances Connectivity Between the Ventromedial Prefrontal Cortex and a Left Frontoparietal Network. Alcohol, Clin Exp Res. 2019;43:965–78.

    CAS  Article  Google Scholar 

  62. 62.

    Chanon VW, Sours CR, Boettiger CA. Attentional bias toward cigarette cues in active smokers. Psychopharmacology 2010;212:309–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Elton A, Chanon VW, Boettiger CA. Multivariate pattern analysis of the neural correlates of smoking cue attentional bias. Pharmacol Biochem Behav. 2019;180:1–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Most SB, Laurenceau JP, Graber E, Belcher A, Smith CV. Blind jealousy? romantic insecurity increases emotion-induced failures of visual perception. Emotion 2010;10:250–56.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Most SB, Smith SD, Cooter AB, Levy BN, Zald DH. The naked truth: positive, arousing distractors impair rapid target perception. Cognition Emot 2007;21:964–81.

    Article  Google Scholar 

  66. 66.

    Most SB, Chun MM, Widders DM, Zald DH. Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bull & Rev. 2005;12:654–61.

    Article  Google Scholar 

  67. 67.

    Kennedy BL, Most SB. Perceptual, not memorial, disruption underlies emotion-induced blindness. Emotion 2012;12:199–202.

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Most SB. Setting sights higher: category-level attentional set modulates sustained inattentional blindness. Psychological Research. 2013;77:139–46.

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Wais PE, Rubens MT, Boccanfuso J, Gazzaley A. Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory. J Neurosci. 2010;30:8541–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Anderson AK, Wais PE, Gabrieli JD. Emotion enhances remembrance of neutral events past. Proc Natl Acad Sci USA. 2006;103:1599–604.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Smith PF. A note on the advantages of using linear mixed model analysis with maximal likelihood estimation over repeated measures ANOVAs in psychopharmacology: comment on Clark et al. (2012). J Psychopharmacol. 2012;26:1605–07.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Anderson BA, Laurent PA, Yantis S. Value-driven attentional capture. Proc Natl Acad Sci USA. 2011;108:10367–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers Biomed Res. 1996;29:162–73.

    CAS  Article  Google Scholar 

  74. 74.

    Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012;59:2142–54.

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 2014;84:320–41.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Goto Y, Grace AA. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 2005;47:255–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Watanabe M, Sakagami M. Integration of cognitive and motivational context information in the primate prefrontal cortex. Cereb cortex. 2007;17:i101–9.

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Yan C-G, Craddock RC, Zuo X-N, Zang Y-F, Milham MP. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 2013;80:246–62.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008;59:1037–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Anderson BA, Kuwabara H, Wong DF, Roberts J, Rahmim A, Brašić JR, et al. Linking dopaminergic reward signals to the development of attentional bias: a positron emission tomographic study. Neuroimage 2017;157:27–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Geva R, Zivan M, Warsha A, Olchik D. Alerting, orienting or executive attention networks: differential patters of pupil dilations. Front Behav Neurosci. 2013;7:145.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    McTavish SF, Cowen PJ, Sharp T. Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 1999;141:182–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ. Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 2001;154:105–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Cservenka A, Jones SA, Nagel BJ. Reduced cerebellar brain activity during reward processing in adolescent binge drinkers. Dev Cogn Neurosci. 2015;16:110–20.

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Liu W, Crews FT. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat. Neuroscience 2015;293:92–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci. 2015;9:35.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007;86:189–99.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Gass JT, Glen WB,Jr., McGonigal JT, Trantham-Davidson H, Lopez MF, Randall PK. et al. Adolescent alcohol exposure reduces behavioral flexibility, promotes disinhibition, and increases resistance to extinction of ethanol self-administration in adulthood. Neuropsychopharmacology. 2014;39:2570–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Sey NYA, Gomez AA, Madayag AC, Boettiger CA, Robinson DL. Adolescent intermittent ethanol impairs behavioral flexibility in a rat foraging task in adulthood. Behavioural brain Res. 2019;373:112085.

    CAS  Article  Google Scholar 

  94. 94.

    Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010;72:146–59.

    PubMed  Article  Google Scholar 

  95. 95.

    Luciana M. Adolescent brain development in normality and psychopathology. Dev Psychopathol. 2013;25:1325–45.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM, et al. Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry. 2006;45:468–75.

    PubMed  Article  Google Scholar 

  97. 97.

    Tarter RE, Kirisci L, Mezzich A, Cornelius JR, Pajer K, Vanyukov M, et al. Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. Am J Psychiatry. 2003;160:1078–85.

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Fernandez GM, Lew BJ, Vedder LC, Savage LM. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience. 2017;348:324–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Badanich KA, Becker HC, Woodward JJ. Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice. Behavioral Neurosci. 2011;125:879.

    CAS  Article  Google Scholar 

  100. 100.

    Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Chronic intermittent ethanol exposure enhances the excitability and synaptic plasticity of lateral orbitofrontal cortex neurons and induces a tolerance to the acute inhibitory actions of ethanol. Neuropsychopharmacology. 2016;41:1112–27.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Shafiei G, Zeighami Y, Clark CA, Coull JT, Nagano-Saito A, Leyton M, et al. Dopamine signaling modulates the stability and integration of intrinsic brain networks. Cereb Cortex. 2019;29:397–409.

    PubMed  Article  Google Scholar 

  102. 102.

    Carbonell F, Nagano-Saito A, Leyton M, Cisek P, Benkelfat C, He Y. et al. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks. Neuropharmacology. 2014;84:90–100.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Saunders BT, Robinson TE. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci. 2012;36:2521–32.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M. et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology. 2004;175:296–302.

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26:6583–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell 2015;162:712–25.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Etkin A, Schatzberg AF. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am J Psychiatry. 2011;168:968–78.

    PubMed  Article  Google Scholar 

  109. 109.

    Egner T, Etkin A, Gale S, Hirsch J. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex. 2008;18:1475–84.

    PubMed  Article  Google Scholar 

  110. 110.

    Kompus K, Hugdahl K, Ohman A, Marklund P, Nyberg L. Distinct control networks for cognition and emotion in the prefrontal cortex. Neurosci Lett. 2009;467:76–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Passamonti L, Rowe JB, Ewbank M, Hampshire A, Keane J, Calder AJ. Connectivity from the ventral anterior cingulate to the amygdala is modulated by appetitive motivation in response to facial signals of aggression. Neuroimage. 2008;43:562–70.

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev. 2011;12:652–69.

    CAS  Article  Google Scholar 

  113. 113.

    Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry. 2020;25:82–93.

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Hilland E, Landrø NI, Harmer CJ, Maglanoc LA, Jonassen R. Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial. Front Hum Neurosci. 2018;12:508.

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci. 2009;29:1538–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Robinson OJ, Standing HR, DeVito EE, Cools R, Sahakian BJ. Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males. Psychopharmacology. 2010;211:187–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J, et al. Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry. 2006;59:966–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Murty VP, Shermohammed M, Smith DV, Carter RM, Huettel SA, Adcock RA. Resting state networks distinguish human ventral tegmental area from substantia nigra. NeuroImage. 2014;100:580–9.

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Uddin LQ, Supekar KS, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci. 2011;31:18578–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  Google Scholar 

  123. 123.

    Ma N, Liu Y, Li N, Wang C-X, Zhang H, Jiang X-F. et al. Addiction related alteration in resting-state brain connectivity. NeuroImage. 2010;49:738–44.

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, et al. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex. 2014;24:1165–77.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Powell, A. Sapp, L. Harvey, A. Paulson, and C. Fare for assistance with data collection, and T. McKim, J. Hopfinger, M. Sheridan, and T. Thiele for valuable comments and discussion.

Author information

Affiliations

Authors

Contributions

These authors contributed equally: Monica L. Faulkner, Amanda Elton. CAB, DLR and MLF designed the research. MLF performed the research. MLF and AE analyzed the data. All authors made a substantial contribution to interpretation of the data and drafting of the manuscript.

Corresponding author

Correspondence to Charlotte A. Boettiger.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elton, A., Faulkner, M.L., Robinson, D.L. et al. Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias. Neuropsychopharmacol. (2021). https://doi.org/10.1038/s41386-021-00993-9

Download citation

Search

Quick links